# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("TSLA", "HD", "MSFT", "META", "WMT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_return_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_return_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "HD" "META" "MSFT" "TSLA" "WMT"
#weights
weights <- c(0.25, 0.25, 0.20, 0.20, 0.10)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 HD 0.25
## 2 META 0.25
## 3 MSFT 0.2
## 4 TSLA 0.2
## 5 WMT 0.1
# ?tq_portfolio()
portfolio_returns_tbl <- asset_return_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0860
## 2 2013-02-28 -0.0357
## 3 2013-03-28 0.0190
## 4 2013-04-30 0.137
## 5 2013-05-31 0.112
## 6 2013-06-28 0.0190
## 7 2013-07-31 0.136
## 8 2013-08-30 0.0650
## 9 2013-09-30 0.0824
## 10 2013-10-31 -0.0153
## # … with 50 more rows
# Define risk free rate
rfr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.555
# Create a custom function to calculate rolling SR
calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)
}
# Define Window
window <- 24
# Transform Date: Calculate Rolling Sharpe Ratio
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 37 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.706
## 2 2015-01-30 0.575
## 3 2015-02-27 0.659
## 4 2015-03-31 0.614
## 5 2015-04-30 0.588
## 6 2015-05-29 0.547
## 7 2015-06-30 0.545
## 8 2015-07-31 0.529
## 9 2015-08-31 0.406
## 10 2015-09-30 0.349
## # … with 27 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
# Labeling
labs(x = NULL, y = "Rolling Sharpe Ratio") +
annotate(geom = "text", x = as.Date("2016-06-01"), y = 0.5,
label = "This Portfolio Has Done Quite Well Since Late 2016.", color = "red", size = 5)
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
Since the start of 2015, my portfolio has seen a very steady drop off. The lowest structural break that my portfolio saw took place in December 2016. All of my portfolio does not fall into one industry so it can be challenging trying to link all downfalls to one certain event. Although my portfolio has not reached the same high as it had in 2015, it is still trending in a positive direction which leaves me optimistic for the future.