# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("HMC", "WMT", "TGT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "HMC" "TGT" "WMT"
# weights
weight <- c(0.25, 0.25, 0.5)
weight
## [1] 0.25 0.25 0.50
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 3 × 2
## symbols weight
## <chr> <dbl>
## 1 HMC 0.25
## 2 TGT 0.25
## 3 WMT 0.5
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
reblance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0227
## 2 2013-02-28 0.0160
## 3 2013-03-28 0.0589
## 4 2013-04-30 0.0373
## 5 2013-05-31 -0.0333
## 6 2013-06-28 -0.00556
## 7 2013-07-31 0.0311
## 8 2013-08-30 -0.0676
## 9 2013-09-30 0.0244
## 10 2013-10-31 0.0332
## # … with 50 more rows
# Define risk free rate
rfr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.128
# Create a custom function to calculate rolling SR
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)
}
# Define window
window <- 24
# Transform data: calculate rolling sharpe ratio
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 37 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.182
## 2 2015-01-30 0.146
## 3 2015-02-27 0.153
## 4 2015-03-31 0.105
## 5 2015-04-30 0.0246
## 6 2015-05-29 0.0464
## 7 2015-06-30 0.0237
## 8 2015-07-31 0.00843
## 9 2015-08-31 -0.00267
## 10 2015-09-30 -0.0351
## # … with 27 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
#Labeling
labs(x = NULL, y = "Rolling Sharpe Ratio") +
annotate(geom = "text",
x = as.Date("2016-06-01"),
y = 0.5,
label = "This portfolio has started to get better
since the beginning of 2017 and keep increasing ",
color = "red",
size = 5)
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
Overall my portfolio has performed low compared to a good sharpe ratio. The structural break in my chart would be in the beginning of 2017. After this structural break, my portfolio has performed better and has been on a steady increase upwards. In the beginning of March, of 2017, Target faced one of their biggest price drop in active trade because this retail giant struggled to cope with the rapidly changing behavior of consumers. To fight this struggle Target revamped store locations and invested a lot of money to ensure prices are competitive.