Haii!!! MAsuk lagi ke pembahasan selanjutnya dengan library baru dengan pembahasan baru.
perkenalkan saya Haniyah NIM 220605110048 mahasiswa teknik informatika 2022, uin maulana malik ibrahim malang seperti pembahasan sebelumnya ini merupakan mata kulia linear algebra dari dosen pengampu: Prof. Dr. Suhartono, M.Kom
sebelum itu sedikit saya akan membahas tentang 3 library yang digunakan:
Library matlib merupakan sebuah paket (package) dalam bahasa pemrograman R yang berisi berbagai fungsi untuk melakukan operasi matriks dan aljabar linear. Fungsi-fungsi yang terdapat dalam library matlib ini termasuk di antaranya: perhitungan invers matriks, determinan matriks, eigenvalue dan eigenvector, serta transformasi matriks.
Library mvtnorm adalah sebuah paket dalam bahasa pemrograman R yang berisi fungsi-fungsi untuk menghitung distribusi multivariat normal. Fungsi-fungsi dalam library ini dapat digunakan untuk menghitung probabilitas, menghasilkan sampel dari distribusi multivariat normal, dan melakukan operasi statistik pada data yang mengikuti distribusi tersebut.
Library ggplot2 adalah sebuah paket dalam bahasa pemrograman R yang digunakan untuk membuat visualisasi data yang menarik dan informatif dengan menggunakan grammar of graphics. Fungsi-fungsi yang terdapat dalam library ini dapat digunakan untuk membuat berbagai jenis plot, termasuk scatterplot, histogram, boxplot, dan masih banyak lagi. Library ini sangat populer dan digunakan oleh banyak peneliti dan profesional di berbagai bidang, termasuk data science dan statistik.
library(matlib)
library(mvtnorm)
library(ggplot2)
## Standard deviation
sigma <- matrix(c(4,2,2,3), ncol = 2, nrow = 2)
## Mean
mu <- c(1, 2)
n <- 1000
set.seed(123)
x <- rmvnorm(n = n, mean = mu, sigma = sigma)
Perintah “x <- rmvnorm(n = n, mean = mu, sigma = sigma)” merupakan sintaks dari bahasa pemrograman R yang digunakan untuk menghasilkan sampel acak dari distribusi multivariat normal.
Argumen “n” menentukan jumlah sampel yang akan dihasilkan, sedangkan “mean” dan “sigma” mewakili vektor rata-rata dan matriks kovarians, masing-masing, dari distribusi multivariat normal yang ingin dibuat sampelnya.
Dalam konteks ini, “x” akan menjadi nama variabel yang menyimpan hasil sampel acak dari distribusi multivariat normal yang dibentuk dengan menggunakan rata-rata “mu” dan matriks kovarians “sigma”, dan sebanyak “n” sampel. Oleh karena itu, sintaks tersebut akan menghasilkan “n” sampel acak dari distribusi multivariat normal yang memiliki rata-rata “mu” dan matriks kovarians “sigma”, kemudian disimpan dalam variabel “x” untuk digunakan pada analisis atau pemrosesan data selanjutnya.
d <- data.frame(x)
p2 <- ggplot(d, aes(x = X1, y = X2)) +
geom_point(alpha = .5) +
geom_density_2d()
p2
Perintah “p2 <- ggplot(d, aes(x = X1, y = X2)) + geom_point(alpha = .5) + geom_density_2d()” merupakan sintaks dari bahasa pemrograman R yang digunakan untuk membuat plot dua dimensi dengan menggunakan package ggplot2.
Pertama, sintaks ini akan menghasilkan objek plot yang diberi nama “p2” dengan menggunakan data frame “d” sebagai sumber data.
Kemudian, dengan menggunakan fungsi “aes()”, variabel “X1” akan diatur sebagai sumbu x dan variabel “X2” akan diatur sebagai sumbu y pada plot dua dimensi yang akan dibuat.
Selanjutnya, dengan menggunakan fungsi “geom_point()”, sintaks tersebut akan menambahkan layer titik pada plot dengan alpha (transparansi) sebesar 0.5, yang akan merepresentasikan setiap data point pada sumbu x dan y.
Terakhir, dengan menggunakan fungsi “geom_density_2d()”, sintaks tersebut akan menambahkan layer densitas pada plot, yang akan merepresentasikan sebaran kepadatan data pada sumbu x dan y. Plot densitas yang dihasilkan oleh fungsi ini akan berupa kontur yang merepresentasikan nilai kepadatan data pada setiap titik di plot dua dimensi.
Secara keseluruhan, sintaks ini akan menghasilkan plot dua dimensi yang menampilkan titik-titik data dengan sebaran kepadatan yang diwakili oleh kontur pada setiap titik. Plot tersebut dapat digunakan untuk memvisualisasikan hubungan antara variabel X1 dan X2 dalam data frame “d”.
y <- x - mu
E <- eigen(sigma)
E$vectors
## [,1] [,2]
## [1,] -0.7882054 0.6154122
## [2,] -0.6154122 -0.7882054
y <- y %*% t(inv(E$vectors))
Ekspresi y <- y %*% t(inv(E$vectors)) melibatkan beberapa operasi dengan matriks. Mari kita bahas langkah demi langkah:
E\(vectors: E di sini kemungkinan mengacu pada dekomposisi nilai eigen dari sebuah matriks persegi, dan E\)vectors merupakan matriks dari vektor eigen dari matriks tersebut. Jadi E$vectors adalah matriks persegi.
inv(E\(vectors): inv kemungkinan mengacu pada invers dari sebuah matriks, sehingga operasi ini menghitung invers dari E\)vectors. Perlu diingat bahwa tidak semua matriks memiliki invers, tetapi kita mengasumsikan di sini bahwa E$vectors dapat diinvers.
t(inv(E\(vectors)): t adalah operasi transpose, sehingga ini menghitung transpose dari invers dari E\)vectors. Matriks hasilnya juga persegi.
y %*% t(inv(E\(vectors)): %*% adalah operator perkalian matriks, sehingga operasi ini mengalikan y (sebuah vektor kolom) dengan transpose dari invers dari E\)vectors (sebuah matriks persegi). Hasilnya adalah sebuah vektor kolom dengan ukuran yang sama seperti y.
y <- y %*% t(inv(E$vectors)): Akhirnya, hasil perkalian matriks tersebut ditugaskan ke y, sehingga menimpa nilai sebelumnya.
Secara keseluruhan, ekspresi y <- y %*% t(inv(E\(vectors)) menghitung hasil perkalian antara matriks y dan transpose dari invers dari sebuah matriks E\)vectors, dengan mengasumsikan E$vectors dapat diinvers. Hasilnya adalah sebuah vektor kolom yang ditugaskan kembali ke y. Operasi ini mungkin merupakan bagian dari algoritma atau komputasi yang lebih besar yang melibatkan matriks dan aljabar linear.
dd <- data.frame(y)
Perintah dd <- data.frame(y) di R membuat bingkai data baru bernama dd dengan satu kolom bernama y.
Fungsi data.frame() digunakan untuk membuat bingkai data di R, yang merupakan struktur data yang umum digunakan untuk bekerja dengan data tabular. Argumen y yang diteruskan ke fungsi dapat berupa vektor, matriks, atau bingkai data lainnya.
Dengan menugaskan hasil data.frame(y) ke dd, kita membuat objek baru di lingkungan R yang disebut dd, yang merupakan bingkai data yang berisi satu kolom data. Ini dapat berguna untuk melakukan berbagai tugas manipulasi dan analisis data, seperti subset, menggabungkan, dan memplot data.
p3 <- ggplot(dd, aes(x = X1, y = X2)) +
geom_point(alpha = .5) +
geom_density_2d()
p3
x <- rmvnorm(n = n, mean = mu, sigma = sigma)
d <- data.frame(x)
d
## X1 X2
## 1 0.151244424 2.100563009
## 2 0.645904500 3.692973095
## 3 0.988345528 1.089911245
## 4 -2.829946598 -0.070310445
## 5 4.611815544 2.231522332
## 6 -0.237521589 2.599738577
## 7 2.269545766 3.479461284
## 8 1.097585790 3.682954387
## 9 -1.278142553 1.260721430
## 10 0.031198593 2.719428102
## 11 1.873374341 3.891099835
## 12 5.030088724 3.387659273
## 13 -0.489080808 0.350302869
## 14 0.456013513 1.738102988
## 15 4.188246110 1.269930759
## 16 -1.327630678 0.717062535
## 17 2.589345496 3.675520105
## 18 -0.671241758 1.697711985
## 19 1.589581034 3.933971328
## 20 2.915003896 2.100706780
## 21 1.455219469 3.095199552
## 22 -2.348082293 0.562146114
## 23 1.809246406 1.465974405
## 24 0.873185253 1.931899575
## 25 -0.948021359 -0.036053349
## 26 0.421293252 1.319111579
## 27 3.460986455 4.975280080
## 28 1.201237736 2.646434485
## 29 1.202913271 2.945611277
## 30 1.552379476 2.510441428
## 31 2.580993585 1.007973060
## 32 3.975241180 3.385889009
## 33 1.032112857 1.183818816
## 34 0.895533044 2.520073890
## 35 -3.299180064 -0.145618925
## 36 1.959183744 1.846982468
## 37 -0.893873258 0.508521530
## 38 0.533436132 -0.545784506
## 39 1.452899317 -1.063546865
## 40 -0.408622552 0.427411629
## 41 -2.002487134 -0.467840142
## 42 1.412656681 1.944362246
## 43 -0.882108393 -1.971194064
## 44 -1.615672924 1.040389595
## 45 -1.133189801 0.201063954
## 46 3.113163098 2.877682655
## 47 -1.267006338 0.645326696
## 48 0.070724905 0.725321124
## 49 -0.879494351 1.373169020
## 50 2.550153144 2.788324300
## 51 0.833865262 2.522842164
## 52 2.444827262 2.216115119
## 53 1.230851094 0.379468976
## 54 0.284550189 1.171087237
## 55 1.576425841 2.695386459
## 56 0.331989764 0.675231317
## 57 -0.627886095 1.933638348
## 58 3.161763027 1.473222443
## 59 0.447328976 2.325425796
## 60 0.003824605 1.887379077
## 61 0.472260839 0.701524440
## 62 3.071608303 3.853901052
## 63 3.678527234 4.653074894
## 64 -0.233011033 0.954386943
## 65 1.855585106 3.179098632
## 66 0.110141671 1.115514715
## 67 0.646559036 4.080690423
## 68 -3.908296351 0.315445976
## 69 0.477664533 0.285543479
## 70 0.633937086 -1.005968425
## 71 1.897844514 -0.188198433
## 72 -3.657106480 -0.489242229
## 73 0.944800551 1.023666298
## 74 0.113841176 2.231469524
## 75 -1.080680365 1.264072728
## 76 2.874294421 4.956857373
## 77 2.884230691 5.078797307
## 78 1.867957883 2.249442770
## 79 -4.019581612 -1.274889802
## 80 0.788210562 2.987588400
## 81 0.686600976 2.709342163
## 82 -1.195950606 0.952856346
## 83 1.214478384 1.533219213
## 84 0.839491383 0.964556546
## 85 1.672938910 2.077654666
## 86 -0.185853139 -1.219111191
## 87 -1.130448682 -0.819171866
## 88 -2.359606493 0.288195181
## 89 0.850800419 2.374221052
## 90 3.344360582 3.341527041
## 91 2.646657893 1.706710534
## 92 1.019190655 3.604753633
## 93 0.057735073 -0.752034900
## 94 -0.058412552 3.174811754
## 95 0.015223741 2.202937575
## 96 0.748261562 1.194822163
## 97 0.546925794 2.444547127
## 98 2.096352089 4.140555813
## 99 0.097473511 0.375192961
## 100 1.714946181 3.248802054
## 101 5.119261363 2.523208488
## 102 0.869718630 3.262306197
## 103 3.088966280 1.641193507
## 104 1.957839722 1.447714089
## 105 -0.496337877 2.480333464
## 106 1.423278057 2.697703283
## 107 0.894882803 4.614337637
## 108 2.066453621 1.760627975
## 109 1.666069709 0.405347621
## 110 1.524531788 4.221656151
## 111 1.149397965 3.385479716
## 112 -0.717829370 -1.889571470
## 113 -0.564234841 1.870075271
## 114 3.442871597 1.841047869
## 115 0.987312960 0.574501495
## 116 -1.387935048 0.155116189
## 117 4.156344577 4.310137092
## 118 2.766539473 4.161181783
## 119 0.612383923 3.005802019
## 120 0.812582994 0.399124684
## 121 -0.566974323 1.614803136
## 122 1.214021512 1.589123406
## 123 -2.088066584 -1.985665983
## 124 1.650189823 1.755316194
## 125 1.184987828 -0.223884315
## 126 -1.468197696 1.113020114
## 127 -2.826461944 -2.042876627
## 128 3.010447420 3.916390680
## 129 -1.129819397 0.975279743
## 130 -0.998623508 1.880911583
## 131 0.454252527 0.558894950
## 132 -1.083076218 -0.175229102
## 133 2.158565537 3.180789336
## 134 1.248746408 0.830752167
## 135 -2.129871204 1.865594000
## 136 0.638013914 1.835927148
## 137 2.478724176 1.116400335
## 138 2.963500516 1.966206356
## 139 -0.484532592 1.261997654
## 140 1.632100324 1.879779586
## 141 -0.886723427 1.032382711
## 142 -4.164765683 -0.262080758
## 143 1.780013394 1.979035070
## 144 2.594357195 3.183132644
## 145 2.608040701 3.437748947
## 146 -2.334634296 1.029438039
## 147 3.858581730 2.129203797
## 148 1.949705146 2.489470893
## 149 1.916183333 1.867473298
## 150 -0.203869429 1.753438162
## 151 1.294684594 1.813200683
## 152 1.291595561 2.691585168
## 153 0.150910821 3.430765889
## 154 6.054503809 5.657277713
## 155 -0.896965372 -1.241861928
## 156 1.598888273 3.472603606
## 157 1.802145659 0.422756501
## 158 -1.061352240 1.593333446
## 159 2.692414586 3.782071341
## 160 2.022788897 0.873134314
## 161 -2.650746255 -2.034979805
## 162 2.434689513 3.640537364
## 163 1.049213159 0.453661136
## 164 3.800937112 2.274917887
## 165 4.724606946 3.903472315
## 166 3.470496153 3.210775527
## 167 0.306685300 0.304815911
## 168 -0.098475706 1.608844594
## 169 1.522728545 2.104150959
## 170 0.761556542 2.200550512
## 171 -0.307749423 0.827197822
## 172 -1.318282239 2.568078290
## 173 1.043069415 1.889383915
## 174 -0.561384825 1.177555025
## 175 -1.675816756 -0.330000189
## 176 -2.131289830 2.529523041
## 177 0.613953806 0.241219255
## 178 3.584858651 3.677501964
## 179 2.297981994 2.047468801
## 180 0.133231534 1.601636112
## 181 2.226436887 3.537989816
## 182 3.764589248 2.059550183
## 183 -0.892540769 1.594315570
## 184 6.559569255 2.996740785
## 185 3.062319191 2.245803523
## 186 -0.317874282 0.567114589
## 187 1.517505038 4.570949602
## 188 1.853315782 2.968071155
## 189 3.774510358 5.865606927
## 190 1.686418252 0.098019202
## 191 -1.877229311 -1.184982951
## 192 -3.741792762 2.513219818
## 193 0.274403580 2.369516693
## 194 2.980220475 1.825743306
## 195 0.937850952 2.497943493
## 196 0.998248648 0.858436144
## 197 2.709442138 3.304746579
## 198 -0.240824752 -0.164761152
## 199 3.018106638 4.694719484
## 200 4.140286632 4.205705435
## 201 -0.226019920 0.857900572
## 202 -0.359426012 0.995144755
## 203 2.505325121 2.818732380
## 204 -3.609000527 -2.091754857
## 205 1.040463975 2.232805224
## 206 -3.887869261 -0.634761423
## 207 1.874671065 4.410310601
## 208 -3.569203928 -1.188343872
## 209 -0.974901907 1.680032803
## 210 1.454719909 1.660608466
## 211 -2.449126003 0.060576100
## 212 -0.189662700 1.353026864
## 213 3.734450982 1.803595664
## 214 0.749826029 0.887232574
## 215 -1.022940753 2.344643575
## 216 0.521109639 5.890410977
## 217 1.211534862 2.150748348
## 218 1.908716264 4.983000388
## 219 2.133219870 1.962046138
## 220 -1.822285856 -0.357324373
## 221 0.176324924 3.549130459
## 222 0.211601394 0.653256000
## 223 3.276470880 4.649054809
## 224 -0.583187498 0.880631060
## 225 1.660003323 2.186171611
## 226 2.743635718 5.036786180
## 227 0.726293913 1.506183251
## 228 1.903948016 2.192044874
## 229 2.079001193 1.985982475
## 230 0.972195422 -0.312512358
## 231 0.736485441 1.162109197
## 232 -1.517301716 0.653989973
## 233 1.765906814 2.360407883
## 234 2.859993777 3.931312925
## 235 2.407707816 1.934132465
## 236 -1.706813509 0.794083846
## 237 3.176706555 2.458531889
## 238 -1.866321319 1.884588897
## 239 1.315707495 1.502129161
## 240 2.102571842 4.340900759
## 241 3.237116670 1.982825446
## 242 0.203025532 -0.376211636
## 243 0.732146085 4.880942183
## 244 3.746348842 2.466551284
## 245 -1.097367660 -0.628196058
## 246 5.145112876 3.382996768
## 247 0.466051013 3.432277761
## 248 -0.702055554 2.572163187
## 249 3.647406211 2.465695166
## 250 4.146199752 3.866907287
## 251 0.019980735 2.559281044
## 252 -0.652410634 0.729127469
## 253 2.218947722 1.656133583
## 254 1.525969964 3.655689614
## 255 -0.417124781 3.935799896
## 256 5.264702290 4.154617779
## 257 1.530767326 1.423918394
## 258 1.660135673 1.453615407
## 259 1.167103296 1.037113650
## 260 2.901901714 3.575873047
## 261 4.500107388 5.946193009
## 262 0.302403479 3.219480138
## 263 -1.996631873 0.448146994
## 264 2.399596881 1.321823164
## 265 1.157208654 0.719126854
## 266 0.266226685 1.724963370
## 267 -1.269162059 -1.532079941
## 268 1.733565064 2.914681246
## 269 0.987646345 1.276150461
## 270 3.333577702 4.271373389
## 271 -2.923741630 2.507965132
## 272 -2.609299006 0.435122507
## 273 -1.483135235 0.344166416
## 274 3.828068889 3.615994897
## 275 0.779787676 -1.126681869
## 276 1.730313994 3.140524541
## 277 2.105342886 0.889545071
## 278 2.015146403 0.241318325
## 279 3.888316511 1.669080258
## 280 2.647081761 2.950901426
## 281 -0.398171574 3.276694057
## 282 1.524146082 3.359545611
## 283 1.907032934 3.545503718
## 284 1.668560136 3.839246395
## 285 0.620461326 2.665861344
## 286 2.201009334 3.595300994
## 287 -0.092115127 1.941977653
## 288 0.397259161 3.162453401
## 289 0.751777206 4.479968789
## 290 2.509306148 2.421865105
## 291 3.267578034 2.539502841
## 292 2.378041116 3.181979771
## 293 1.476483054 1.260151515
## 294 -2.346172186 -1.458121263
## 295 0.508045653 2.862091543
## 296 -0.135287332 -0.105806893
## 297 5.533717841 4.362394380
## 298 5.418204296 5.081623694
## 299 -0.405029716 0.981458629
## 300 -1.348922611 2.403197250
## 301 3.598927990 1.404758158
## 302 -0.811242756 2.770236417
## 303 -0.830407270 4.295622412
## 304 1.134076629 -0.487843388
## 305 1.740349262 2.371841985
## 306 -3.761320221 0.543758523
## 307 -0.625979438 0.216217945
## 308 1.936529324 3.528196955
## 309 2.834847059 -1.341916815
## 310 1.891879739 0.857816399
## 311 3.413853570 3.216672014
## 312 2.939838767 0.383130367
## 313 2.115307989 2.761620550
## 314 2.881275297 2.210356908
## 315 2.945643664 1.914160028
## 316 0.190403800 1.800274355
## 317 -1.308956776 0.650906487
## 318 4.059110915 5.330170169
## 319 2.899816360 1.930351063
## 320 1.666647307 2.340393359
## 321 -1.271827492 1.713920503
## 322 -1.178370907 -0.200993235
## 323 1.994532934 1.248065288
## 324 0.176124751 0.323800171
## 325 1.384159932 2.838052402
## 326 1.360091259 0.520940436
## 327 4.253946303 5.153140379
## 328 1.804281744 2.467634587
## 329 1.293233754 2.465412518
## 330 1.799412659 2.435769356
## 331 2.066167183 1.817475965
## 332 3.146442099 2.573147973
## 333 -2.425879067 0.849632748
## 334 2.549481857 4.266439085
## 335 0.024918558 -1.144530691
## 336 0.335113830 0.038069772
## 337 -1.450080082 -0.229002282
## 338 0.105250080 3.413636534
## 339 -0.842835870 0.813231657
## 340 1.854040342 3.562228976
## 341 -0.744128576 0.271611800
## 342 -0.654117618 -0.211154690
## 343 1.539250874 -1.057446786
## 344 -0.822998855 -0.657645060
## 345 -2.739675357 0.946905905
## 346 4.871381758 5.542749596
## 347 -0.471980586 0.541814984
## 348 0.366148906 2.860786042
## 349 -3.777584366 0.965695736
## 350 -0.196599770 0.553237110
## 351 -2.966187797 0.535019379
## 352 -2.173749059 1.047872346
## 353 -0.691604296 1.572798512
## 354 1.601649082 1.433896513
## 355 -1.306259485 0.423033130
## 356 -1.120446166 -0.821594029
## 357 -0.607018456 1.244308403
## 358 0.761398302 2.415736377
## 359 3.667161895 3.272899860
## 360 3.468331220 1.768157085
## 361 3.926023231 3.731475014
## 362 -1.061237287 1.988927139
## 363 -0.843081530 2.856037441
## 364 -0.168704273 1.309756390
## 365 -0.783347662 0.221877681
## 366 4.824591055 4.581745477
## 367 2.337367878 2.500194250
## 368 2.785288655 3.498015933
## 369 4.555609106 4.294054309
## 370 0.483441629 1.532031779
## 371 -0.102885192 1.140957894
## 372 1.233182887 3.870366258
## 373 -3.863530393 -0.458753163
## 374 0.023544823 -0.177039738
## 375 3.976128057 2.526935484
## 376 -1.645012523 -0.088611274
## 377 3.725145209 5.552396859
## 378 0.821651570 2.105483362
## 379 -0.080408707 3.623797176
## 380 1.077608377 -1.409716933
## 381 -0.370051050 1.253719768
## 382 -1.280564117 0.929408052
## 383 -0.973496482 1.951461719
## 384 2.100135622 3.517309696
## 385 2.695493667 4.845726107
## 386 -0.951660893 -1.744791549
## 387 1.414574475 3.079060049
## 388 1.017411761 4.069467448
## 389 3.403423959 3.496010550
## 390 0.823886584 1.135712036
## 391 0.924138293 2.669173182
## 392 2.691089654 2.058946506
## 393 0.993925036 5.646337249
## 394 1.487323024 0.811160651
## 395 2.821567768 2.624427659
## 396 2.616029799 2.549653493
## 397 0.938792337 2.115600309
## 398 1.449305959 1.232560620
## 399 -0.361759071 1.328854605
## 400 1.150370846 1.576348481
## 401 0.989047582 0.373246428
## 402 -0.682902705 4.295204813
## 403 1.540474771 1.573230511
## 404 0.904027950 3.128861328
## 405 0.704318518 2.196502458
## 406 0.210027996 1.029759779
## 407 2.235366526 2.570340504
## 408 2.865991389 0.888122427
## 409 0.622808404 1.581551641
## 410 -0.502088663 3.030518739
## 411 0.014942445 -0.330310622
## 412 -0.757919133 -0.143730600
## 413 4.423933881 6.750136524
## 414 -0.344956090 1.470158966
## 415 3.059807658 6.595296073
## 416 -3.759140103 -0.151298274
## 417 -1.436566992 0.950912273
## 418 0.060172344 0.649265798
## 419 4.664930292 3.452251332
## 420 6.057178262 4.694915895
## 421 -1.852186686 0.054249798
## 422 1.199183620 1.206732766
## 423 2.091841402 3.399330858
## 424 1.732612565 2.016208313
## 425 -0.960003204 -0.474047825
## 426 2.172810843 3.702685950
## 427 1.270745936 3.189850034
## 428 6.362579568 6.420392044
## 429 0.357439872 2.617447148
## 430 0.039992715 2.735347206
## 431 1.044030983 2.421956582
## 432 0.028863016 3.491836508
## 433 0.587745338 1.222134269
## 434 0.895884367 2.082087858
## 435 3.517326173 1.100516286
## 436 5.284971559 2.115466061
## 437 0.178180710 -1.273635426
## 438 0.155231235 2.830933036
## 439 2.200538225 2.956659307
## 440 -0.932293234 -1.282691458
## 441 -1.188345746 1.020366782
## 442 2.663935355 3.721436615
## 443 0.333448809 1.581439958
## 444 0.719947312 2.003217134
## 445 3.541808121 1.673576062
## 446 0.651242908 2.013864505
## 447 -2.086396345 -0.261236965
## 448 1.624461110 2.812240492
## 449 2.926444764 1.877966315
## 450 3.304540426 1.400951952
## 451 -3.157840381 -2.085498792
## 452 3.290466255 3.120129430
## 453 0.584612238 1.445659491
## 454 4.719851830 4.859558330
## 455 -1.708530848 -0.843148774
## 456 3.398238708 3.528559852
## 457 0.242113603 2.362242042
## 458 -3.257243019 -0.227087219
## 459 1.793949341 2.125097909
## 460 -0.889660089 2.942653696
## 461 2.703874996 1.113786512
## 462 1.054750373 3.092687534
## 463 2.360558402 1.619322225
## 464 -0.492248675 2.071442490
## 465 -3.211644585 -0.633620947
## 466 1.526973687 -0.356414198
## 467 -1.440092713 0.930486319
## 468 -0.565859667 -1.043435214
## 469 1.403453043 0.612924291
## 470 0.586120200 1.589103546
## 471 2.299992746 2.283527081
## 472 1.672381510 4.635404716
## 473 2.064337669 3.230602573
## 474 2.232859685 3.203471752
## 475 3.531664908 2.657357321
## 476 2.573374199 5.363334226
## 477 0.708428084 3.817064649
## 478 0.796182755 4.460409187
## 479 -0.736587617 0.291285299
## 480 3.531690783 4.163463024
## 481 2.212513201 2.757714548
## 482 2.619340812 5.502242246
## 483 -2.304045926 -0.421223249
## 484 -0.915030798 2.854894503
## 485 0.455436470 1.648917226
## 486 4.097307530 2.053912077
## 487 4.090138790 0.828092409
## 488 3.711057522 3.270209797
## 489 0.156969791 1.498385256
## 490 4.527809717 5.544043764
## 491 -0.298359731 6.661132375
## 492 5.652695594 2.588615202
## 493 0.503401626 0.876729229
## 494 1.237423120 3.159815548
## 495 1.306331504 2.372668879
## 496 2.599425835 -0.779216377
## 497 0.137927894 1.960321937
## 498 0.093385912 3.297926062
## 499 -0.096360263 1.046432584
## 500 3.751163276 4.035234303
## 501 0.527249953 1.378543364
## 502 -2.171551139 0.043537654
## 503 5.966420140 3.399495053
## 504 2.649590116 2.211230758
## 505 2.140834606 2.256443136
## 506 3.334738147 1.941661795
## 507 -1.775174895 2.511296050
## 508 1.366384180 4.263826547
## 509 2.055975848 4.451558118
## 510 1.476002305 1.625084910
## 511 2.134519537 1.655547500
## 512 4.316074557 3.187265734
## 513 -3.161478129 0.085329284
## 514 -3.357723542 -2.486428164
## 515 1.477850414 3.094663268
## 516 -1.208491182 -0.605068371
## 517 -1.027174995 -0.878639789
## 518 2.672285657 3.336403555
## 519 -2.412780567 0.080775765
## 520 2.915513115 2.313384384
## 521 1.252824115 2.688906410
## 522 2.881237054 4.328552536
## 523 1.708409796 0.177470116
## 524 0.474313021 2.291504699
## 525 -0.434423969 -1.631407143
## 526 0.115249885 3.235931401
## 527 0.475522109 -0.323619009
## 528 1.325220946 1.861379589
## 529 3.473775981 5.828831226
## 530 -2.193498311 0.320371385
## 531 -0.467245682 -1.577713024
## 532 0.606615994 1.010671319
## 533 3.650543290 -1.523678755
## 534 4.423121555 4.488060206
## 535 2.493443046 2.653765275
## 536 0.257266109 3.411745191
## 537 -0.309499022 2.640275527
## 538 2.377839995 3.989532319
## 539 -0.471604311 0.712818743
## 540 1.751642278 2.670616445
## 541 3.910082321 3.567640479
## 542 1.751696029 3.461872976
## 543 0.571052879 3.484995836
## 544 -0.772535489 1.979139052
## 545 -2.137515464 1.444216972
## 546 -2.139628791 0.739301840
## 547 -2.732774791 -0.035864681
## 548 -0.177871085 2.472539765
## 549 -0.549385955 0.413573821
## 550 4.282891956 5.421269303
## 551 2.260458314 0.171646325
## 552 2.759718399 0.705004977
## 553 1.274789493 3.162800506
## 554 0.504926204 1.633373533
## 555 1.481183396 2.771437956
## 556 0.819025238 -0.597016692
## 557 0.824118563 2.371178156
## 558 1.955436071 1.812170457
## 559 -1.117461487 -0.635502722
## 560 -0.467165408 1.391194941
## 561 0.115130709 2.617196985
## 562 0.800986034 -0.428968237
## 563 1.913605658 3.065858839
## 564 0.483522767 1.809682483
## 565 0.005443492 1.276358882
## 566 -0.693839893 2.130482653
## 567 -1.682812368 0.344098525
## 568 -1.243208994 0.059572520
## 569 0.019812794 0.997829207
## 570 -0.485955757 1.191306917
## 571 -1.979576168 1.290931344
## 572 1.491425350 0.253127870
## 573 -0.457497039 4.862237434
## 574 1.489605475 2.221788591
## 575 0.895942981 2.695500835
## 576 0.764584298 1.126578423
## 577 -0.023738561 1.192512381
## 578 -0.036144569 0.588797459
## 579 3.114337840 2.757533961
## 580 -0.151416288 2.534037343
## 581 1.594873608 1.971493631
## 582 1.259900588 0.740459686
## 583 0.056658711 0.251321625
## 584 -1.458467595 0.791573926
## 585 0.809237427 0.598698469
## 586 -0.365021183 -1.097198001
## 587 0.800660897 3.666740379
## 588 -1.880618214 -0.601648894
## 589 0.878580858 2.752341721
## 590 4.864397363 7.042476476
## 591 2.914677765 3.550267346
## 592 4.723158131 2.647037964
## 593 0.732885109 2.294989276
## 594 -2.757494755 -1.805291466
## 595 4.144645090 2.073716685
## 596 -0.437050156 0.115852561
## 597 1.608849078 3.049447667
## 598 0.569477898 1.895572211
## 599 2.820017698 2.517202726
## 600 -0.111496680 1.585133582
## 601 -0.559454169 1.693391353
## 602 0.060173869 3.778855740
## 603 -3.546954118 1.259585348
## 604 1.180411164 4.981154876
## 605 0.820853031 2.657577013
## 606 1.881824935 2.623256986
## 607 3.117346209 5.563596675
## 608 2.890652489 2.843214979
## 609 4.764031904 3.961874645
## 610 2.948145872 4.405307212
## 611 1.717071151 3.279127048
## 612 0.543351012 2.050212250
## 613 0.716450451 0.974223178
## 614 4.591049080 2.228188025
## 615 1.061675873 3.969760026
## 616 1.617103182 3.902126529
## 617 -0.172959773 1.637524237
## 618 -0.026445617 0.271250216
## 619 0.049462307 0.755975420
## 620 2.482173182 2.005317571
## 621 0.375723723 0.597220449
## 622 0.506864553 -0.519826964
## 623 -3.604945482 3.421815831
## 624 2.810287265 3.465573329
## 625 -2.912016660 1.852031757
## 626 1.954058540 2.165002808
## 627 3.213500801 4.299618762
## 628 1.859132081 5.118332787
## 629 3.585341569 4.561514850
## 630 0.321460735 1.608034433
## 631 -0.541768676 2.148735987
## 632 1.558051371 2.297967259
## 633 -0.436894406 1.237307149
## 634 4.287811149 1.593744428
## 635 -0.568402433 -0.527508798
## 636 -1.542623729 0.832698164
## 637 -0.097826635 0.769371988
## 638 -0.595828045 1.242838289
## 639 2.975455600 2.051332506
## 640 -2.063925900 -0.472785395
## 641 -3.808676380 -1.929089615
## 642 -0.983483632 -0.019819880
## 643 -0.087109946 4.612993556
## 644 5.802693518 7.185655963
## 645 2.399730827 2.172351658
## 646 -1.621216041 -0.389853921
## 647 0.766186578 3.818526256
## 648 2.779250595 3.831920837
## 649 -0.232561117 -0.650487327
## 650 1.505837922 1.831898767
## 651 1.644467852 5.407414193
## 652 2.540852899 2.114720100
## 653 -2.814551301 0.460341537
## 654 3.110507292 3.167551892
## 655 2.109793155 3.865127796
## 656 0.481208709 1.338466777
## 657 0.925466647 3.060566856
## 658 0.910440307 3.094167921
## 659 -2.071887539 -0.772809185
## 660 1.671959811 3.317332680
## 661 -0.107043671 0.824851448
## 662 -4.239370281 1.017032856
## 663 -0.506593874 2.151973622
## 664 3.460551154 1.989879668
## 665 2.251514437 2.141764711
## 666 1.057732289 0.313693651
## 667 2.535565673 4.372781718
## 668 3.781038661 1.064792647
## 669 1.738741261 1.467734802
## 670 1.902965282 2.001483463
## 671 0.907388772 2.978034187
## 672 2.589122349 2.876698271
## 673 2.103439406 2.880898932
## 674 1.585588377 2.305953978
## 675 3.156474675 3.677742692
## 676 3.146151347 4.259850469
## 677 1.968368420 2.058166266
## 678 -1.365449301 0.587998746
## 679 -0.837574215 1.021897031
## 680 -0.118803247 1.382468831
## 681 -1.315077784 0.404888988
## 682 1.802584591 2.549846819
## 683 0.793820002 3.432132354
## 684 -1.878535936 1.868301865
## 685 3.783799882 2.214341146
## 686 1.430064938 1.303255522
## 687 1.416252296 3.323811745
## 688 -1.066231493 0.577216589
## 689 2.255230594 2.980249036
## 690 3.252914598 4.505945420
## 691 1.871817208 0.667322180
## 692 1.070808035 1.432633691
## 693 1.504470248 3.499604711
## 694 1.617285488 2.409488298
## 695 0.992647451 2.582903184
## 696 -1.499194419 0.646798876
## 697 4.449166355 3.918171928
## 698 -1.536691527 -0.553412485
## 699 -0.515159478 2.411154151
## 700 1.511751072 1.312010891
## 701 0.842289589 3.395349771
## 702 0.377777462 1.731681819
## 703 1.574142284 1.899479689
## 704 -0.642927561 0.910276759
## 705 -0.811002310 2.161160864
## 706 3.693989424 3.149002946
## 707 2.193876710 1.390149048
## 708 0.654178038 1.698132712
## 709 -1.695950042 1.341369444
## 710 2.304021796 3.389024497
## 711 2.697343320 0.327006206
## 712 2.588616200 3.521993737
## 713 0.935567739 2.868927819
## 714 -1.594479389 1.556032094
## 715 -4.830435784 0.752162050
## 716 4.940844116 5.426558321
## 717 -3.804103232 1.381340078
## 718 0.314698664 1.762427367
## 719 -3.037113188 1.384962524
## 720 0.199219422 2.316429981
## 721 0.056512807 0.212547804
## 722 1.974055256 3.162203291
## 723 1.423065680 2.959608576
## 724 0.831669335 3.844012665
## 725 -0.012942297 0.849126115
## 726 3.625950244 4.412042119
## 727 2.430389333 2.743895630
## 728 3.493018617 1.240881794
## 729 4.147576540 5.448278738
## 730 1.434090672 2.990277246
## 731 2.841236772 4.298178957
## 732 -0.144833001 2.984621896
## 733 -1.112523473 4.441834762
## 734 -0.274362934 1.160800587
## 735 0.794008372 0.097174391
## 736 0.529974935 1.952942322
## 737 1.486598238 5.128520447
## 738 -2.488693709 0.822882186
## 739 2.792573201 1.292838541
## 740 1.825757008 5.105533308
## 741 -3.035877614 -0.366283698
## 742 -0.946287026 2.357624655
## 743 -0.399431671 2.279486340
## 744 -0.325283973 1.387067718
## 745 2.720408999 2.705788390
## 746 -3.026183465 0.031060590
## 747 3.415368376 5.448607496
## 748 -1.268283081 0.998733420
## 749 0.431572790 0.753982679
## 750 -0.620063430 4.235192442
## 751 3.046612576 0.526361803
## 752 -2.771958760 0.486484840
## 753 1.753748572 2.030984494
## 754 3.028881285 2.230954833
## 755 -0.382681680 3.834759608
## 756 0.391175807 1.403208730
## 757 0.526386845 1.943811303
## 758 -3.066232061 1.815952458
## 759 2.738050272 3.436335060
## 760 0.266727624 1.931572949
## 761 -1.551865083 1.782757619
## 762 0.172088498 3.698117670
## 763 -1.934548783 -1.893830698
## 764 0.414747602 -0.574245976
## 765 -0.328874971 2.795624226
## 766 4.446020281 2.622226773
## 767 2.090642786 0.289723011
## 768 4.318605467 2.964500436
## 769 -0.273388617 2.212864072
## 770 -0.524954804 1.627508392
## 771 1.852583130 3.972566389
## 772 -0.298500439 1.066566910
## 773 1.742465339 3.539857208
## 774 5.527800965 5.657712914
## 775 1.773230038 -0.577949419
## 776 3.241812675 3.766871397
## 777 -0.656914463 0.682205279
## 778 -1.634954096 1.209750268
## 779 0.188159976 -0.821859565
## 780 -1.937075482 1.396876213
## 781 -1.139176304 0.932516887
## 782 2.694742918 1.868744991
## 783 1.590050472 3.080237825
## 784 -0.460034891 3.403606550
## 785 3.475710042 4.600993128
## 786 -0.641231374 -0.638564605
## 787 2.328828596 3.300689943
## 788 6.842543166 6.245130341
## 789 -0.458259415 0.089272758
## 790 3.312444769 5.614592871
## 791 -1.709641089 0.056197225
## 792 5.387276351 5.992329552
## 793 0.462581275 -0.545019381
## 794 0.614895600 3.607544007
## 795 5.124877617 3.184752604
## 796 -0.040351149 2.145167456
## 797 0.766874691 0.591699248
## 798 2.917707407 4.610678042
## 799 1.376960438 3.032530770
## 800 1.743321709 2.897889573
## 801 1.263388227 3.842365640
## 802 1.162233030 1.306516838
## 803 2.748241215 3.922746289
## 804 -0.648541619 -2.429458722
## 805 3.718416804 1.690057337
## 806 1.239809537 4.455494538
## 807 -3.265098403 -0.879850672
## 808 -1.176531751 -0.572187195
## 809 3.828474933 4.691835201
## 810 1.714344144 1.561706813
## 811 -0.132550152 0.831156629
## 812 0.264326173 2.496030357
## 813 2.488535209 1.763157228
## 814 0.271039933 -1.729273112
## 815 0.651725883 0.603498326
## 816 3.775121244 4.560275586
## 817 -2.697379905 2.276213351
## 818 -0.178002429 1.413383364
## 819 3.111980599 3.634159509
## 820 -0.392073644 2.063929687
## 821 0.807266306 3.788315877
## 822 -1.555390228 2.459554807
## 823 2.203027701 -1.493104614
## 824 2.039206803 1.769480564
## 825 1.059728490 1.619505849
## 826 2.850238682 3.909860132
## 827 2.078679200 2.159302061
## 828 0.107060905 1.531694235
## 829 0.679024621 2.208173042
## 830 -0.254067272 2.494145206
## 831 -1.750517941 -0.992883513
## 832 1.728232608 2.825276440
## 833 3.376333085 3.765976242
## 834 1.810648462 3.256592440
## 835 -1.523149712 -0.419845280
## 836 -1.307821282 1.389967919
## 837 2.779149597 3.856783815
## 838 4.032832526 3.373414546
## 839 0.382204115 0.844577038
## 840 1.451471335 2.037397302
## 841 -0.004643711 0.708068042
## 842 -1.483205452 -0.175810053
## 843 3.960112650 3.236313817
## 844 -0.713237797 -0.828932385
## 845 1.090609281 1.293704673
## 846 0.718690014 1.612346471
## 847 2.450949666 2.323830632
## 848 1.992287027 5.787310043
## 849 3.159834988 2.824199236
## 850 0.259433932 3.520689094
## 851 -0.817116016 1.396950437
## 852 2.405197034 1.805452554
## 853 0.542718233 2.514916164
## 854 1.127573985 1.670060486
## 855 0.739182439 2.293339867
## 856 2.623417346 4.382745482
## 857 0.935525322 3.921379086
## 858 -2.174934256 0.119467101
## 859 -1.422755225 1.746392480
## 860 1.039849490 -0.001338598
## 861 0.578121898 0.529737883
## 862 1.073740381 -0.269763028
## 863 2.634744210 2.413364821
## 864 -1.034969411 1.281775099
## 865 0.285198767 1.253559897
## 866 -2.202948053 0.199497475
## 867 -0.166517959 -0.527423858
## 868 2.352265996 4.419529216
## 869 2.052200859 1.131443762
## 870 -0.522564538 0.867795070
## 871 2.140714530 2.275870542
## 872 -1.663900579 -1.008337883
## 873 1.486611762 0.604113854
## 874 1.995026279 2.399115633
## 875 3.000452320 4.198318227
## 876 -1.157115102 2.874688617
## 877 2.147327160 1.882970900
## 878 1.236656902 2.789031643
## 879 1.304160280 -0.436771914
## 880 3.008604853 0.513595692
## 881 -2.458071513 2.393346042
## 882 -2.027305109 0.783019767
## 883 -2.593341893 -1.697011137
## 884 0.515207941 2.811608641
## 885 1.245147479 1.125036069
## 886 0.914273081 1.829451455
## 887 0.704098872 1.256039045
## 888 1.084132872 0.429143639
## 889 1.533789457 1.656183376
## 890 0.752644861 2.967642450
## 891 -0.374600440 0.145351341
## 892 -0.932961194 2.419752658
## 893 -3.712809503 0.005272527
## 894 0.575320718 -0.150562756
## 895 1.390152812 3.101956069
## 896 -3.000510564 -0.479143759
## 897 4.014416819 1.918230835
## 898 -1.336471847 0.051707074
## 899 0.270900574 2.060428056
## 900 -0.237194442 1.934893335
## 901 2.536295129 2.945376161
## 902 1.988958488 1.109458396
## 903 1.137856984 3.019290155
## 904 1.225054904 2.379349936
## 905 1.200450491 2.328261572
## 906 0.334599780 0.185017895
## 907 1.077975214 1.351798280
## 908 3.458065758 1.939533077
## 909 0.182727322 -1.147222340
## 910 -0.730360093 0.272360100
## 911 3.279153979 2.444904596
## 912 1.447041837 2.573460787
## 913 0.149655517 2.194081446
## 914 4.238617249 3.857785381
## 915 1.902052064 1.034430601
## 916 1.508568107 2.581239015
## 917 -0.191369548 1.824089883
## 918 4.240070006 1.512897260
## 919 1.457639655 0.551629075
## 920 1.089928739 0.491079693
## 921 1.420021969 0.253815879
## 922 1.793350922 4.208965294
## 923 0.513177350 1.700622712
## 924 4.839898450 6.125419269
## 925 5.544703376 2.751056383
## 926 -0.659134295 2.473608627
## 927 2.558571652 4.350411027
## 928 1.378722128 2.347912694
## 929 3.996523035 3.116375048
## 930 2.581839760 3.177307673
## 931 0.613987705 1.098828111
## 932 -0.743279836 -1.381994373
## 933 2.557100747 0.105467845
## 934 -0.341959139 1.061219900
## 935 3.346371986 2.772486731
## 936 2.646905778 2.048779902
## 937 4.481742925 3.737431422
## 938 2.543778851 3.745314618
## 939 -1.850862414 1.149493275
## 940 0.980526979 0.864424514
## 941 0.617844311 0.825083498
## 942 0.418400148 -0.800515496
## 943 1.188192676 1.117491349
## 944 1.693714929 -0.704442055
## 945 0.957409985 1.661987534
## 946 1.916975312 -0.059769218
## 947 0.346971039 2.857749714
## 948 2.376648859 2.928314235
## 949 0.615869140 -0.571315373
## 950 2.754802488 2.831942914
## 951 -2.580596024 0.695665357
## 952 3.226277135 3.689180989
## 953 0.298553359 3.132001643
## 954 0.452807698 2.402595656
## 955 3.001763940 3.161866069
## 956 0.208193836 2.976432481
## 957 3.313363336 1.308280634
## 958 1.214528354 3.541850876
## 959 -1.601864481 -1.295784934
## 960 0.650039294 3.469105689
## 961 -1.753472780 0.827619574
## 962 2.872677025 2.617647907
## 963 3.001076887 4.979240845
## 964 3.061258825 3.474922504
## 965 1.291156378 0.378205183
## 966 2.915481642 3.359893865
## 967 1.806852176 2.320613431
## 968 -1.353260358 1.537085708
## 969 3.064833785 1.703339839
## 970 -1.423205957 3.998824621
## 971 0.558017578 3.551005206
## 972 3.129715294 5.066661785
## 973 0.750312082 1.484125306
## 974 5.537171815 6.506824753
## 975 1.706837089 2.457318771
## 976 2.046760897 1.315521778
## 977 1.399181111 0.658599703
## 978 0.875886853 3.135008951
## 979 0.013940892 2.965040106
## 980 2.769871398 4.631183262
## 981 4.833241260 2.274841834
## 982 2.626011768 4.773134917
## 983 1.014487438 1.040767593
## 984 -0.127416692 3.733518094
## 985 5.400615864 1.745581871
## 986 0.330641244 -0.506797724
## 987 0.961037460 1.535919975
## 988 2.604263528 6.735809905
## 989 -1.441658828 1.921628126
## 990 4.174042746 2.029237038
## 991 -0.545460423 1.618535188
## 992 3.303339792 2.168995003
## 993 -0.929208629 1.538910023
## 994 -3.702389162 -1.551566569
## 995 3.343251735 3.362444992
## 996 -2.825489871 1.789675184
## 997 -3.675017832 -0.027945628
## 998 0.771787689 -0.171878784
## 999 4.115549371 4.702250299
## 1000 0.334908570 3.457165992
Kode x <- rmvnorm(n = n, mean = mu, sigma = sigma) menghasilkan sampel acak berukuran n dari distribusi normal multivariat dengan mean mu dan matriks kovarians sigma. Objek yang dihasilkan x adalah matriks di mana setiap baris mewakili observasi multivariat.
Kode d <- data.frame(x) mengubah matriks x menjadi bingkai data, di mana setiap kolom sesuai dengan variabel dalam distribusi normal multivariat.
Bingkai data yang dihasilkan d dapat digunakan untuk analisis atau visualisasi lebih lanjut. Ini berisi n baris dan jumlah kolom sama dengan jumlah variabel dalam distribusi normal multivariat. Setiap kolom mewakili variabel acak, dan setiap baris mewakili pengamatan.
p2 <- ggplot(d, aes(x = X1, y = X2)) +
geom_point(alpha = .5) +
geom_density_2d()
p2
mu
## [1] 1 2
y <- x - mu
head (y)
## [,1] [,2]
## [1,] -0.84875558 1.10056301
## [2,] -1.35409550 1.69297310
## [3,] -0.01165447 0.08991125
## [4,] -4.82994660 -2.07031044
## [5,] 3.61181554 1.23152233
## [6,] -2.23752159 0.59973858
y <- data.frame(x)
y
## X1 X2
## 1 0.151244424 2.100563009
## 2 0.645904500 3.692973095
## 3 0.988345528 1.089911245
## 4 -2.829946598 -0.070310445
## 5 4.611815544 2.231522332
## 6 -0.237521589 2.599738577
## 7 2.269545766 3.479461284
## 8 1.097585790 3.682954387
## 9 -1.278142553 1.260721430
## 10 0.031198593 2.719428102
## 11 1.873374341 3.891099835
## 12 5.030088724 3.387659273
## 13 -0.489080808 0.350302869
## 14 0.456013513 1.738102988
## 15 4.188246110 1.269930759
## 16 -1.327630678 0.717062535
## 17 2.589345496 3.675520105
## 18 -0.671241758 1.697711985
## 19 1.589581034 3.933971328
## 20 2.915003896 2.100706780
## 21 1.455219469 3.095199552
## 22 -2.348082293 0.562146114
## 23 1.809246406 1.465974405
## 24 0.873185253 1.931899575
## 25 -0.948021359 -0.036053349
## 26 0.421293252 1.319111579
## 27 3.460986455 4.975280080
## 28 1.201237736 2.646434485
## 29 1.202913271 2.945611277
## 30 1.552379476 2.510441428
## 31 2.580993585 1.007973060
## 32 3.975241180 3.385889009
## 33 1.032112857 1.183818816
## 34 0.895533044 2.520073890
## 35 -3.299180064 -0.145618925
## 36 1.959183744 1.846982468
## 37 -0.893873258 0.508521530
## 38 0.533436132 -0.545784506
## 39 1.452899317 -1.063546865
## 40 -0.408622552 0.427411629
## 41 -2.002487134 -0.467840142
## 42 1.412656681 1.944362246
## 43 -0.882108393 -1.971194064
## 44 -1.615672924 1.040389595
## 45 -1.133189801 0.201063954
## 46 3.113163098 2.877682655
## 47 -1.267006338 0.645326696
## 48 0.070724905 0.725321124
## 49 -0.879494351 1.373169020
## 50 2.550153144 2.788324300
## 51 0.833865262 2.522842164
## 52 2.444827262 2.216115119
## 53 1.230851094 0.379468976
## 54 0.284550189 1.171087237
## 55 1.576425841 2.695386459
## 56 0.331989764 0.675231317
## 57 -0.627886095 1.933638348
## 58 3.161763027 1.473222443
## 59 0.447328976 2.325425796
## 60 0.003824605 1.887379077
## 61 0.472260839 0.701524440
## 62 3.071608303 3.853901052
## 63 3.678527234 4.653074894
## 64 -0.233011033 0.954386943
## 65 1.855585106 3.179098632
## 66 0.110141671 1.115514715
## 67 0.646559036 4.080690423
## 68 -3.908296351 0.315445976
## 69 0.477664533 0.285543479
## 70 0.633937086 -1.005968425
## 71 1.897844514 -0.188198433
## 72 -3.657106480 -0.489242229
## 73 0.944800551 1.023666298
## 74 0.113841176 2.231469524
## 75 -1.080680365 1.264072728
## 76 2.874294421 4.956857373
## 77 2.884230691 5.078797307
## 78 1.867957883 2.249442770
## 79 -4.019581612 -1.274889802
## 80 0.788210562 2.987588400
## 81 0.686600976 2.709342163
## 82 -1.195950606 0.952856346
## 83 1.214478384 1.533219213
## 84 0.839491383 0.964556546
## 85 1.672938910 2.077654666
## 86 -0.185853139 -1.219111191
## 87 -1.130448682 -0.819171866
## 88 -2.359606493 0.288195181
## 89 0.850800419 2.374221052
## 90 3.344360582 3.341527041
## 91 2.646657893 1.706710534
## 92 1.019190655 3.604753633
## 93 0.057735073 -0.752034900
## 94 -0.058412552 3.174811754
## 95 0.015223741 2.202937575
## 96 0.748261562 1.194822163
## 97 0.546925794 2.444547127
## 98 2.096352089 4.140555813
## 99 0.097473511 0.375192961
## 100 1.714946181 3.248802054
## 101 5.119261363 2.523208488
## 102 0.869718630 3.262306197
## 103 3.088966280 1.641193507
## 104 1.957839722 1.447714089
## 105 -0.496337877 2.480333464
## 106 1.423278057 2.697703283
## 107 0.894882803 4.614337637
## 108 2.066453621 1.760627975
## 109 1.666069709 0.405347621
## 110 1.524531788 4.221656151
## 111 1.149397965 3.385479716
## 112 -0.717829370 -1.889571470
## 113 -0.564234841 1.870075271
## 114 3.442871597 1.841047869
## 115 0.987312960 0.574501495
## 116 -1.387935048 0.155116189
## 117 4.156344577 4.310137092
## 118 2.766539473 4.161181783
## 119 0.612383923 3.005802019
## 120 0.812582994 0.399124684
## 121 -0.566974323 1.614803136
## 122 1.214021512 1.589123406
## 123 -2.088066584 -1.985665983
## 124 1.650189823 1.755316194
## 125 1.184987828 -0.223884315
## 126 -1.468197696 1.113020114
## 127 -2.826461944 -2.042876627
## 128 3.010447420 3.916390680
## 129 -1.129819397 0.975279743
## 130 -0.998623508 1.880911583
## 131 0.454252527 0.558894950
## 132 -1.083076218 -0.175229102
## 133 2.158565537 3.180789336
## 134 1.248746408 0.830752167
## 135 -2.129871204 1.865594000
## 136 0.638013914 1.835927148
## 137 2.478724176 1.116400335
## 138 2.963500516 1.966206356
## 139 -0.484532592 1.261997654
## 140 1.632100324 1.879779586
## 141 -0.886723427 1.032382711
## 142 -4.164765683 -0.262080758
## 143 1.780013394 1.979035070
## 144 2.594357195 3.183132644
## 145 2.608040701 3.437748947
## 146 -2.334634296 1.029438039
## 147 3.858581730 2.129203797
## 148 1.949705146 2.489470893
## 149 1.916183333 1.867473298
## 150 -0.203869429 1.753438162
## 151 1.294684594 1.813200683
## 152 1.291595561 2.691585168
## 153 0.150910821 3.430765889
## 154 6.054503809 5.657277713
## 155 -0.896965372 -1.241861928
## 156 1.598888273 3.472603606
## 157 1.802145659 0.422756501
## 158 -1.061352240 1.593333446
## 159 2.692414586 3.782071341
## 160 2.022788897 0.873134314
## 161 -2.650746255 -2.034979805
## 162 2.434689513 3.640537364
## 163 1.049213159 0.453661136
## 164 3.800937112 2.274917887
## 165 4.724606946 3.903472315
## 166 3.470496153 3.210775527
## 167 0.306685300 0.304815911
## 168 -0.098475706 1.608844594
## 169 1.522728545 2.104150959
## 170 0.761556542 2.200550512
## 171 -0.307749423 0.827197822
## 172 -1.318282239 2.568078290
## 173 1.043069415 1.889383915
## 174 -0.561384825 1.177555025
## 175 -1.675816756 -0.330000189
## 176 -2.131289830 2.529523041
## 177 0.613953806 0.241219255
## 178 3.584858651 3.677501964
## 179 2.297981994 2.047468801
## 180 0.133231534 1.601636112
## 181 2.226436887 3.537989816
## 182 3.764589248 2.059550183
## 183 -0.892540769 1.594315570
## 184 6.559569255 2.996740785
## 185 3.062319191 2.245803523
## 186 -0.317874282 0.567114589
## 187 1.517505038 4.570949602
## 188 1.853315782 2.968071155
## 189 3.774510358 5.865606927
## 190 1.686418252 0.098019202
## 191 -1.877229311 -1.184982951
## 192 -3.741792762 2.513219818
## 193 0.274403580 2.369516693
## 194 2.980220475 1.825743306
## 195 0.937850952 2.497943493
## 196 0.998248648 0.858436144
## 197 2.709442138 3.304746579
## 198 -0.240824752 -0.164761152
## 199 3.018106638 4.694719484
## 200 4.140286632 4.205705435
## 201 -0.226019920 0.857900572
## 202 -0.359426012 0.995144755
## 203 2.505325121 2.818732380
## 204 -3.609000527 -2.091754857
## 205 1.040463975 2.232805224
## 206 -3.887869261 -0.634761423
## 207 1.874671065 4.410310601
## 208 -3.569203928 -1.188343872
## 209 -0.974901907 1.680032803
## 210 1.454719909 1.660608466
## 211 -2.449126003 0.060576100
## 212 -0.189662700 1.353026864
## 213 3.734450982 1.803595664
## 214 0.749826029 0.887232574
## 215 -1.022940753 2.344643575
## 216 0.521109639 5.890410977
## 217 1.211534862 2.150748348
## 218 1.908716264 4.983000388
## 219 2.133219870 1.962046138
## 220 -1.822285856 -0.357324373
## 221 0.176324924 3.549130459
## 222 0.211601394 0.653256000
## 223 3.276470880 4.649054809
## 224 -0.583187498 0.880631060
## 225 1.660003323 2.186171611
## 226 2.743635718 5.036786180
## 227 0.726293913 1.506183251
## 228 1.903948016 2.192044874
## 229 2.079001193 1.985982475
## 230 0.972195422 -0.312512358
## 231 0.736485441 1.162109197
## 232 -1.517301716 0.653989973
## 233 1.765906814 2.360407883
## 234 2.859993777 3.931312925
## 235 2.407707816 1.934132465
## 236 -1.706813509 0.794083846
## 237 3.176706555 2.458531889
## 238 -1.866321319 1.884588897
## 239 1.315707495 1.502129161
## 240 2.102571842 4.340900759
## 241 3.237116670 1.982825446
## 242 0.203025532 -0.376211636
## 243 0.732146085 4.880942183
## 244 3.746348842 2.466551284
## 245 -1.097367660 -0.628196058
## 246 5.145112876 3.382996768
## 247 0.466051013 3.432277761
## 248 -0.702055554 2.572163187
## 249 3.647406211 2.465695166
## 250 4.146199752 3.866907287
## 251 0.019980735 2.559281044
## 252 -0.652410634 0.729127469
## 253 2.218947722 1.656133583
## 254 1.525969964 3.655689614
## 255 -0.417124781 3.935799896
## 256 5.264702290 4.154617779
## 257 1.530767326 1.423918394
## 258 1.660135673 1.453615407
## 259 1.167103296 1.037113650
## 260 2.901901714 3.575873047
## 261 4.500107388 5.946193009
## 262 0.302403479 3.219480138
## 263 -1.996631873 0.448146994
## 264 2.399596881 1.321823164
## 265 1.157208654 0.719126854
## 266 0.266226685 1.724963370
## 267 -1.269162059 -1.532079941
## 268 1.733565064 2.914681246
## 269 0.987646345 1.276150461
## 270 3.333577702 4.271373389
## 271 -2.923741630 2.507965132
## 272 -2.609299006 0.435122507
## 273 -1.483135235 0.344166416
## 274 3.828068889 3.615994897
## 275 0.779787676 -1.126681869
## 276 1.730313994 3.140524541
## 277 2.105342886 0.889545071
## 278 2.015146403 0.241318325
## 279 3.888316511 1.669080258
## 280 2.647081761 2.950901426
## 281 -0.398171574 3.276694057
## 282 1.524146082 3.359545611
## 283 1.907032934 3.545503718
## 284 1.668560136 3.839246395
## 285 0.620461326 2.665861344
## 286 2.201009334 3.595300994
## 287 -0.092115127 1.941977653
## 288 0.397259161 3.162453401
## 289 0.751777206 4.479968789
## 290 2.509306148 2.421865105
## 291 3.267578034 2.539502841
## 292 2.378041116 3.181979771
## 293 1.476483054 1.260151515
## 294 -2.346172186 -1.458121263
## 295 0.508045653 2.862091543
## 296 -0.135287332 -0.105806893
## 297 5.533717841 4.362394380
## 298 5.418204296 5.081623694
## 299 -0.405029716 0.981458629
## 300 -1.348922611 2.403197250
## 301 3.598927990 1.404758158
## 302 -0.811242756 2.770236417
## 303 -0.830407270 4.295622412
## 304 1.134076629 -0.487843388
## 305 1.740349262 2.371841985
## 306 -3.761320221 0.543758523
## 307 -0.625979438 0.216217945
## 308 1.936529324 3.528196955
## 309 2.834847059 -1.341916815
## 310 1.891879739 0.857816399
## 311 3.413853570 3.216672014
## 312 2.939838767 0.383130367
## 313 2.115307989 2.761620550
## 314 2.881275297 2.210356908
## 315 2.945643664 1.914160028
## 316 0.190403800 1.800274355
## 317 -1.308956776 0.650906487
## 318 4.059110915 5.330170169
## 319 2.899816360 1.930351063
## 320 1.666647307 2.340393359
## 321 -1.271827492 1.713920503
## 322 -1.178370907 -0.200993235
## 323 1.994532934 1.248065288
## 324 0.176124751 0.323800171
## 325 1.384159932 2.838052402
## 326 1.360091259 0.520940436
## 327 4.253946303 5.153140379
## 328 1.804281744 2.467634587
## 329 1.293233754 2.465412518
## 330 1.799412659 2.435769356
## 331 2.066167183 1.817475965
## 332 3.146442099 2.573147973
## 333 -2.425879067 0.849632748
## 334 2.549481857 4.266439085
## 335 0.024918558 -1.144530691
## 336 0.335113830 0.038069772
## 337 -1.450080082 -0.229002282
## 338 0.105250080 3.413636534
## 339 -0.842835870 0.813231657
## 340 1.854040342 3.562228976
## 341 -0.744128576 0.271611800
## 342 -0.654117618 -0.211154690
## 343 1.539250874 -1.057446786
## 344 -0.822998855 -0.657645060
## 345 -2.739675357 0.946905905
## 346 4.871381758 5.542749596
## 347 -0.471980586 0.541814984
## 348 0.366148906 2.860786042
## 349 -3.777584366 0.965695736
## 350 -0.196599770 0.553237110
## 351 -2.966187797 0.535019379
## 352 -2.173749059 1.047872346
## 353 -0.691604296 1.572798512
## 354 1.601649082 1.433896513
## 355 -1.306259485 0.423033130
## 356 -1.120446166 -0.821594029
## 357 -0.607018456 1.244308403
## 358 0.761398302 2.415736377
## 359 3.667161895 3.272899860
## 360 3.468331220 1.768157085
## 361 3.926023231 3.731475014
## 362 -1.061237287 1.988927139
## 363 -0.843081530 2.856037441
## 364 -0.168704273 1.309756390
## 365 -0.783347662 0.221877681
## 366 4.824591055 4.581745477
## 367 2.337367878 2.500194250
## 368 2.785288655 3.498015933
## 369 4.555609106 4.294054309
## 370 0.483441629 1.532031779
## 371 -0.102885192 1.140957894
## 372 1.233182887 3.870366258
## 373 -3.863530393 -0.458753163
## 374 0.023544823 -0.177039738
## 375 3.976128057 2.526935484
## 376 -1.645012523 -0.088611274
## 377 3.725145209 5.552396859
## 378 0.821651570 2.105483362
## 379 -0.080408707 3.623797176
## 380 1.077608377 -1.409716933
## 381 -0.370051050 1.253719768
## 382 -1.280564117 0.929408052
## 383 -0.973496482 1.951461719
## 384 2.100135622 3.517309696
## 385 2.695493667 4.845726107
## 386 -0.951660893 -1.744791549
## 387 1.414574475 3.079060049
## 388 1.017411761 4.069467448
## 389 3.403423959 3.496010550
## 390 0.823886584 1.135712036
## 391 0.924138293 2.669173182
## 392 2.691089654 2.058946506
## 393 0.993925036 5.646337249
## 394 1.487323024 0.811160651
## 395 2.821567768 2.624427659
## 396 2.616029799 2.549653493
## 397 0.938792337 2.115600309
## 398 1.449305959 1.232560620
## 399 -0.361759071 1.328854605
## 400 1.150370846 1.576348481
## 401 0.989047582 0.373246428
## 402 -0.682902705 4.295204813
## 403 1.540474771 1.573230511
## 404 0.904027950 3.128861328
## 405 0.704318518 2.196502458
## 406 0.210027996 1.029759779
## 407 2.235366526 2.570340504
## 408 2.865991389 0.888122427
## 409 0.622808404 1.581551641
## 410 -0.502088663 3.030518739
## 411 0.014942445 -0.330310622
## 412 -0.757919133 -0.143730600
## 413 4.423933881 6.750136524
## 414 -0.344956090 1.470158966
## 415 3.059807658 6.595296073
## 416 -3.759140103 -0.151298274
## 417 -1.436566992 0.950912273
## 418 0.060172344 0.649265798
## 419 4.664930292 3.452251332
## 420 6.057178262 4.694915895
## 421 -1.852186686 0.054249798
## 422 1.199183620 1.206732766
## 423 2.091841402 3.399330858
## 424 1.732612565 2.016208313
## 425 -0.960003204 -0.474047825
## 426 2.172810843 3.702685950
## 427 1.270745936 3.189850034
## 428 6.362579568 6.420392044
## 429 0.357439872 2.617447148
## 430 0.039992715 2.735347206
## 431 1.044030983 2.421956582
## 432 0.028863016 3.491836508
## 433 0.587745338 1.222134269
## 434 0.895884367 2.082087858
## 435 3.517326173 1.100516286
## 436 5.284971559 2.115466061
## 437 0.178180710 -1.273635426
## 438 0.155231235 2.830933036
## 439 2.200538225 2.956659307
## 440 -0.932293234 -1.282691458
## 441 -1.188345746 1.020366782
## 442 2.663935355 3.721436615
## 443 0.333448809 1.581439958
## 444 0.719947312 2.003217134
## 445 3.541808121 1.673576062
## 446 0.651242908 2.013864505
## 447 -2.086396345 -0.261236965
## 448 1.624461110 2.812240492
## 449 2.926444764 1.877966315
## 450 3.304540426 1.400951952
## 451 -3.157840381 -2.085498792
## 452 3.290466255 3.120129430
## 453 0.584612238 1.445659491
## 454 4.719851830 4.859558330
## 455 -1.708530848 -0.843148774
## 456 3.398238708 3.528559852
## 457 0.242113603 2.362242042
## 458 -3.257243019 -0.227087219
## 459 1.793949341 2.125097909
## 460 -0.889660089 2.942653696
## 461 2.703874996 1.113786512
## 462 1.054750373 3.092687534
## 463 2.360558402 1.619322225
## 464 -0.492248675 2.071442490
## 465 -3.211644585 -0.633620947
## 466 1.526973687 -0.356414198
## 467 -1.440092713 0.930486319
## 468 -0.565859667 -1.043435214
## 469 1.403453043 0.612924291
## 470 0.586120200 1.589103546
## 471 2.299992746 2.283527081
## 472 1.672381510 4.635404716
## 473 2.064337669 3.230602573
## 474 2.232859685 3.203471752
## 475 3.531664908 2.657357321
## 476 2.573374199 5.363334226
## 477 0.708428084 3.817064649
## 478 0.796182755 4.460409187
## 479 -0.736587617 0.291285299
## 480 3.531690783 4.163463024
## 481 2.212513201 2.757714548
## 482 2.619340812 5.502242246
## 483 -2.304045926 -0.421223249
## 484 -0.915030798 2.854894503
## 485 0.455436470 1.648917226
## 486 4.097307530 2.053912077
## 487 4.090138790 0.828092409
## 488 3.711057522 3.270209797
## 489 0.156969791 1.498385256
## 490 4.527809717 5.544043764
## 491 -0.298359731 6.661132375
## 492 5.652695594 2.588615202
## 493 0.503401626 0.876729229
## 494 1.237423120 3.159815548
## 495 1.306331504 2.372668879
## 496 2.599425835 -0.779216377
## 497 0.137927894 1.960321937
## 498 0.093385912 3.297926062
## 499 -0.096360263 1.046432584
## 500 3.751163276 4.035234303
## 501 0.527249953 1.378543364
## 502 -2.171551139 0.043537654
## 503 5.966420140 3.399495053
## 504 2.649590116 2.211230758
## 505 2.140834606 2.256443136
## 506 3.334738147 1.941661795
## 507 -1.775174895 2.511296050
## 508 1.366384180 4.263826547
## 509 2.055975848 4.451558118
## 510 1.476002305 1.625084910
## 511 2.134519537 1.655547500
## 512 4.316074557 3.187265734
## 513 -3.161478129 0.085329284
## 514 -3.357723542 -2.486428164
## 515 1.477850414 3.094663268
## 516 -1.208491182 -0.605068371
## 517 -1.027174995 -0.878639789
## 518 2.672285657 3.336403555
## 519 -2.412780567 0.080775765
## 520 2.915513115 2.313384384
## 521 1.252824115 2.688906410
## 522 2.881237054 4.328552536
## 523 1.708409796 0.177470116
## 524 0.474313021 2.291504699
## 525 -0.434423969 -1.631407143
## 526 0.115249885 3.235931401
## 527 0.475522109 -0.323619009
## 528 1.325220946 1.861379589
## 529 3.473775981 5.828831226
## 530 -2.193498311 0.320371385
## 531 -0.467245682 -1.577713024
## 532 0.606615994 1.010671319
## 533 3.650543290 -1.523678755
## 534 4.423121555 4.488060206
## 535 2.493443046 2.653765275
## 536 0.257266109 3.411745191
## 537 -0.309499022 2.640275527
## 538 2.377839995 3.989532319
## 539 -0.471604311 0.712818743
## 540 1.751642278 2.670616445
## 541 3.910082321 3.567640479
## 542 1.751696029 3.461872976
## 543 0.571052879 3.484995836
## 544 -0.772535489 1.979139052
## 545 -2.137515464 1.444216972
## 546 -2.139628791 0.739301840
## 547 -2.732774791 -0.035864681
## 548 -0.177871085 2.472539765
## 549 -0.549385955 0.413573821
## 550 4.282891956 5.421269303
## 551 2.260458314 0.171646325
## 552 2.759718399 0.705004977
## 553 1.274789493 3.162800506
## 554 0.504926204 1.633373533
## 555 1.481183396 2.771437956
## 556 0.819025238 -0.597016692
## 557 0.824118563 2.371178156
## 558 1.955436071 1.812170457
## 559 -1.117461487 -0.635502722
## 560 -0.467165408 1.391194941
## 561 0.115130709 2.617196985
## 562 0.800986034 -0.428968237
## 563 1.913605658 3.065858839
## 564 0.483522767 1.809682483
## 565 0.005443492 1.276358882
## 566 -0.693839893 2.130482653
## 567 -1.682812368 0.344098525
## 568 -1.243208994 0.059572520
## 569 0.019812794 0.997829207
## 570 -0.485955757 1.191306917
## 571 -1.979576168 1.290931344
## 572 1.491425350 0.253127870
## 573 -0.457497039 4.862237434
## 574 1.489605475 2.221788591
## 575 0.895942981 2.695500835
## 576 0.764584298 1.126578423
## 577 -0.023738561 1.192512381
## 578 -0.036144569 0.588797459
## 579 3.114337840 2.757533961
## 580 -0.151416288 2.534037343
## 581 1.594873608 1.971493631
## 582 1.259900588 0.740459686
## 583 0.056658711 0.251321625
## 584 -1.458467595 0.791573926
## 585 0.809237427 0.598698469
## 586 -0.365021183 -1.097198001
## 587 0.800660897 3.666740379
## 588 -1.880618214 -0.601648894
## 589 0.878580858 2.752341721
## 590 4.864397363 7.042476476
## 591 2.914677765 3.550267346
## 592 4.723158131 2.647037964
## 593 0.732885109 2.294989276
## 594 -2.757494755 -1.805291466
## 595 4.144645090 2.073716685
## 596 -0.437050156 0.115852561
## 597 1.608849078 3.049447667
## 598 0.569477898 1.895572211
## 599 2.820017698 2.517202726
## 600 -0.111496680 1.585133582
## 601 -0.559454169 1.693391353
## 602 0.060173869 3.778855740
## 603 -3.546954118 1.259585348
## 604 1.180411164 4.981154876
## 605 0.820853031 2.657577013
## 606 1.881824935 2.623256986
## 607 3.117346209 5.563596675
## 608 2.890652489 2.843214979
## 609 4.764031904 3.961874645
## 610 2.948145872 4.405307212
## 611 1.717071151 3.279127048
## 612 0.543351012 2.050212250
## 613 0.716450451 0.974223178
## 614 4.591049080 2.228188025
## 615 1.061675873 3.969760026
## 616 1.617103182 3.902126529
## 617 -0.172959773 1.637524237
## 618 -0.026445617 0.271250216
## 619 0.049462307 0.755975420
## 620 2.482173182 2.005317571
## 621 0.375723723 0.597220449
## 622 0.506864553 -0.519826964
## 623 -3.604945482 3.421815831
## 624 2.810287265 3.465573329
## 625 -2.912016660 1.852031757
## 626 1.954058540 2.165002808
## 627 3.213500801 4.299618762
## 628 1.859132081 5.118332787
## 629 3.585341569 4.561514850
## 630 0.321460735 1.608034433
## 631 -0.541768676 2.148735987
## 632 1.558051371 2.297967259
## 633 -0.436894406 1.237307149
## 634 4.287811149 1.593744428
## 635 -0.568402433 -0.527508798
## 636 -1.542623729 0.832698164
## 637 -0.097826635 0.769371988
## 638 -0.595828045 1.242838289
## 639 2.975455600 2.051332506
## 640 -2.063925900 -0.472785395
## 641 -3.808676380 -1.929089615
## 642 -0.983483632 -0.019819880
## 643 -0.087109946 4.612993556
## 644 5.802693518 7.185655963
## 645 2.399730827 2.172351658
## 646 -1.621216041 -0.389853921
## 647 0.766186578 3.818526256
## 648 2.779250595 3.831920837
## 649 -0.232561117 -0.650487327
## 650 1.505837922 1.831898767
## 651 1.644467852 5.407414193
## 652 2.540852899 2.114720100
## 653 -2.814551301 0.460341537
## 654 3.110507292 3.167551892
## 655 2.109793155 3.865127796
## 656 0.481208709 1.338466777
## 657 0.925466647 3.060566856
## 658 0.910440307 3.094167921
## 659 -2.071887539 -0.772809185
## 660 1.671959811 3.317332680
## 661 -0.107043671 0.824851448
## 662 -4.239370281 1.017032856
## 663 -0.506593874 2.151973622
## 664 3.460551154 1.989879668
## 665 2.251514437 2.141764711
## 666 1.057732289 0.313693651
## 667 2.535565673 4.372781718
## 668 3.781038661 1.064792647
## 669 1.738741261 1.467734802
## 670 1.902965282 2.001483463
## 671 0.907388772 2.978034187
## 672 2.589122349 2.876698271
## 673 2.103439406 2.880898932
## 674 1.585588377 2.305953978
## 675 3.156474675 3.677742692
## 676 3.146151347 4.259850469
## 677 1.968368420 2.058166266
## 678 -1.365449301 0.587998746
## 679 -0.837574215 1.021897031
## 680 -0.118803247 1.382468831
## 681 -1.315077784 0.404888988
## 682 1.802584591 2.549846819
## 683 0.793820002 3.432132354
## 684 -1.878535936 1.868301865
## 685 3.783799882 2.214341146
## 686 1.430064938 1.303255522
## 687 1.416252296 3.323811745
## 688 -1.066231493 0.577216589
## 689 2.255230594 2.980249036
## 690 3.252914598 4.505945420
## 691 1.871817208 0.667322180
## 692 1.070808035 1.432633691
## 693 1.504470248 3.499604711
## 694 1.617285488 2.409488298
## 695 0.992647451 2.582903184
## 696 -1.499194419 0.646798876
## 697 4.449166355 3.918171928
## 698 -1.536691527 -0.553412485
## 699 -0.515159478 2.411154151
## 700 1.511751072 1.312010891
## 701 0.842289589 3.395349771
## 702 0.377777462 1.731681819
## 703 1.574142284 1.899479689
## 704 -0.642927561 0.910276759
## 705 -0.811002310 2.161160864
## 706 3.693989424 3.149002946
## 707 2.193876710 1.390149048
## 708 0.654178038 1.698132712
## 709 -1.695950042 1.341369444
## 710 2.304021796 3.389024497
## 711 2.697343320 0.327006206
## 712 2.588616200 3.521993737
## 713 0.935567739 2.868927819
## 714 -1.594479389 1.556032094
## 715 -4.830435784 0.752162050
## 716 4.940844116 5.426558321
## 717 -3.804103232 1.381340078
## 718 0.314698664 1.762427367
## 719 -3.037113188 1.384962524
## 720 0.199219422 2.316429981
## 721 0.056512807 0.212547804
## 722 1.974055256 3.162203291
## 723 1.423065680 2.959608576
## 724 0.831669335 3.844012665
## 725 -0.012942297 0.849126115
## 726 3.625950244 4.412042119
## 727 2.430389333 2.743895630
## 728 3.493018617 1.240881794
## 729 4.147576540 5.448278738
## 730 1.434090672 2.990277246
## 731 2.841236772 4.298178957
## 732 -0.144833001 2.984621896
## 733 -1.112523473 4.441834762
## 734 -0.274362934 1.160800587
## 735 0.794008372 0.097174391
## 736 0.529974935 1.952942322
## 737 1.486598238 5.128520447
## 738 -2.488693709 0.822882186
## 739 2.792573201 1.292838541
## 740 1.825757008 5.105533308
## 741 -3.035877614 -0.366283698
## 742 -0.946287026 2.357624655
## 743 -0.399431671 2.279486340
## 744 -0.325283973 1.387067718
## 745 2.720408999 2.705788390
## 746 -3.026183465 0.031060590
## 747 3.415368376 5.448607496
## 748 -1.268283081 0.998733420
## 749 0.431572790 0.753982679
## 750 -0.620063430 4.235192442
## 751 3.046612576 0.526361803
## 752 -2.771958760 0.486484840
## 753 1.753748572 2.030984494
## 754 3.028881285 2.230954833
## 755 -0.382681680 3.834759608
## 756 0.391175807 1.403208730
## 757 0.526386845 1.943811303
## 758 -3.066232061 1.815952458
## 759 2.738050272 3.436335060
## 760 0.266727624 1.931572949
## 761 -1.551865083 1.782757619
## 762 0.172088498 3.698117670
## 763 -1.934548783 -1.893830698
## 764 0.414747602 -0.574245976
## 765 -0.328874971 2.795624226
## 766 4.446020281 2.622226773
## 767 2.090642786 0.289723011
## 768 4.318605467 2.964500436
## 769 -0.273388617 2.212864072
## 770 -0.524954804 1.627508392
## 771 1.852583130 3.972566389
## 772 -0.298500439 1.066566910
## 773 1.742465339 3.539857208
## 774 5.527800965 5.657712914
## 775 1.773230038 -0.577949419
## 776 3.241812675 3.766871397
## 777 -0.656914463 0.682205279
## 778 -1.634954096 1.209750268
## 779 0.188159976 -0.821859565
## 780 -1.937075482 1.396876213
## 781 -1.139176304 0.932516887
## 782 2.694742918 1.868744991
## 783 1.590050472 3.080237825
## 784 -0.460034891 3.403606550
## 785 3.475710042 4.600993128
## 786 -0.641231374 -0.638564605
## 787 2.328828596 3.300689943
## 788 6.842543166 6.245130341
## 789 -0.458259415 0.089272758
## 790 3.312444769 5.614592871
## 791 -1.709641089 0.056197225
## 792 5.387276351 5.992329552
## 793 0.462581275 -0.545019381
## 794 0.614895600 3.607544007
## 795 5.124877617 3.184752604
## 796 -0.040351149 2.145167456
## 797 0.766874691 0.591699248
## 798 2.917707407 4.610678042
## 799 1.376960438 3.032530770
## 800 1.743321709 2.897889573
## 801 1.263388227 3.842365640
## 802 1.162233030 1.306516838
## 803 2.748241215 3.922746289
## 804 -0.648541619 -2.429458722
## 805 3.718416804 1.690057337
## 806 1.239809537 4.455494538
## 807 -3.265098403 -0.879850672
## 808 -1.176531751 -0.572187195
## 809 3.828474933 4.691835201
## 810 1.714344144 1.561706813
## 811 -0.132550152 0.831156629
## 812 0.264326173 2.496030357
## 813 2.488535209 1.763157228
## 814 0.271039933 -1.729273112
## 815 0.651725883 0.603498326
## 816 3.775121244 4.560275586
## 817 -2.697379905 2.276213351
## 818 -0.178002429 1.413383364
## 819 3.111980599 3.634159509
## 820 -0.392073644 2.063929687
## 821 0.807266306 3.788315877
## 822 -1.555390228 2.459554807
## 823 2.203027701 -1.493104614
## 824 2.039206803 1.769480564
## 825 1.059728490 1.619505849
## 826 2.850238682 3.909860132
## 827 2.078679200 2.159302061
## 828 0.107060905 1.531694235
## 829 0.679024621 2.208173042
## 830 -0.254067272 2.494145206
## 831 -1.750517941 -0.992883513
## 832 1.728232608 2.825276440
## 833 3.376333085 3.765976242
## 834 1.810648462 3.256592440
## 835 -1.523149712 -0.419845280
## 836 -1.307821282 1.389967919
## 837 2.779149597 3.856783815
## 838 4.032832526 3.373414546
## 839 0.382204115 0.844577038
## 840 1.451471335 2.037397302
## 841 -0.004643711 0.708068042
## 842 -1.483205452 -0.175810053
## 843 3.960112650 3.236313817
## 844 -0.713237797 -0.828932385
## 845 1.090609281 1.293704673
## 846 0.718690014 1.612346471
## 847 2.450949666 2.323830632
## 848 1.992287027 5.787310043
## 849 3.159834988 2.824199236
## 850 0.259433932 3.520689094
## 851 -0.817116016 1.396950437
## 852 2.405197034 1.805452554
## 853 0.542718233 2.514916164
## 854 1.127573985 1.670060486
## 855 0.739182439 2.293339867
## 856 2.623417346 4.382745482
## 857 0.935525322 3.921379086
## 858 -2.174934256 0.119467101
## 859 -1.422755225 1.746392480
## 860 1.039849490 -0.001338598
## 861 0.578121898 0.529737883
## 862 1.073740381 -0.269763028
## 863 2.634744210 2.413364821
## 864 -1.034969411 1.281775099
## 865 0.285198767 1.253559897
## 866 -2.202948053 0.199497475
## 867 -0.166517959 -0.527423858
## 868 2.352265996 4.419529216
## 869 2.052200859 1.131443762
## 870 -0.522564538 0.867795070
## 871 2.140714530 2.275870542
## 872 -1.663900579 -1.008337883
## 873 1.486611762 0.604113854
## 874 1.995026279 2.399115633
## 875 3.000452320 4.198318227
## 876 -1.157115102 2.874688617
## 877 2.147327160 1.882970900
## 878 1.236656902 2.789031643
## 879 1.304160280 -0.436771914
## 880 3.008604853 0.513595692
## 881 -2.458071513 2.393346042
## 882 -2.027305109 0.783019767
## 883 -2.593341893 -1.697011137
## 884 0.515207941 2.811608641
## 885 1.245147479 1.125036069
## 886 0.914273081 1.829451455
## 887 0.704098872 1.256039045
## 888 1.084132872 0.429143639
## 889 1.533789457 1.656183376
## 890 0.752644861 2.967642450
## 891 -0.374600440 0.145351341
## 892 -0.932961194 2.419752658
## 893 -3.712809503 0.005272527
## 894 0.575320718 -0.150562756
## 895 1.390152812 3.101956069
## 896 -3.000510564 -0.479143759
## 897 4.014416819 1.918230835
## 898 -1.336471847 0.051707074
## 899 0.270900574 2.060428056
## 900 -0.237194442 1.934893335
## 901 2.536295129 2.945376161
## 902 1.988958488 1.109458396
## 903 1.137856984 3.019290155
## 904 1.225054904 2.379349936
## 905 1.200450491 2.328261572
## 906 0.334599780 0.185017895
## 907 1.077975214 1.351798280
## 908 3.458065758 1.939533077
## 909 0.182727322 -1.147222340
## 910 -0.730360093 0.272360100
## 911 3.279153979 2.444904596
## 912 1.447041837 2.573460787
## 913 0.149655517 2.194081446
## 914 4.238617249 3.857785381
## 915 1.902052064 1.034430601
## 916 1.508568107 2.581239015
## 917 -0.191369548 1.824089883
## 918 4.240070006 1.512897260
## 919 1.457639655 0.551629075
## 920 1.089928739 0.491079693
## 921 1.420021969 0.253815879
## 922 1.793350922 4.208965294
## 923 0.513177350 1.700622712
## 924 4.839898450 6.125419269
## 925 5.544703376 2.751056383
## 926 -0.659134295 2.473608627
## 927 2.558571652 4.350411027
## 928 1.378722128 2.347912694
## 929 3.996523035 3.116375048
## 930 2.581839760 3.177307673
## 931 0.613987705 1.098828111
## 932 -0.743279836 -1.381994373
## 933 2.557100747 0.105467845
## 934 -0.341959139 1.061219900
## 935 3.346371986 2.772486731
## 936 2.646905778 2.048779902
## 937 4.481742925 3.737431422
## 938 2.543778851 3.745314618
## 939 -1.850862414 1.149493275
## 940 0.980526979 0.864424514
## 941 0.617844311 0.825083498
## 942 0.418400148 -0.800515496
## 943 1.188192676 1.117491349
## 944 1.693714929 -0.704442055
## 945 0.957409985 1.661987534
## 946 1.916975312 -0.059769218
## 947 0.346971039 2.857749714
## 948 2.376648859 2.928314235
## 949 0.615869140 -0.571315373
## 950 2.754802488 2.831942914
## 951 -2.580596024 0.695665357
## 952 3.226277135 3.689180989
## 953 0.298553359 3.132001643
## 954 0.452807698 2.402595656
## 955 3.001763940 3.161866069
## 956 0.208193836 2.976432481
## 957 3.313363336 1.308280634
## 958 1.214528354 3.541850876
## 959 -1.601864481 -1.295784934
## 960 0.650039294 3.469105689
## 961 -1.753472780 0.827619574
## 962 2.872677025 2.617647907
## 963 3.001076887 4.979240845
## 964 3.061258825 3.474922504
## 965 1.291156378 0.378205183
## 966 2.915481642 3.359893865
## 967 1.806852176 2.320613431
## 968 -1.353260358 1.537085708
## 969 3.064833785 1.703339839
## 970 -1.423205957 3.998824621
## 971 0.558017578 3.551005206
## 972 3.129715294 5.066661785
## 973 0.750312082 1.484125306
## 974 5.537171815 6.506824753
## 975 1.706837089 2.457318771
## 976 2.046760897 1.315521778
## 977 1.399181111 0.658599703
## 978 0.875886853 3.135008951
## 979 0.013940892 2.965040106
## 980 2.769871398 4.631183262
## 981 4.833241260 2.274841834
## 982 2.626011768 4.773134917
## 983 1.014487438 1.040767593
## 984 -0.127416692 3.733518094
## 985 5.400615864 1.745581871
## 986 0.330641244 -0.506797724
## 987 0.961037460 1.535919975
## 988 2.604263528 6.735809905
## 989 -1.441658828 1.921628126
## 990 4.174042746 2.029237038
## 991 -0.545460423 1.618535188
## 992 3.303339792 2.168995003
## 993 -0.929208629 1.538910023
## 994 -3.702389162 -1.551566569
## 995 3.343251735 3.362444992
## 996 -2.825489871 1.789675184
## 997 -3.675017832 -0.027945628
## 998 0.771787689 -0.171878784
## 999 4.115549371 4.702250299
## 1000 0.334908570 3.457165992
p2 <- ggplot(y, aes(x = X1, y = X2)) +
geom_point(alpha = .5) +
geom_density_2d()
p2
# Load the mvtnorm package
library(mvtnorm)
# Set mean and covariance matrix
mu <- c(1, 2)
sigma <- matrix(c(1, 0.5, 0.5, 2), nrow = 2)
# Generate 1000 random samples from the multivariate normal distribution
set.seed(123) # For reproducibility
samples <- rmvnorm(n = 1000, mean = mu, sigma = sigma)
# Plot the samples
plot(samples, main = "Random Samples from Multivariate Normal Distribution")
library(mvtnorm)
# Menentukan parameter distribusi multivariat normal
mean <- c(0, 0) # rata-rata
sigma <- matrix(c(1, 0.5, 0.5, 2), nrow = 2) # matriks kovariansi
# Menghasilkan sampel dari distribusi multivariat normal
n <- 1000 # jumlah sampel yang diinginkan
sampel <- rmvnorm(n, mean = mean, sigma = sigma)
# Menampilkan scatterplot dari sampel
plot(sampel[,1], sampel[,2], main = "Sampel dari distribusi multivariat normal",
xlab = "Variabel 1", ylab = "Variabel 2", col = "blue")
Program di atas menghasilkan 1000 sampel dari distribusi multivariat normal dengan rata-rata mean = c(0, 0) dan matriks kovariansi sigma = matrix(c(1, 0.5, 0.5, 2), nrow = 2). Kemudian, program menampilkan scatterplot dari sampel dengan variabel pertama pada sumbu x dan variabel kedua pada sumbu y.
library(MASS)
# menghasilkan sampel data multivariat normal dengan mean = c(1,2) dan kovarians = matriks(2,2)
sampel <- rmvnorm(n = 100, mean = c(1, 2), sigma = matrix(c(2, 1, 1, 2), nrow = 2))
# melihat sebagian data sampel
head(sampel)
## [,1] [,2]
## [1,] 1.5064499 2.9600133
## [2,] 1.4465744 0.4914124
## [3,] -0.9605118 4.2709238
## [4,] 1.4535791 2.5978315
## [5,] -0.2150833 3.1104351
## [6,] 4.0720113 4.7604046
d2 <- data.frame(sampel)
d2
## X1 X2
## 1 1.50644993 2.96001334
## 2 1.44657440 0.49141245
## 3 -0.96051180 4.27092385
## 4 1.45357913 2.59783146
## 5 -0.21508329 3.11043507
## 6 4.07201130 4.76040461
## 7 -2.14517828 -0.16205926
## 8 1.38864725 2.98769644
## 9 -0.05721639 0.62812283
## 10 0.96886209 0.79643300
## 11 3.12330110 0.25430140
## 12 0.96431661 -0.54080281
## 13 0.86804749 3.84670769
## 14 2.01997981 0.49835059
## 15 -0.99511920 1.53908467
## 16 -0.15326813 2.20547863
## 17 -0.93343089 -0.55961542
## 18 -0.03571366 0.17024448
## 19 2.36183318 1.94038564
## 20 1.45364014 3.87207217
## 21 3.51844989 2.60767843
## 22 1.93450873 3.91027021
## 23 0.37968656 0.51052294
## 24 1.80004798 0.28121308
## 25 0.51777902 1.36087707
## 26 -0.72197280 -1.95283722
## 27 0.66178206 3.51499523
## 28 0.13292524 0.98275271
## 29 -0.23014026 0.56125993
## 30 1.41644215 2.86320116
## 31 2.40573966 0.39094262
## 32 1.48397517 1.93538788
## 33 1.01207322 0.69506993
## 34 0.63991780 0.44079260
## 35 1.55484192 0.94894883
## 36 0.30818600 -0.88259396
## 37 1.85209976 3.63285580
## 38 2.43226903 3.71977914
## 39 -0.91422092 1.27242049
## 40 1.16839658 2.95829322
## 41 0.69640045 1.66090341
## 42 3.69167579 4.10448267
## 43 -1.54012531 0.83170853
## 44 0.73236232 5.69610554
## 45 0.74493820 3.38731251
## 46 1.17134359 2.18390255
## 47 1.62429511 1.98641466
## 48 2.34272282 3.06960960
## 49 -1.50525209 0.62423154
## 50 0.09983930 1.11708809
## 51 2.99949589 4.42123804
## 52 -0.06102438 2.40221204
## 53 -0.80183827 0.81084928
## 54 1.33856097 1.85117264
## 55 -0.38977037 0.03323129
## 56 0.59333461 1.95759919
## 57 1.44745446 1.00940383
## 58 1.37552870 0.62493317
## 59 0.41884659 2.41533578
## 60 -0.23134571 0.68157365
## 61 0.94831234 2.03107956
## 62 2.19110088 2.02323290
## 63 -1.56337313 0.48157685
## 64 -0.20249426 0.49564862
## 65 2.35543821 5.53529961
## 66 2.02817773 2.07917070
## 67 2.21611200 4.15521305
## 68 0.82074991 2.79449756
## 69 1.72268101 2.03814706
## 70 1.31585195 2.91119695
## 71 0.83988843 1.52661808
## 72 0.29509411 2.18004617
## 73 0.78877290 1.47205662
## 74 0.95826220 1.00860681
## 75 0.40663453 3.58262027
## 76 -0.08836832 2.10877580
## 77 -0.40724966 1.33052728
## 78 1.16372869 0.76382962
## 79 1.89296648 2.51684303
## 80 0.65735475 2.21942759
## 81 0.79517991 0.88048504
## 82 -0.86957788 1.63361781
## 83 -0.38536605 1.58413513
## 84 -1.59136340 0.12768027
## 85 1.75432498 3.52753696
## 86 0.86725033 0.70353680
## 87 0.83293717 3.34191069
## 88 1.99661263 3.26496871
## 89 2.49968169 2.88044872
## 90 2.15922023 1.07662627
## 91 1.28506388 1.64593630
## 92 1.76070978 3.88436886
## 93 1.45773167 1.32430149
## 94 0.17346648 0.57228197
## 95 0.69444629 1.28466365
## 96 1.90095759 1.61665729
## 97 2.23411348 3.24452890
## 98 0.92746008 3.78928204
## 99 0.79783116 1.11808843
## 100 0.73891395 0.67355208
library(ggplot2)
# Membuat data frame
df <- data.frame(
x = c(1, 2, 3, 4, 5),
y = c(3, 5, 4, 6, 7)
)
# Membuat scatter plot dengan ggplot
ggplot(data = df, aes(x = x, y = y)) +
geom_point()
ini akan membuat scatter plot berdasarkan data frame df, dengan sumbu x diisi oleh kolom x, dan sumbu y diisi oleh kolom y. Fungsi geom_point() digunakan untuk membuat titik-titik pada scatter plot.
Anda dapat mengubah warna, ukuran, dan bentuk titik-titik tersebut dengan menggunakan argumen tambahan pada geom_point(). Misalnya, untuk mengubah warna titik-titik menjadi merah, ukurannya menjadi 3, dan bentuknya menjadi segitiga, dapat dilakukan seperti berikut:
ggplot(data = df, aes(x = x, y = y)) +
geom_point(color = "red", size = 3, shape = 24)