library('rvest')
## Warning: package 'rvest' was built under R version 4.2.3
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.0     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.1     ✔ tibble    3.1.8
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter()         masks stats::filter()
## ✖ readr::guess_encoding() masks rvest::guess_encoding()
## ✖ dplyr::lag()            masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
library(ggplot2)

URL used to web scrape

url <- "https://www.imdb.com/search/title/?count=100&release_date=2016,2016&title_type=feature"
webpage <- read_html(url)
rank_data_htlm <- html_nodes(webpage,'.text-primary')
rank_data <- html_text(rank_data_htlm)
head(rank_data)
## [1] "1." "2." "3." "4." "5." "6."
rank_data <- as.numeric(rank_data)
head(rank_data)
## [1] 1 2 3 4 5 6
title_data_html <- html_nodes(webpage,'.lister-item-header a')
title_data <- html_text(title_data_html)
head(title_data)
## [1] "The Magnificent Seven"        "Me Before You"               
## [3] "Rogue One: A Star Wars Story" "Hidden Figures"              
## [5] "Suicide Squad"                "Sing"
#Using CSS selectors to scrape the description section
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted')

#Converting the description data to text
description_data <- html_text(description_data_html)
head(description_data)
## [1] "\nSeven gunmen from a variety of backgrounds are brought together by a vengeful young widow to protect her town from the private army of a destructive industrialist."                                                          
## [2] "\nA girl in a small town forms an unlikely bond with a recently-paralyzed man she's taking care of."                                                                                                                            
## [3] "\nIn a time of conflict, a group of unlikely heroes band together on a mission to steal the plans to the Death Star, the Empire's ultimate weapon of destruction."                                                              
## [4] "\nThe story of a team of female African-American mathematicians who served a vital role in NASA during the early years of the U.S. space program."                                                                              
## [5] "\nA secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."                                          
## [6] "\nIn a city of humanoid animals, a hustling theater impresario's attempt to save his theater with a singing competition becomes grander than he anticipates even as its finalists find that their lives will never be the same."
#Data-Preprocessing: removing '\n'
description_data<-gsub("\n","",description_data)

#Let's have another look at the description data 
head(description_data)
## [1] "Seven gunmen from a variety of backgrounds are brought together by a vengeful young widow to protect her town from the private army of a destructive industrialist."                                                          
## [2] "A girl in a small town forms an unlikely bond with a recently-paralyzed man she's taking care of."                                                                                                                            
## [3] "In a time of conflict, a group of unlikely heroes band together on a mission to steal the plans to the Death Star, the Empire's ultimate weapon of destruction."                                                              
## [4] "The story of a team of female African-American mathematicians who served a vital role in NASA during the early years of the U.S. space program."                                                                              
## [5] "A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."                                          
## [6] "In a city of humanoid animals, a hustling theater impresario's attempt to save his theater with a singing competition becomes grander than he anticipates even as its finalists find that their lives will never be the same."
runtime_data_html <- html_nodes(webpage,'.text-muted .runtime')
runtime_data <-html_text(runtime_data_html)
head(runtime_data)
## [1] "132 min" "106 min" "133 min" "127 min" "123 min" "108 min"
runtime_data<-gsub("min","",runtime_data)
runtime_data<-as.numeric(runtime_data)

head(runtime_data)
## [1] 132 106 133 127 123 108
genre_data_html <- html_nodes(webpage,'.genre')
genre_data <- html_text(genre_data_html)

head(genre_data)
## [1] "\nAction, Adventure, Western            "
## [2] "\nDrama, Romance            "            
## [3] "\nAction, Adventure, Sci-Fi            " 
## [4] "\nBiography, Drama, History            " 
## [5] "\nAction, Adventure, Fantasy            "
## [6] "\nAnimation, Comedy, Family            "
#removing \n
genre_data<-gsub("\n","",genre_data)

#removing excess space
genre_data<-gsub(" ","",genre_data)

#only the first genre of each movie

genre_data<-gsub(",.*","",genre_data)

genre_data<-as.factor(genre_data)
head(genre_data)
## [1] Action    Drama     Action    Biography Action    Animation
## Levels: Action Adventure Animation Biography Comedy Crime Drama Horror
webpage <- read_html(url)
rating_data_html <- html_nodes(webpage,'.ratingValue strong')
rating_data <- html_text(rating_data_html)
head(rating_data)
## character(0)
rating_data_html <- html_nodes(webpage,'.ratings-imdb-rating strong')
rating_data <- html_text(rating_data_html)
head(rating_data)
## [1] "6.8" "7.4" "7.8" "7.8" "5.9" "7.1"
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)')
votes_data <- html_text(votes_data_html)
head(votes_data)
## [1] "217,195" "263,348" "652,091" "238,338" "695,587" "176,692"
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted')

#Converting the description data to text
description_data <- html_text(description_data_html)

#Let's have a look at the description data
head(description_data)
## [1] "\nSeven gunmen from a variety of backgrounds are brought together by a vengeful young widow to protect her town from the private army of a destructive industrialist."                                                          
## [2] "\nA girl in a small town forms an unlikely bond with a recently-paralyzed man she's taking care of."                                                                                                                            
## [3] "\nIn a time of conflict, a group of unlikely heroes band together on a mission to steal the plans to the Death Star, the Empire's ultimate weapon of destruction."                                                              
## [4] "\nThe story of a team of female African-American mathematicians who served a vital role in NASA during the early years of the U.S. space program."                                                                              
## [5] "\nA secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."                                          
## [6] "\nIn a city of humanoid animals, a hustling theater impresario's attempt to save his theater with a singing competition becomes grander than he anticipates even as its finalists find that their lives will never be the same."
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)')
votes_data <- html_text(votes_data_html)
head(votes_data)
## [1] "217,195" "263,348" "652,091" "238,338" "695,587" "176,692"
votes_data<-gsub(",","",votes_data)

#Data-Preprocessing: converting votes to numerical
votes_data<-as.numeric(votes_data)
#look at the votes data
head(votes_data)
## [1] 217195 263348 652091 238338 695587 176692
directors_data_html <- html_nodes(webpage,'.text-muted+ p a:nth-child(1)')
directors_data <- html_text(directors_data_html)
head(directors_data)
## [1] "Antoine Fuqua"  "Thea Sharrock"  "Gareth Edwards" "Theodore Melfi"
## [5] "David Ayer"     "Garth Jennings"
#Data-Preprocessing: converting directors data into factors
directors_data<-as.factor(directors_data)

#Using CSS selectors to scrape the actors section
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a')

#Converting the gross actors data to text
actors_data <- html_text(actors_data_html)

#Let's have a look at the actors data
head(actors_data)
## [1] "Denzel Washington"   "Emilia Clarke"       "Felicity Jones"     
## [4] "Taraji P. Henson"    "Will Smith"          "Matthew McConaughey"
#Using CSS selectors to scrape the metascore section
metascore_data_html <- html_nodes(webpage,'.metascore')

#Converting the runtime data to text
metascore_data <- html_text(metascore_data_html)

#Let's have a look at the metascore 
head(metascore_data)
## [1] "54        " "51        " "65        " "74        " "40        "
## [6] "59        "
#Data-Preprocessing: removing extra space in metascore
metascore_data<-gsub(" ","",metascore_data)

#Lets check the length of metascore data
length(metascore_data)
## [1] 96
for (i in c(39,73,80,89)){

a<-metascore_data[1:(i-1)]

b<-metascore_data[i:length(metascore_data)]

metascore_data<-append(a,list("NA"))

metascore_data<-append(metascore_data,b)

}

#Data-Preprocessing: converting metascore to numerical
metascore_data<-as.numeric(metascore_data)
## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion
#Let's have another look at length of the metascore data

length(metascore_data)
## [1] 100
#Let's look at summary statistics
summary(metascore_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   21.00   46.00   60.50   59.57   73.25   99.00       4
#Using CSS selectors to scrape the gross revenue section
gross_data_html <- html_nodes(webpage,'.ghost~ .text-muted+ span')

#Converting the gross revenue data to text
gross_data <- html_text(gross_data_html)

#Let's have a look at the votes data
head(gross_data)
## [1] "$93.43M"  "$56.25M"  "$532.18M" "$169.61M" "$325.10M" "$270.40M"
#Data-Preprocessing: removing '$' and 'M' signs
gross_data<-gsub("M","",gross_data)

gross_data<-substring(gross_data,2,6)

#Let's check the length of gross data
length(gross_data)
## [1] 89
for (i in c(33,58,74,89)){

a<-metascore_data[1:(i-1)]

b<-metascore_data[i:length(metascore_data)]

metascore_data<-append(a,list("NA"))

metascore_data<-append(metascore_data,b)

}

# Converting metascore to numerical
metascore_data<-as.numeric(metascore_data)
## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion
length(metascore_data)
## [1] 104
summary(metascore_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   21.00   46.00   60.50   59.57   73.25   99.00       8
gross_data_html <- html_nodes(webpage,'.ghost~ .text-muted+ span')
gross_data <- html_text(gross_data_html)
head(gross_data)
## [1] "$93.43M"  "$56.25M"  "$532.18M" "$169.61M" "$325.10M" "$270.40M"
#Data-Preprocessing: removing ‘$’ and ‘M’ signs

gross_data<-gsub("M","",gross_data)

gross_data<-substring(gross_data,2,6)
length(gross_data)
## [1] 89
for (i in c(33,58,74,89)){

a<-metascore_data[1:(i-1)]

b<-metascore_data[i:length(metascore_data)]

metascore_data<-append(a,list("NA"))

metascore_data<-append(metascore_data,b)

}

# Converting metascore to numerical
metascore_data<-as.numeric(metascore_data)
## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion
gross_data<-as.numeric(gross_data)
length(gross_data)
## [1] 89
summary(gross_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.01   26.86   61.71  101.28  127.40  532.10
#Combining all the lists to form a data frame
movies_df<-data(Rank = rank_data, Title = title_data,

Description = description_data, Runtime = runtime_data,

Genre = genre_data, Rating = rating_data,

Metascore = metascore_data, Votes = votes_data,                                                             Gross_Earning_in_Mil = gross_data,

Director = directors_data, Actor = actors_data)
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'rank_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'title_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'description_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'runtime_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'genre_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'rating_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'metascore_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'votes_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'gross_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'directors_data' not found
## Warning in data(Rank = rank_data, Title = title_data, Description =
## description_data, : data set 'actors_data' not found
#Structure of the data frame

str(movies_df)
##  chr [1:11] "rank_data" "title_data" "description_data" "runtime_data" ...
names(movies_df) <- make.names(names(movies_df))
min_length <- 100
movies_df <-  data.frame(Rank = rank_data[1:min_length],
                   Title = title_data[1:min_length],
                   Description = description_data[1:min_length],
                   Runtime = runtime_data[1:min_length],
                   Genre = genre_data[1:min_length],
                   Rating = rating_data[1:min_length],
                   Metascore = metascore_data[1:min_length],
                   Votes = votes_data[1:min_length],
                   Gross_Earning_in_Mil = gross_data[1:min_length],
                   Director = directors_data[1:min_length],
                   Actor = actors_data[1:min_length])
qplot(data = movies_df,Runtime,fill = Genre,bins = 30)
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.

Question 1: Based on the above data, which movie from which Genre had the longest runtime?

q1 <-movies_df %>% select(Title, Rank, Title, Runtime, Genre) %>%
  filter(Runtime == max(Runtime))
q1
##            Title Rank Runtime     Genre
## 1 American Honey   64     163 Adventure

It can be seen that American Honey has the longest run time.

ggplot(movies_df,aes(x=Runtime,y=Rating))+
geom_point(aes(size=Votes,col=Genre))

Question 2: Based on the above data, in the Runtime of 130-160 mins, which genre has the highest votes?

g2 <- movies_df %>% select(Title,Rank, Runtime, Votes, Genre) %>% filter(between(Runtime, 130, 160))
g2plot <- g2 %>% ggplot(aes(x=Genre, y= Votes)) +
  geom_bar(stat='identity') + 
  xlab("Movie Genre") + 
  ylab("Amount of Votes") +
  ggtitle("Movie genre by Amount of Votes") 
g2plot

q2 <- movies_df %>% filter(Votes == max(Votes))
q2
##   Rank    Title
## 1    8 Deadpool
##                                                                                                                               Description
## 1 \nA wisecracking mercenary gets experimented on and becomes immortal but ugly, and sets out to track down the man who ruined his looks.
##   Runtime  Genre Rating Metascore   Votes Gross_Earning_in_Mil   Director
## 1     108 Action    8.0        65 1057784                  363 Tim Miller
##           Actor
## 1 Ryan Reynolds
q3 <- movies_df %>% select(Runtime,Genre, Gross_Earning_in_Mil) %>% drop_na() %>% 
  filter(between(Runtime, 100, 120)) %>% 
  group_by(Genre) %>% 
  summarize(avgGross = mean(Gross_Earning_in_Mil)) 
q3
## # A tibble: 8 × 2
##   Genre     avgGross
##   <fct>        <dbl>
## 1 Action       129. 
## 2 Adventure     89.2
## 3 Animation    216. 
## 4 Biography     66.6
## 5 Comedy        94.3
## 6 Crime         54.1
## 7 Drama         51.3
## 8 Horror        72.2

Question 3: Based on the above data, across all genres which genre has the highest average gross earnings in runtime 100 to 120.

The Action genre has the highest average gross earnings.