# Mindanao State University
# General Santos City

# Introduction to R base commands
# Submitted by: Joshua Marie H. Casador
# Prepared by: Prof. Carlito O. Daarol
# Faculty
# Math Department
# March 16, 2023

# Processing of continuous data
# Using random number generators

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm()command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  2.43308007  3.12963999  1.13899759  0.65646197  1.65978206  2.67877146
##  [7]  0.14565055  2.19802183  4.20414066  1.67547383  5.30805798  1.27674653
## [13]  3.80774994  2.33390286  2.95437620 -0.34040613  1.73922674  1.02126591
## [19] -0.09702569  2.21903793
data[1:300] # display the first 300 elements
##   [1]  2.433080071  3.129639990  1.138997594  0.656461970  1.659782061
##   [6]  2.678771460  0.145650547  2.198021828  4.204140663  1.675473826
##  [11]  5.308057979  1.276746532  3.807749937  2.333902863  2.954376201
##  [16] -0.340406127  1.739226735  1.021265912 -0.097025688  2.219037927
##  [21]  1.254189260  2.432665134  2.172951344  3.751926240  0.559327796
##  [26] -0.374681469  3.262040250  2.457528823  0.363175978  1.339511973
##  [31]  2.278521881  2.436012463  2.513786703  4.594760621  1.311384562
##  [36]  4.659656172  1.165418470  1.609757366  2.252371736  1.465213053
##  [41] -0.004305806  0.076024233  1.190634530  1.630303902  0.532495513
##  [46]  2.976908228  1.516196761  0.258650618  1.805318379  2.731332183
##  [51]  3.365033788  0.043301557  3.538367316  2.209811389  1.373826093
##  [56]  1.719111002  3.717126523  3.684543828  4.930653795  4.592762464
##  [61]  1.650991011  3.971570854  2.104349196 -0.384747512  3.981380001
##  [66]  2.087149707  3.859642836  4.232854805  3.490824352  4.893909192
##  [71]  0.781942214  3.878596439 -0.047282521  0.460368019  5.735467996
##  [76]  3.861210143  0.954377209  4.970172693  4.808926387  2.035725031
##  [81]  4.286131563  1.503665220  2.485443063  2.649201847  4.687322873
##  [86]  1.608011302  0.696537129  4.323999404  1.431564431  0.311889296
##  [91]  3.449540640  1.043770545  0.594808207  2.794622674  1.711234958
##  [96]  1.593003621  3.973581940  2.579946737  1.650889476  0.196516159
## [101]  2.928423398  2.677928487  2.861708975  4.229968887  2.514273845
## [106]  2.885838901 -0.019608548  1.362974100  3.105470035  1.914125976
## [111]  3.008128453  3.061744643  2.987088933  2.535489038  0.940233432
## [116] -1.739762450  0.612567451  1.138371413  1.222096640  5.168424519
## [121]  3.137037582  0.648799553  0.965939157  3.257638289  0.185830624
## [126]  2.930148807  1.992686733  0.031986771  3.918094913  2.692817619
## [131]  3.772055472  1.122228598  3.160033350  2.081555490 -1.158380951
## [136] -0.217465651  2.784137453  2.906703038  1.891893818  0.250538144
## [141]  1.621415146  3.595793255 -0.185022747  0.003619876  3.381027249
## [146]  2.881518757  3.241928259  0.602873301  0.766061637  2.035785386
## [151]  2.708387996  3.012945672 -0.560209048  2.045272212  0.356482499
## [156]  1.322607907  2.197958128 -0.955041568  0.609784364  2.812588019
## [161]  1.611272725  2.302607395  2.578436192  1.917571657  1.878000268
## [166]  0.571805627  0.558392797  1.516861579  7.813983920  1.590137679
## [171] -1.049497247  3.993742392  1.221229681  1.717354795  3.655664418
## [176]  1.623233902  1.842110633  1.416536254  3.440895309  4.916283139
## [181]  2.201714062 -0.232226534  2.572160105  5.017516914  3.443434367
## [186]  0.208864968 -0.174187392  3.160054988  2.882470339  4.694753214
## [191]  0.511386835  5.843437396  0.253979952  2.971517956  0.130474916
## [196]  0.987511326  2.341552394  3.033788153  2.993996255  2.527692160
## [201] -1.628721945  2.137885261  4.309330466 -0.117504633  4.537833545
## [206]  3.839616754  3.163738576  1.558343653  4.427459828  1.618525499
## [211]  2.090232575  3.643736617  2.750810167  2.084642418  2.778819542
## [216]  2.894110865  1.176088669  4.732222895  1.917058419  3.447138594
## [221]  1.524485544  0.684490811  1.272745024  2.836224145  1.288237224
## [226]  3.571976933  2.381390248  2.315750406  0.413555264  3.319014159
## [231]  1.920099854  3.953559179  5.052340482  2.144185947  3.675413096
## [236]  3.050608596  1.623191690  3.620425249  2.308279046  1.815237940
## [241]  0.597204816  2.547390821  3.051604567  0.475310078  1.698028368
## [246]  0.380559592 -0.235966727  3.681942697  3.276741007  4.346845860
## [251]  2.893755965  2.295682660  1.379942713  2.045246756  2.675754988
## [256]  2.531384363  1.832797757  2.530026693  2.228657487 -0.640624422
## [261]  4.623479878  3.665258648  1.105703466  1.080802094  1.896406393
## [266] -0.581054988  3.017923364  1.917309277  2.737256788  3.596477936
## [271]  1.158535048  3.157619394  1.330266897  2.309377347  1.188049107
## [276]  3.699220302  1.713071949  2.219486560  4.666715509 -0.024319447
## [281]  2.746767514  3.930232643  5.122757382  3.316907320  2.327874612
## [286]  0.469509780  3.841641499  1.213513261  0.220426261  2.685608610
## [291]  1.352301844 -1.985825373  1.412233483  1.614941750  1.355569096
## [296]  1.703134961  0.869378191  2.472148490  3.220233161 -2.550426239
# Exer2: Draw histogram with one main title and different thickness

maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?

# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve and the location of the mean value 
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -3.10951645 -2.99917806 -2.88883968 -2.77850129 -2.66816290 -2.55782451
##   [7] -2.44748613 -2.33714774 -2.22680935 -2.11647096 -2.00613258 -1.89579419
##  [13] -1.78545580 -1.67511741 -1.56477903 -1.45444064 -1.34410225 -1.23376386
##  [19] -1.12342547 -1.01308709 -0.90274870 -0.79241031 -0.68207192 -0.57173354
##  [25] -0.46139515 -0.35105676 -0.24071837 -0.13037999 -0.02004160  0.09029679
##  [31]  0.20063518  0.31097356  0.42131195  0.53165034  0.64198873  0.75232711
##  [37]  0.86266550  0.97300389  1.08334228  1.19368066  1.30401905  1.41435744
##  [43]  1.52469583  1.63503421  1.74537260  1.85571099  1.96604938  2.07638777
##  [49]  2.18672615  2.29706454  2.40740293  2.51774132  2.62807970  2.73841809
##  [55]  2.84875648  2.95909487  3.06943325  3.17977164  3.29011003  3.40044842
##  [61]  3.51078680  3.62112519  3.73146358  3.84180197  3.95214035  4.06247874
##  [67]  4.17281713  4.28315552  4.39349390  4.50383229  4.61417068  4.72450907
##  [73]  4.83484745  4.94518584  5.05552423  5.16586262  5.27620101  5.38653939
##  [79]  5.49687778  5.60721617  5.71755456  5.82789294  5.93823133  6.04856972
##  [85]  6.15890811  6.26924649  6.37958488  6.48992327  6.60026166  6.71060004
##  [91]  6.82093843  6.93127682  7.04161521  7.15195359  7.26229198  7.37263037
##  [97]  7.48296876  7.59330714  7.70364553  7.81398392
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts 
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -3.109516  1.097231  2.068978  3.066278  7.813984
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  2.433080071  3.129639990  1.138997594  0.656461970  1.659782061
##    [6]  2.678771460  0.145650547  2.198021828  4.204140663  1.675473826
##   [11]  5.308057979  1.276746532  3.807749937  2.333902863  2.954376201
##   [16] -0.340406127  1.739226735  1.021265912 -0.097025688  2.219037927
##   [21]  1.254189260  2.432665134  2.172951344  3.751926240  0.559327796
##   [26] -0.374681469  3.262040250  2.457528823  0.363175978  1.339511973
##   [31]  2.278521881  2.436012463  2.513786703  4.594760621  1.311384562
##   [36]  4.659656172  1.165418470  1.609757366  2.252371736  1.465213053
##   [41] -0.004305806  0.076024233  1.190634530  1.630303902  0.532495513
##   [46]  2.976908228  1.516196761  0.258650618  1.805318379  2.731332183
##   [51]  3.365033788  0.043301557  3.538367316  2.209811389  1.373826093
##   [56]  1.719111002  3.717126523  3.684543828  4.930653795  4.592762464
##   [61]  1.650991011  3.971570854  2.104349196 -0.384747512  3.981380001
##   [66]  2.087149707  3.859642836  4.232854805  3.490824352  4.893909192
##   [71]  0.781942214  3.878596439 -0.047282521  0.460368019  5.735467996
##   [76]  3.861210143  0.954377209  4.970172693  4.808926387  2.035725031
##   [81]  4.286131563  1.503665220  2.485443063  2.649201847  4.687322873
##   [86]  1.608011302  0.696537129  4.323999404  1.431564431  0.311889296
##   [91]  3.449540640  1.043770545  0.594808207  2.794622674  1.711234958
##   [96]  1.593003621  3.973581940  2.579946737  1.650889476  0.196516159
##  [101]  2.928423398  2.677928487  2.861708975  4.229968887  2.514273845
##  [106]  2.885838901 -0.019608548  1.362974100  3.105470035  1.914125976
##  [111]  3.008128453  3.061744643  2.987088933  2.535489038  0.940233432
##  [116] -1.739762450  0.612567451  1.138371413  1.222096640  5.168424519
##  [121]  3.137037582  0.648799553  0.965939157  3.257638289  0.185830624
##  [126]  2.930148807  1.992686733  0.031986771  3.918094913  2.692817619
##  [131]  3.772055472  1.122228598  3.160033350  2.081555490 -1.158380951
##  [136] -0.217465651  2.784137453  2.906703038  1.891893818  0.250538144
##  [141]  1.621415146  3.595793255 -0.185022747  0.003619876  3.381027249
##  [146]  2.881518757  3.241928259  0.602873301  0.766061637  2.035785386
##  [151]  2.708387996  3.012945672 -0.560209048  2.045272212  0.356482499
##  [156]  1.322607907  2.197958128 -0.955041568  0.609784364  2.812588019
##  [161]  1.611272725  2.302607395  2.578436192  1.917571657  1.878000268
##  [166]  0.571805627  0.558392797  1.516861579  7.813983920  1.590137679
##  [171] -1.049497247  3.993742392  1.221229681  1.717354795  3.655664418
##  [176]  1.623233902  1.842110633  1.416536254  3.440895309  4.916283139
##  [181]  2.201714062 -0.232226534  2.572160105  5.017516914  3.443434367
##  [186]  0.208864968 -0.174187392  3.160054988  2.882470339  4.694753214
##  [191]  0.511386835  5.843437396  0.253979952  2.971517956  0.130474916
##  [196]  0.987511326  2.341552394  3.033788153  2.993996255  2.527692160
##  [201] -1.628721945  2.137885261  4.309330466 -0.117504633  4.537833545
##  [206]  3.839616754  3.163738576  1.558343653  4.427459828  1.618525499
##  [211]  2.090232575  3.643736617  2.750810167  2.084642418  2.778819542
##  [216]  2.894110865  1.176088669  4.732222895  1.917058419  3.447138594
##  [221]  1.524485544  0.684490811  1.272745024  2.836224145  1.288237224
##  [226]  3.571976933  2.381390248  2.315750406  0.413555264  3.319014159
##  [231]  1.920099854  3.953559179  5.052340482  2.144185947  3.675413096
##  [236]  3.050608596  1.623191690  3.620425249  2.308279046  1.815237940
##  [241]  0.597204816  2.547390821  3.051604567  0.475310078  1.698028368
##  [246]  0.380559592 -0.235966727  3.681942697  3.276741007  4.346845860
##  [251]  2.893755965  2.295682660  1.379942713  2.045246756  2.675754988
##  [256]  2.531384363  1.832797757  2.530026693  2.228657487 -0.640624422
##  [261]  4.623479878  3.665258648  1.105703466  1.080802094  1.896406393
##  [266] -0.581054988  3.017923364  1.917309277  2.737256788  3.596477936
##  [271]  1.158535048  3.157619394  1.330266897  2.309377347  1.188049107
##  [276]  3.699220302  1.713071949  2.219486560  4.666715509 -0.024319447
##  [281]  2.746767514  3.930232643  5.122757382  3.316907320  2.327874612
##  [286]  0.469509780  3.841641499  1.213513261  0.220426261  2.685608610
##  [291]  1.352301844 -1.985825373  1.412233483  1.614941750  1.355569096
##  [296]  1.703134961  0.869378191  2.472148490  3.220233161 -2.550426239
##  [301]  2.472583123  2.527248475  1.966188183  1.943684524  0.950828336
##  [306]  1.913276991 -0.019489198  1.953818092  1.260416313  3.354205006
##  [311]  2.360622112  2.052141023  0.729118476  1.828997956  2.288430234
##  [316]  1.815902126  2.319745806  2.728282781  1.724578264  5.128576470
##  [321] -0.281307305  2.430273939 -0.514195140  2.303042886  3.947846425
##  [326]  1.401498064  2.913599202  1.362505963  4.187122785  1.452665334
##  [331] -0.068153120  2.296372572  0.447235901  1.599158976  0.469846248
##  [336]  2.664118006  2.275182477  0.365310599  2.370027848  0.489081883
##  [341]  3.289374113  0.289868908  5.883119423  0.322883782  2.233637583
##  [346]  3.434102749  2.213906913  0.593540397  2.883640047  1.149921583
##  [351]  0.452612352 -0.853950204 -0.680474765  2.348623046  2.789424245
##  [356]  0.450245363  2.679382743  5.291314695  2.565935919  0.529827668
##  [361]  3.249263978  1.848862326 -0.104783639  4.946087914  1.963504481
##  [366]  1.230638649  2.121242063  1.976753463  2.603902817 -0.266790826
##  [371] -2.423282830  2.302152284  1.995970337  0.127922003  2.300466917
##  [376]  2.673829964  3.427931574  1.172149665  2.838813766  2.560185721
##  [381]  2.912838651  1.100866394  2.295003946  4.078225073  3.961370640
##  [386]  3.358762412  0.207319131  1.543031348  3.349052962 -0.507692876
##  [391]  2.246390828  4.529452742  5.426371942  3.564742265  0.706179410
##  [396] -1.069631016  0.572106094  4.471121913  2.437790735  2.606741936
##  [401]  4.620891949  5.008496352  1.764634247  1.856069938  2.872437988
##  [406]  1.298811524  3.581544988  0.999826969 -0.513515440  1.867281769
##  [411]  3.646207518 -0.748063581  0.046882642  3.819802488  2.720458611
##  [416]  0.959486721  5.310002624  2.798418474  3.835421301 -1.357936106
##  [421]  3.822401405  4.121072620  1.277829963  0.439226432 -0.280301804
##  [426]  1.854218250  2.800731362  1.071317391 -1.408645467  4.257078642
##  [431]  2.703367819  0.818071019  3.202199822  3.407045697  3.309087453
##  [436]  2.231266698  1.575154549 -0.356781025  4.510992604  1.511928882
##  [441]  1.427735421  0.906352846  2.755604052  1.131282256  0.194364466
##  [446]  4.029076141 -0.977001087  2.394697471  3.092408273  5.301544723
##  [451]  0.881535757  0.038712906  3.247071362 -0.824360955  2.968235156
##  [456]  1.970097649  2.585886603  2.878929280  0.423300732  0.157750707
##  [461]  1.364298271  1.728577699  2.006487077  2.340374088 -0.778393198
##  [466]  0.860246551  1.061474214  2.844117193  3.026028312 -0.070155764
##  [471]  1.541217882  3.069291950  5.369355538  2.094120981  2.739413814
##  [476]  0.331981269  3.108361528  4.068470634  3.528247215  4.390885042
##  [481]  3.791152462  2.841878439  1.574404993  4.933401114  3.342068431
##  [486]  1.562185737  3.646128989  4.804453623  0.545198330  4.926849243
##  [491]  2.806856513  1.781717272  1.963368468  1.978828114  1.436753627
##  [496]  2.535432474  0.024230905  3.273935949 -0.126446017  0.041428246
##  [501]  0.249356597  2.592315257  2.506760254 -1.485096805  0.882351343
##  [506]  2.062080189  4.613934844 -0.095239482  1.645763615  1.827074295
##  [511]  0.687735631 -0.073254497  3.124339676  2.550098465  3.286803566
##  [516]  2.515282251 -0.574345140  2.565253476  4.147832930  4.372672921
##  [521]  0.098494142  2.303568187  2.294416106 -0.413310281  1.929426325
##  [526]  1.517607174  1.352436938  1.966613680  3.839605195  5.818673343
##  [531]  0.985901705  3.004612845  2.849540179  2.550799281 -0.650442271
##  [536]  2.890445317  3.697507930  5.042925507  1.353345043  1.925203714
##  [541]  0.722211787  1.032917504  2.934254401  0.159899290  1.684020379
##  [546]  2.041878143 -1.474770886  1.165213645  1.695559298  0.515142444
##  [551]  5.602951154  2.823854779  1.919071252  1.090288517  2.423910717
##  [556]  0.255116678  2.926814152  2.004161353  3.343601247  4.165169403
##  [561] -1.021323642  1.233920085  2.031101123  2.085872225  0.755850191
##  [566]  1.908282936  2.590388987  3.520055467  1.365636805  2.543103734
##  [571]  1.471289660  3.690320997  0.906926613  1.538689680  3.350093169
##  [576]  2.267146754  1.565031669  1.482348799  2.354622329  1.819368916
##  [581]  2.983569137 -0.233180840  0.220936169 -0.230493180  3.883074980
##  [586]  2.258551297  2.526897119  0.199233591  4.353248297  3.844239516
##  [591]  2.891870212  4.017239301  0.554834441  1.501477397  3.960562937
##  [596]  0.336607512  2.256038034  1.469719547  1.559832194 -0.371548614
##  [601]  0.703544143  3.429140930  1.871908279  3.323703973  3.159584627
##  [606] -0.305044361  2.086794289  1.361374599  0.914868448  3.123353491
##  [611]  3.725260511  1.959943805  0.879836685  3.501076201  2.664116969
##  [616]  5.055475010 -0.850018354 -1.631527485  1.341450859  3.618651606
##  [621]  4.778686400  3.584392144  2.149021460  0.882961008  3.503882828
##  [626]  1.097478483 -0.126797424 -0.037687569  2.408637082  1.256070257
##  [631]  0.125085134  0.787538760  1.114384538  2.830576835 -0.039716433
##  [636]  3.444133064  3.089150480  3.389865026  2.070352036  2.080724428
##  [641]  1.469984982  0.223514480  1.684954421  0.506591272 -0.035216140
##  [646]  3.561772849  4.270393051  3.086241113  3.785160291  2.308908176
##  [651]  1.726072924  1.098763248  3.511468180  3.173370573  2.230429333
##  [656]  3.243079542  2.807341170  1.871774444  1.893964127  2.742082186
##  [661]  1.754974447  3.389344770  1.643823954 -3.109516451  2.779796943
##  [666]  2.875587678  3.620552373  3.020174574  2.139197206  0.886912244
##  [671]  3.062294945  3.733970055  1.850645061  2.027635731  2.290350300
##  [676]  1.530476379  0.151142727  1.795758889  3.761151698  1.461273929
##  [681]  2.055472241  0.083537801  0.761299243  3.163791219  1.648197042
##  [686]  3.196937661 -0.081783239  3.281682952 -1.267743362  2.084897088
##  [691]  2.894635279  5.287775559  4.383542969  5.597405699  0.039133377
##  [696]  2.309327774  2.454313541  3.375347685  2.522814839  0.228239139
##  [701]  5.165514737  4.518080668  3.794311065  1.869971749  3.858736801
##  [706] -0.257635688  1.708707087  2.527185031  1.803424844  4.172961616
##  [711]  1.854948349 -0.271231918  2.468084532  2.787339501 -0.105274622
##  [716]  1.209712524  1.441140431 -1.257508822  3.520779548  3.618121143
##  [721]  2.244279256 -0.090615005  3.050447304  0.142537275 -1.115840662
##  [726]  2.323509086  2.605214106  4.156930078  1.410795804  3.468415286
##  [731]  3.127607524  3.038707937  0.931101472  2.238670182  2.674908590
##  [736] -0.639627608  2.557385120  3.224392670  2.360163340  2.822211310
##  [741]  0.086785359  2.321977888  1.787499981 -1.715843152  2.636897098
##  [746]  1.810426591  0.901475243  2.389109535  1.799150544  1.213362341
##  [751] -0.420653858  1.309369828  2.278192455  1.048113512 -1.657273324
##  [756]  0.352343439  1.072946930  0.666494610  1.931835123  2.995707181
##  [761]  3.995012186  2.839277835  4.602245425  1.787087214  1.208831329
##  [766]  2.402953585  1.820739390  1.026884172 -1.685831551  3.961591784
##  [771]  0.607555158  3.876821876  1.613337701  3.065273357 -2.116555088
##  [776]  1.622543303  1.208025174  1.740884670  0.455388690  3.077258363
##  [781]  0.252933603  2.244913594  2.344017806 -0.744399241  2.000326009
##  [786]  1.220758266  3.516432072  1.392623071  3.290188564  6.045382265
##  [791] -0.255402271  4.135577414  2.285040518  1.300218710  1.503630955
##  [796]  1.137453777 -0.353976465  4.181648766  4.084487115  1.114641547
##  [801]  4.548274466  5.394534866  4.822706797  1.993659595  1.551784314
##  [806]  1.259540092  2.238505616  3.149850620  3.088677471  1.910545473
##  [811]  4.708705700  2.277233298  1.080363896  1.853858700  0.514409196
##  [816]  0.981904615  2.655008071  1.280008001  1.176097947  3.678249136
##  [821]  2.058051255  2.496479449  1.384847057  4.446289475 -1.516298928
##  [826]  2.785868408  3.412448844  4.914957569  1.588456042  0.416539653
##  [831]  3.721240271  3.434940421  3.737907676  3.364504297  1.595441061
##  [836]  2.390055196  0.439096037  1.086519697  2.112809290  0.151513244
##  [841]  1.187593966  3.155626400  0.689812105  1.096488787  1.602913885
##  [846]  3.931531041  3.887345468  0.663882383  0.242919879  2.991802626
##  [851]  1.571998727  1.974421575  2.867806916  3.500581699  1.496389007
##  [856]  3.746111168  3.252535041  1.712210102 -0.475701875  2.242874265
##  [861]  2.728740178  2.587629812  2.067603717  1.373573376  4.201376675
##  [866]  1.634810040  3.901495966  1.665936897  1.255082716  1.847920384
##  [871] -0.306287219  1.172027561  4.810621959  3.382691099 -0.267752056
##  [876]  1.778972480  3.126240458  2.791480725  1.605824779  1.999161268
##  [881] -0.373133095  1.693128044  1.241083348  0.748010981  2.458369310
##  [886]  1.509313864  2.610486519 -0.160309101  4.635207917  1.261257975
##  [891]  0.737085582  1.278409276  2.946181544  1.236477049  3.603558670
##  [896]  1.982788992  1.046667212  1.303327947  4.109625635  2.896597525
##  [901]  1.940691663  2.280189252  5.049616263  3.249416610  3.827859802
##  [906] -0.135737824  0.663539464  4.283124653  1.125835383  1.187152367
##  [911]  3.475435119  1.573659405  2.483104109  2.811310179  0.877048844
##  [916]  2.272074847  2.334740708  2.992237817  4.934811553  1.410859922
##  [921]  1.710835967  2.243631480  1.045345975  1.673914910  1.741944267
##  [926]  2.086006921  6.095332397  2.267680510  1.844552801  0.393511342
##  [931]  0.783997939  2.953068938  1.096354662 -0.328579774  3.754884755
##  [936]  0.304556494  2.969769043  0.381656103  1.802684771  0.925079049
##  [941]  1.143979524  0.132240991  2.671793135  1.540474598  2.950464181
##  [946] -0.485670617  1.862829016  3.527912071  2.196344892  4.681617724
##  [951]  3.616212585  1.114764750  1.185391832  4.746618711  0.057409965
##  [956]  1.681401614  1.946427884  2.968239617  0.025932140  1.521939438
##  [961]  3.112345809 -0.708046457  2.827832453  2.246853657  0.111560002
##  [966]  2.976385406  0.838636559  1.981525821  0.942881698 -0.432804328
##  [971]  2.445127160  2.396197696  2.845356334  2.942815009  1.090744725
##  [976]  1.077748455 -0.143021076  2.554651583  1.948276252  2.408683267
##  [981]  2.132477138  2.197139972  2.238388042  2.022454326 -0.897027993
##  [986]  3.988689632  2.303446713  3.572765283  2.775416042  2.624631453
##  [991]  3.269945904  2.016668440  5.120508500  3.169847530  2.169761682
##  [996]  2.304347181 -0.106548295 -1.261291047  4.031227405  1.586506762
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -3.110   1.097   2.069   2.059   3.066   7.814
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve (define the range of the density curve) 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.3751848
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##     95% 
## 4.63643
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.3751848
# mark those values that is lower than -.42 as true
# and higher than -.42 as false

(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [157] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [265] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE  TRUE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -0.3847475 -1.7397624 -1.1583810 -0.5602090 -0.9550416 -1.0494972
##  [7] -1.6287219 -0.6406244 -0.5810550 -1.9858254 -2.5504262 -0.5141951
## [13] -0.8539502 -0.6804748 -2.4232828 -0.5076929 -1.0696310 -0.5135154
## [19] -0.7480636 -1.3579361 -1.4086455 -0.9770011 -0.8243610 -0.7783932
## [25] -1.4850968 -0.5743451 -0.4133103 -0.6504423 -1.4747709 -1.0213236
## [31] -0.8500184 -1.6315275 -3.1095165 -1.2677434 -1.2575088 -1.1158407
## [37] -0.6396276 -1.7158432 -0.4206539 -1.6572733 -1.6858316 -2.1165551
## [43] -0.7443992 -1.5162989 -0.4757019 -0.4856706 -0.7080465 -0.4328043
## [49] -0.8970280 -1.2612910
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##     95% 
## 4.63643
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [73] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [85]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [181] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [361] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.308058 4.659656 4.930654 4.893909 5.735468 4.970173 4.808926 4.687323
##  [9] 5.168425 7.813984 4.916283 5.017517 4.694753 5.843437 4.732223 5.052340
## [17] 4.666716 5.122757 5.128576 5.883119 5.291315 4.946088 5.426372 5.008496
## [25] 5.310003 5.301545 5.369356 4.933401 4.804454 4.926849 5.818673 5.042926
## [33] 5.602951 5.055475 4.778686 5.287776 5.597406 5.165515 6.045382 5.394535
## [41] 4.822707 4.708706 4.914958 4.810622 5.049616 4.934812 6.095332 4.681618
## [49] 4.746619 5.120509