# Mindanao State University
# General Santos City
# Introduction to R base commands
# Submitted by: Joshua Marie H. Casador
# Prepared by: Prof. Carlito O. Daarol
# Faculty
# Math Department
# March 16, 2023

# Lab Exercise 1: How to create Lines in with different styles in R
# Step 1: Create Data
x <- 1:10 # Create example data
y <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9) # using the c() function to create an
array
## function (data = NA, dim = length(data), dimnames = NULL) 
## {
##     if (is.atomic(data) && !is.object(data)) 
##         return(.Internal(array(data, dim, dimnames)))
##     data <- as.vector(data)
##     if (is.object(data)) {
##         dim <- as.integer(dim)
##         if (!length(dim)) 
##             stop("'dim' cannot be of length 0")
##         vl <- prod(dim)
##         if (length(data) != vl) {
##             if (vl > .Machine$integer.max) 
##                 stop("'dim' specifies too large an array")
##             data <- rep_len(data, vl)
##         }
##         if (length(dim)) 
##             dim(data) <- dim
##         if (is.list(dimnames) && length(dimnames)) 
##             dimnames(data) <- dimnames
##         data
##     }
##     else .Internal(array(data, dim, dimnames))
## }
## <bytecode: 0x000001727e6200b8>
## <environment: namespace:base>
# Step 2: Plot the line graph using the base plot() command
plot(x, y, type = "l")

# Step 3: Add Main Title & Change Axis Labels
plot(x, y, type = "l",
     main = "Hello: This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values")

# Step 4: Add color to the line using the col command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     col = "red")

# Step 5: Modify Thickness of Line using lwd command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=7,
     col = "green")

# Step 6: Add points to line graph by changing the type command
plot(x, y, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# Lab Exercise 2: How to create Lines in with different styles in R
# Step1: Assign values for different lines. We enclose the entire
# line with parenthesis symbol to force R to display the results instantly
# set the same value for the x variable
(x <- 1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
# set different values for y variables
(y1 <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9))
##  [1] 3 1 5 2 3 8 4 7 6 9
(y2 <- c(5, 1, 4, 6, 2, 3, 7, 8, 2, 8))
##  [1] 5 1 4 6 2 3 7 8 2 8
(y3 <- c(3, 3, 3, 3, 4, 4, 5, 5, 7, 7))
##  [1] 3 3 3 3 4 4 5 5 7 7
# Plot first the pair x and y1.
plot(x, y1, type = "b",pch = 16,
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# Lab Exercise 2: How to create Lines in with different styles in R
# Step1: Assign values for different lines. We enclose the entire
# line with parenthesis symbol to force R to display the results instantly
# set the same value for the x variable
(x <- 1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
# set different values for y variables
(y1 <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9))
##  [1] 3 1 5 2 3 8 4 7 6 9
(y2 <- c(5, 1, 4, 6, 2, 3, 7, 8, 2, 8))
##  [1] 5 1 4 6 2 3 7 8 2 8
(y3 <- c(3, 3, 3, 3, 4, 4, 5, 5, 7, 7))
##  [1] 3 3 3 3 4 4 5 5 7 7
# Plot first the pair x and y1.
plot(x, y1, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
# then Add the two lines (for x,y2) and (x,y3)
lines(x, y2, type = "b", col = "red",lwd=3)
lines(x, y3, type = "b", col = "green",lwd=3)
# Add legend to the plot
legend("topleft",
       legend = c("Line y1", "Line y2", "Line y3"),
       col = c("black", "red", "green"),
       lty = 1)

# Step 2: Create Different Point Symbol for Each
# Line using the pch command
plot(x, y1, type = "b",pch = 16,
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
lines(x, y2, type = "b", col = "red",lwd=3, pch = 15)
lines(x, y3, type = "b", col = "green",lwd=3, pch = 8)
# Add legend
legend("topleft",
       legend = c("Line y1", "Line y2", "Line y3"),
       col = c("black", "red", "green"),
       lty = 1)

# Lab Exercise 3: Create Line graph without x values
Pupils <- c(3.55 ,3.54 ,3.53 ,3.61 ,3.65 ,3.63 ,3.61
            ,3.61 ,3.59 ,3.63 ,3.59 ,3.63 ,3.62 ,3.62
            ,3.59 ,3.63 ,3.62 ,3.65 ,3.65)
# get number of elements of Pupils
length(Pupils)
## [1] 19
# Display the elements of Pupils
Pupils
##  [1] 3.55 3.54 3.53 3.61 3.65 3.63 3.61 3.61 3.59 3.63 3.59 3.63 3.62 3.62 3.59
## [16] 3.63 3.62 3.65 3.65
# You can obtain the plot without x values
plot(Pupils, type = 'o')

# Lab Exercise 4: How to Create vertical, horizontal lines
# We will use buit-in cars dataset in R
# display the cars dataset
cars
##    speed dist
## 1      4    2
## 2      4   10
## 3      7    4
## 4      7   22
## 5      8   16
## 6      9   10
## 7     10   18
## 8     10   26
## 9     10   34
## 10    11   17
## 11    11   28
## 12    12   14
## 13    12   20
## 14    12   24
## 15    12   28
## 16    13   26
## 17    13   34
## 18    13   34
## 19    13   46
## 20    14   26
## 21    14   36
## 22    14   60
## 23    14   80
## 24    15   20
## 25    15   26
## 26    15   54
## 27    16   32
## 28    16   40
## 29    17   32
## 30    17   40
## 31    17   50
## 32    18   42
## 33    18   56
## 34    18   76
## 35    18   84
## 36    19   36
## 37    19   46
## 38    19   68
## 39    20   32
## 40    20   48
## 41    20   52
## 42    20   56
## 43    20   64
## 44    22   66
## 45    23   54
## 46    24   70
## 47    24   92
## 48    24   93
## 49    24  120
## 50    25   85
# get the number of rows and columns using dim() command
dim(cars)
## [1] 50  2
# display the variable names of the cars dataset
names(cars)
## [1] "speed" "dist"
# display only the first column of the dataset
cars$speed # using the column name
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
cars[,1] # using the column number
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
# Remarks: the following commands will give you the same result
plot(cars,) # using the comma after the name

plot(cars[,1],cars[,2]) # using the column index 1 and 2

attach(cars); plot(speed,dist) # using the attach command to load the variables

plot(cars$speed,cars$dist) # using the dollar notation

# combine all 4 plots using the par() command
par(mfrow = c(2,2)) # set a 2x2 plot output
plot(cars,) # using the comma after the name
plot(cars[,1],cars[,2]) # using the column index 1 and 2
attach(cars); plot(speed,dist) # using the attach command to load the variables
## The following objects are masked from cars (pos = 3):
## 
##     dist, speed
plot(cars$speed,cars$dist) # using the dollar notation

par(mfrow = c(1,1)) # reset to default plot setting
# Problem: Create vertical lines using the v command
plot(cars)
abline(v = 15, col = "darkgreen",lwd=3) # vertical line
abline(v = 10, col = "blue",lwd=3) # vertical line
# Problem: Create horizontal lines using the h command
abline(h = 80, col = "darkgreen",lwd=3) # vertical line
abline(h = 20, col = "blue",lwd=3) # vertical line

# Create more lines simultaneously, using a vector of values
plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2), # line thickness
       lty = c(2,2,2)) # dashed lines

plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2)) # line thickness and solid lines

# create horizontal lines
plot(cars)
abline(h = 60, col = "red",lty = 1, lwd = 3)
abline(h = 100, col = "red",lty = 2, lwd = 3)
abline(h = 20, col = "red",lty = 3, lwd = 3)

# Lab Exercise 5: How to Plot data by group
# We will use buit-in iris dataset in R
# this dataset is a collection of 4 species of flowers with different
# sepal length and width and also with different petal length and width
dim(iris) # iris dataset has 150 rows and 5 columns
## [1] 150   5
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"
# two different commands to get the frequency table
table(iris$Species) # refer to the dataset by variable name
## 
##     setosa versicolor  virginica 
##         50         50         50
table(iris[,5]) # refer to the dataset by column number
## 
##     setosa versicolor  virginica 
##         50         50         50
# get summary of all columns
summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 
#create scatterplot of sepal width vs. sepal length
plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=19)

plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=1)

# another way to retrieve columns of data
PL <- iris$Petal.Length
PW <- iris$Petal.Width
plot(PL, PW)

# add color by species
plot(PL, PW, col = iris$Species, main= "My Plot")
# draw a line along with the distribution of points
# using the abline and lm commands
abline(lm(PW ~ PL))
# add text annotation
text(5, 0.5, "Regression Line")
legend("topleft", # specify the location of the legend
       levels(iris$Species), # specify the levels of species
       pch = 1:3, # specify three symbols used for the three species
       col = 1:3 # specify three colors for the three species
)

# Lab Exercise 6: Generate advance scatter plot
pairs(iris, col = rainbow(3)[iris$Species]) # set colors by species

# How to filter data for each flower
(Versicolor <- subset(iris, Species == "versicolor"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
(Setosa <- subset(iris, Species == "setosa"))
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## 11          5.4         3.7          1.5         0.2  setosa
## 12          4.8         3.4          1.6         0.2  setosa
## 13          4.8         3.0          1.4         0.1  setosa
## 14          4.3         3.0          1.1         0.1  setosa
## 15          5.8         4.0          1.2         0.2  setosa
## 16          5.7         4.4          1.5         0.4  setosa
## 17          5.4         3.9          1.3         0.4  setosa
## 18          5.1         3.5          1.4         0.3  setosa
## 19          5.7         3.8          1.7         0.3  setosa
## 20          5.1         3.8          1.5         0.3  setosa
## 21          5.4         3.4          1.7         0.2  setosa
## 22          5.1         3.7          1.5         0.4  setosa
## 23          4.6         3.6          1.0         0.2  setosa
## 24          5.1         3.3          1.7         0.5  setosa
## 25          4.8         3.4          1.9         0.2  setosa
## 26          5.0         3.0          1.6         0.2  setosa
## 27          5.0         3.4          1.6         0.4  setosa
## 28          5.2         3.5          1.5         0.2  setosa
## 29          5.2         3.4          1.4         0.2  setosa
## 30          4.7         3.2          1.6         0.2  setosa
## 31          4.8         3.1          1.6         0.2  setosa
## 32          5.4         3.4          1.5         0.4  setosa
## 33          5.2         4.1          1.5         0.1  setosa
## 34          5.5         4.2          1.4         0.2  setosa
## 35          4.9         3.1          1.5         0.2  setosa
## 36          5.0         3.2          1.2         0.2  setosa
## 37          5.5         3.5          1.3         0.2  setosa
## 38          4.9         3.6          1.4         0.1  setosa
## 39          4.4         3.0          1.3         0.2  setosa
## 40          5.1         3.4          1.5         0.2  setosa
## 41          5.0         3.5          1.3         0.3  setosa
## 42          4.5         2.3          1.3         0.3  setosa
## 43          4.4         3.2          1.3         0.2  setosa
## 44          5.0         3.5          1.6         0.6  setosa
## 45          5.1         3.8          1.9         0.4  setosa
## 46          4.8         3.0          1.4         0.3  setosa
## 47          5.1         3.8          1.6         0.2  setosa
## 48          4.6         3.2          1.4         0.2  setosa
## 49          5.3         3.7          1.5         0.2  setosa
## 50          5.0         3.3          1.4         0.2  setosa
(Virginica <- subset(iris, Species == "virginica"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 101          6.3         3.3          6.0         2.5 virginica
## 102          5.8         2.7          5.1         1.9 virginica
## 103          7.1         3.0          5.9         2.1 virginica
## 104          6.3         2.9          5.6         1.8 virginica
## 105          6.5         3.0          5.8         2.2 virginica
## 106          7.6         3.0          6.6         2.1 virginica
## 107          4.9         2.5          4.5         1.7 virginica
## 108          7.3         2.9          6.3         1.8 virginica
## 109          6.7         2.5          5.8         1.8 virginica
## 110          7.2         3.6          6.1         2.5 virginica
## 111          6.5         3.2          5.1         2.0 virginica
## 112          6.4         2.7          5.3         1.9 virginica
## 113          6.8         3.0          5.5         2.1 virginica
## 114          5.7         2.5          5.0         2.0 virginica
## 115          5.8         2.8          5.1         2.4 virginica
## 116          6.4         3.2          5.3         2.3 virginica
## 117          6.5         3.0          5.5         1.8 virginica
## 118          7.7         3.8          6.7         2.2 virginica
## 119          7.7         2.6          6.9         2.3 virginica
## 120          6.0         2.2          5.0         1.5 virginica
## 121          6.9         3.2          5.7         2.3 virginica
## 122          5.6         2.8          4.9         2.0 virginica
## 123          7.7         2.8          6.7         2.0 virginica
## 124          6.3         2.7          4.9         1.8 virginica
## 125          6.7         3.3          5.7         2.1 virginica
## 126          7.2         3.2          6.0         1.8 virginica
## 127          6.2         2.8          4.8         1.8 virginica
## 128          6.1         3.0          4.9         1.8 virginica
## 129          6.4         2.8          5.6         2.1 virginica
## 130          7.2         3.0          5.8         1.6 virginica
## 131          7.4         2.8          6.1         1.9 virginica
## 132          7.9         3.8          6.4         2.0 virginica
## 133          6.4         2.8          5.6         2.2 virginica
## 134          6.3         2.8          5.1         1.5 virginica
## 135          6.1         2.6          5.6         1.4 virginica
## 136          7.7         3.0          6.1         2.3 virginica
## 137          6.3         3.4          5.6         2.4 virginica
## 138          6.4         3.1          5.5         1.8 virginica
## 139          6.0         3.0          4.8         1.8 virginica
## 140          6.9         3.1          5.4         2.1 virginica
## 141          6.7         3.1          5.6         2.4 virginica
## 142          6.9         3.1          5.1         2.3 virginica
## 143          5.8         2.7          5.1         1.9 virginica
## 144          6.8         3.2          5.9         2.3 virginica
## 145          6.7         3.3          5.7         2.5 virginica
## 146          6.7         3.0          5.2         2.3 virginica
## 147          6.3         2.5          5.0         1.9 virginica
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
# Draw boxplot for each type of flower
boxplot(Versicolor[,1:4], main="Versicolor, Rainbow Palette",ylim =
          c(0,8),las=2, col=rainbow(4))

boxplot(Setosa[,1:4], main="Setosa, Heat color Palette",ylim = c(0,8),las=2,
        col=heat.colors(4))

boxplot(Virginica[,1:4], main="Virginica, Topo colors Palette",ylim =
          c(0,8),las=2, col=topo.colors(4))

# How to filter data for each flower
(Versicolor <- subset(iris, Species == "versicolor"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
(Setosa <- subset(iris, Species == "setosa"))
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## 11          5.4         3.7          1.5         0.2  setosa
## 12          4.8         3.4          1.6         0.2  setosa
## 13          4.8         3.0          1.4         0.1  setosa
## 14          4.3         3.0          1.1         0.1  setosa
## 15          5.8         4.0          1.2         0.2  setosa
## 16          5.7         4.4          1.5         0.4  setosa
## 17          5.4         3.9          1.3         0.4  setosa
## 18          5.1         3.5          1.4         0.3  setosa
## 19          5.7         3.8          1.7         0.3  setosa
## 20          5.1         3.8          1.5         0.3  setosa
## 21          5.4         3.4          1.7         0.2  setosa
## 22          5.1         3.7          1.5         0.4  setosa
## 23          4.6         3.6          1.0         0.2  setosa
## 24          5.1         3.3          1.7         0.5  setosa
## 25          4.8         3.4          1.9         0.2  setosa
## 26          5.0         3.0          1.6         0.2  setosa
## 27          5.0         3.4          1.6         0.4  setosa
## 28          5.2         3.5          1.5         0.2  setosa
## 29          5.2         3.4          1.4         0.2  setosa
## 30          4.7         3.2          1.6         0.2  setosa
## 31          4.8         3.1          1.6         0.2  setosa
## 32          5.4         3.4          1.5         0.4  setosa
## 33          5.2         4.1          1.5         0.1  setosa
## 34          5.5         4.2          1.4         0.2  setosa
## 35          4.9         3.1          1.5         0.2  setosa
## 36          5.0         3.2          1.2         0.2  setosa
## 37          5.5         3.5          1.3         0.2  setosa
## 38          4.9         3.6          1.4         0.1  setosa
## 39          4.4         3.0          1.3         0.2  setosa
## 40          5.1         3.4          1.5         0.2  setosa
## 41          5.0         3.5          1.3         0.3  setosa
## 42          4.5         2.3          1.3         0.3  setosa
## 43          4.4         3.2          1.3         0.2  setosa
## 44          5.0         3.5          1.6         0.6  setosa
## 45          5.1         3.8          1.9         0.4  setosa
## 46          4.8         3.0          1.4         0.3  setosa
## 47          5.1         3.8          1.6         0.2  setosa
## 48          4.6         3.2          1.4         0.2  setosa
## 49          5.3         3.7          1.5         0.2  setosa
## 50          5.0         3.3          1.4         0.2  setosa
(Virginica <- subset(iris, Species == "virginica"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 101          6.3         3.3          6.0         2.5 virginica
## 102          5.8         2.7          5.1         1.9 virginica
## 103          7.1         3.0          5.9         2.1 virginica
## 104          6.3         2.9          5.6         1.8 virginica
## 105          6.5         3.0          5.8         2.2 virginica
## 106          7.6         3.0          6.6         2.1 virginica
## 107          4.9         2.5          4.5         1.7 virginica
## 108          7.3         2.9          6.3         1.8 virginica
## 109          6.7         2.5          5.8         1.8 virginica
## 110          7.2         3.6          6.1         2.5 virginica
## 111          6.5         3.2          5.1         2.0 virginica
## 112          6.4         2.7          5.3         1.9 virginica
## 113          6.8         3.0          5.5         2.1 virginica
## 114          5.7         2.5          5.0         2.0 virginica
## 115          5.8         2.8          5.1         2.4 virginica
## 116          6.4         3.2          5.3         2.3 virginica
## 117          6.5         3.0          5.5         1.8 virginica
## 118          7.7         3.8          6.7         2.2 virginica
## 119          7.7         2.6          6.9         2.3 virginica
## 120          6.0         2.2          5.0         1.5 virginica
## 121          6.9         3.2          5.7         2.3 virginica
## 122          5.6         2.8          4.9         2.0 virginica
## 123          7.7         2.8          6.7         2.0 virginica
## 124          6.3         2.7          4.9         1.8 virginica
## 125          6.7         3.3          5.7         2.1 virginica
## 126          7.2         3.2          6.0         1.8 virginica
## 127          6.2         2.8          4.8         1.8 virginica
## 128          6.1         3.0          4.9         1.8 virginica
## 129          6.4         2.8          5.6         2.1 virginica
## 130          7.2         3.0          5.8         1.6 virginica
## 131          7.4         2.8          6.1         1.9 virginica
## 132          7.9         3.8          6.4         2.0 virginica
## 133          6.4         2.8          5.6         2.2 virginica
## 134          6.3         2.8          5.1         1.5 virginica
## 135          6.1         2.6          5.6         1.4 virginica
## 136          7.7         3.0          6.1         2.3 virginica
## 137          6.3         3.4          5.6         2.4 virginica
## 138          6.4         3.1          5.5         1.8 virginica
## 139          6.0         3.0          4.8         1.8 virginica
## 140          6.9         3.1          5.4         2.1 virginica
## 141          6.7         3.1          5.6         2.4 virginica
## 142          6.9         3.1          5.1         2.3 virginica
## 143          5.8         2.7          5.1         1.9 virginica
## 144          6.8         3.2          5.9         2.3 virginica
## 145          6.7         3.3          5.7         2.5 virginica
## 146          6.7         3.0          5.2         2.3 virginica
## 147          6.3         2.5          5.0         1.9 virginica
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
# Draw boxplot for each type of flower
boxplot(Versicolor[,1:4], main="Versicolor, Rainbow Palette",ylim =
          c(0,8),las=2, col=rainbow(4))

boxplot(Setosa[,1:4], main="Setosa, Heat color Palette",ylim = c(0,8),las=2,
        col=heat.colors(4))

boxplot(Virginica[,1:4], main="Virginica, Topo colors Palette",ylim =
          c(0,8),las=2, col=topo.colors(4))

# Lab Exercise 7: How to load external datasets
# From a local directory
# the folder that contains the file should be specified completely
# using the forward slash symbol instead of the backward splash

library(readr)
cancer <- read_csv("files/Cancer.csv")
## Rows: 173 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): country, continent
## dbl (15): incomeperperson, alcconsumption, armedforcesrate, breastcancer, co...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dim(cancer)
## [1] 173  17
names(cancer)
##  [1] "country"            "incomeperperson"    "alcconsumption"    
##  [4] "armedforcesrate"    "breastcancer"       "co2emissions"      
##  [7] "femaleemployrate"   "hivrate"            "internetuserate"   
## [10] "lifeexpectancy"     "oilperperson"       "polityscore"       
## [13] "relectricperperson" "suicideper100th"    "employrate"        
## [16] "urbanrate"          "continent"
# compute mean value for every continent
(means <- round(tapply(cancer$breastcancer, cancer$continent, mean),
                digits=2))
##    AF    AS    EE LATAM NORAM    OC    WE 
## 24.02 24.51 49.44 36.70 71.73 45.80 74.80
# draw boxplot per continent
boxplot(cancer$breastcancer ~ cancer$continent, main= "Breast cancer by
continent (brown dot = mean value)", xlab="continents", ylab="new
cases per 100,00 residents", col=rainbow(7))
# insert the mean value using brown dot
points(means, col="brown", pch=18)

# Lab Exercise 8: How to load external datasets and change data layout

library(readr)
hsb2 <- read_csv("files/hsb2.csv")
## New names:
## Rows: 200 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (12): ...1, id, female, race, ses, schtyp, prog, read, write, math, scie...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
# display only the top 6 rows
head(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1    70      0     4     1      1     1    57    52    41      47    57
## 2     2   121      1     4     2      1     3    68    59    53      63    61
## 3     3    86      0     4     3      1     1    44    33    54      58    31
## 4     4   141      0     4     3      1     3    63    44    47      53    56
## 5     5   172      0     4     2      1     2    47    52    57      53    61
## 6     6   113      0     4     2      1     2    44    52    51      63    61
# display only the last 6 rows
tail(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1   195   179      1     4     2      2     2    47    65    60      50    56
## 2   196    31      1     2     2      2     1    55    59    52      42    56
## 3   197   145      1     4     2      1     3    42    46    38      36    46
## 4   198   187      1     4     2      2     1    57    41    57      55    52
## 5   199   118      1     4     2      1     1    55    62    58      58    61
## 6   200   137      1     4     3      1     2    63    65    65      53    61
# delete redundant first column (run only once)
(hsb2<- hsb2 [-1])
## # A tibble: 200 × 11
##       id female  race   ses schtyp  prog  read write  math science socst
##    <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    70      0     4     1      1     1    57    52    41      47    57
##  2   121      1     4     2      1     3    68    59    53      63    61
##  3    86      0     4     3      1     1    44    33    54      58    31
##  4   141      0     4     3      1     3    63    44    47      53    56
##  5   172      0     4     2      1     2    47    52    57      53    61
##  6   113      0     4     2      1     2    44    52    51      63    61
##  7    50      0     3     2      1     1    50    59    42      53    61
##  8    11      0     1     2      1     2    34    46    45      39    36
##  9    84      0     4     2      1     1    63    57    54      58    51
## 10    48      0     3     2      1     2    57    55    52      50    51
## # ℹ 190 more rows
# Remarks
# hsb2 dataset consists of 200 selected random samples from senior
# high school students in the US.
# We want to compare the student performance across different subjects
# change data layout by grouping different subjects
# into one column using melt() command. Install first reshape2 package
# install.packages("reshape2")
library(reshape2)
(hsb2_long <- melt(hsb2, measure.vars =
                     c("read","write","math","science","socst")))
##       id female race ses schtyp prog variable value
## 1     70      0    4   1      1    1     read    57
## 2    121      1    4   2      1    3     read    68
## 3     86      0    4   3      1    1     read    44
## 4    141      0    4   3      1    3     read    63
## 5    172      0    4   2      1    2     read    47
## 6    113      0    4   2      1    2     read    44
## 7     50      0    3   2      1    1     read    50
## 8     11      0    1   2      1    2     read    34
## 9     84      0    4   2      1    1     read    63
## 10    48      0    3   2      1    2     read    57
## 11    75      0    4   2      1    3     read    60
## 12    60      0    4   2      1    2     read    57
## 13    95      0    4   3      1    2     read    73
## 14   104      0    4   3      1    2     read    54
## 15    38      0    3   1      1    2     read    45
## 16   115      0    4   1      1    1     read    42
## 17    76      0    4   3      1    2     read    47
## 18   195      0    4   2      2    1     read    57
## 19   114      0    4   3      1    2     read    68
## 20    85      0    4   2      1    1     read    55
## 21   167      0    4   2      1    1     read    63
## 22   143      0    4   2      1    3     read    63
## 23    41      0    3   2      1    2     read    50
## 24    20      0    1   3      1    2     read    60
## 25    12      0    1   2      1    3     read    37
## 26    53      0    3   2      1    3     read    34
## 27   154      0    4   3      1    2     read    65
## 28   178      0    4   2      2    3     read    47
## 29   196      0    4   3      2    2     read    44
## 30    29      0    2   1      1    1     read    52
## 31   126      0    4   2      1    1     read    42
## 32   103      0    4   3      1    2     read    76
## 33   192      0    4   3      2    2     read    65
## 34   150      0    4   2      1    3     read    42
## 35   199      0    4   3      2    2     read    52
## 36   144      0    4   3      1    1     read    60
## 37   200      0    4   2      2    2     read    68
## 38    80      0    4   3      1    2     read    65
## 39    16      0    1   1      1    3     read    47
## 40   153      0    4   2      1    3     read    39
## 41   176      0    4   2      2    2     read    47
## 42   177      0    4   2      2    2     read    55
## 43   168      0    4   2      1    2     read    52
## 44    40      0    3   1      1    1     read    42
## 45    62      0    4   3      1    1     read    65
## 46   169      0    4   1      1    1     read    55
## 47    49      0    3   3      1    3     read    50
## 48   136      0    4   2      1    2     read    65
## 49   189      0    4   2      2    2     read    47
## 50     7      0    1   2      1    2     read    57
## 51    27      0    2   2      1    2     read    53
## 52   128      0    4   3      1    2     read    39
## 53    21      0    1   2      1    1     read    44
## 54   183      0    4   2      2    2     read    63
## 55   132      0    4   2      1    2     read    73
## 56    15      0    1   3      1    3     read    39
## 57    67      0    4   1      1    3     read    37
## 58    22      0    1   2      1    3     read    42
## 59   185      0    4   2      2    2     read    63
## 60     9      0    1   2      1    3     read    48
## 61   181      0    4   2      2    2     read    50
## 62   170      0    4   3      1    2     read    47
## 63   134      0    4   1      1    1     read    44
## 64   108      0    4   2      1    1     read    34
## 65   197      0    4   3      2    2     read    50
## 66   140      0    4   2      1    3     read    44
## 67   171      0    4   2      1    2     read    60
## 68   107      0    4   1      1    3     read    47
## 69    81      0    4   1      1    2     read    63
## 70    18      0    1   2      1    3     read    50
## 71   155      0    4   2      1    1     read    44
## 72    97      0    4   3      1    2     read    60
## 73    68      0    4   2      1    2     read    73
## 74   157      0    4   2      1    1     read    68
## 75    56      0    4   2      1    3     read    55
## 76     5      0    1   1      1    2     read    47
## 77   159      0    4   3      1    2     read    55
## 78   123      0    4   3      1    1     read    68
## 79   164      0    4   2      1    3     read    31
## 80    14      0    1   3      1    2     read    47
## 81   127      0    4   3      1    2     read    63
## 82   165      0    4   1      1    3     read    36
## 83   174      0    4   2      2    2     read    68
## 84     3      0    1   1      1    2     read    63
## 85    58      0    4   2      1    3     read    55
## 86   146      0    4   3      1    2     read    55
## 87   102      0    4   3      1    2     read    52
## 88   117      0    4   3      1    3     read    34
## 89   133      0    4   2      1    3     read    50
## 90    94      0    4   3      1    2     read    55
## 91    24      0    2   2      1    2     read    52
## 92   149      0    4   1      1    1     read    63
## 93    82      1    4   3      1    2     read    68
## 94     8      1    1   1      1    2     read    39
## 95   129      1    4   1      1    1     read    44
## 96   173      1    4   1      1    1     read    50
## 97    57      1    4   2      1    2     read    71
## 98   100      1    4   3      1    2     read    63
## 99     1      1    1   1      1    3     read    34
## 100  194      1    4   3      2    2     read    63
## 101   88      1    4   3      1    2     read    68
## 102   99      1    4   3      1    1     read    47
## 103   47      1    3   1      1    2     read    47
## 104  120      1    4   3      1    2     read    63
## 105  166      1    4   2      1    2     read    52
## 106   65      1    4   2      1    2     read    55
## 107  101      1    4   3      1    2     read    60
## 108   89      1    4   1      1    3     read    35
## 109   54      1    3   1      2    1     read    47
## 110  180      1    4   3      2    2     read    71
## 111  162      1    4   2      1    3     read    57
## 112    4      1    1   1      1    2     read    44
## 113  131      1    4   3      1    2     read    65
## 114  125      1    4   1      1    2     read    68
## 115   34      1    1   3      2    2     read    73
## 116  106      1    4   2      1    3     read    36
## 117  130      1    4   3      1    1     read    43
## 118   93      1    4   3      1    2     read    73
## 119  163      1    4   1      1    2     read    52
## 120   37      1    3   1      1    3     read    41
## 121   35      1    1   1      2    1     read    60
## 122   87      1    4   2      1    1     read    50
## 123   73      1    4   2      1    2     read    50
## 124  151      1    4   2      1    3     read    47
## 125   44      1    3   1      1    3     read    47
## 126  152      1    4   3      1    2     read    55
## 127  105      1    4   2      1    2     read    50
## 128   28      1    2   2      1    1     read    39
## 129   91      1    4   3      1    3     read    50
## 130   45      1    3   1      1    3     read    34
## 131  116      1    4   2      1    2     read    57
## 132   33      1    2   1      1    2     read    57
## 133   66      1    4   2      1    3     read    68
## 134   72      1    4   2      1    3     read    42
## 135   77      1    4   1      1    2     read    61
## 136   61      1    4   3      1    2     read    76
## 137  190      1    4   2      2    2     read    47
## 138   42      1    3   2      1    3     read    46
## 139    2      1    1   2      1    3     read    39
## 140   55      1    3   2      2    2     read    52
## 141   19      1    1   1      1    1     read    28
## 142   90      1    4   3      1    2     read    42
## 143  142      1    4   2      1    3     read    47
## 144   17      1    1   2      1    2     read    47
## 145  122      1    4   2      1    2     read    52
## 146  191      1    4   3      2    2     read    47
## 147   83      1    4   2      1    3     read    50
## 148  182      1    4   2      2    2     read    44
## 149    6      1    1   1      1    2     read    47
## 150   46      1    3   1      1    2     read    45
## 151   43      1    3   1      1    2     read    47
## 152   96      1    4   3      1    2     read    65
## 153  138      1    4   2      1    3     read    43
## 154   10      1    1   2      1    1     read    47
## 155   71      1    4   2      1    1     read    57
## 156  139      1    4   2      1    2     read    68
## 157  110      1    4   2      1    3     read    52
## 158  148      1    4   2      1    3     read    42
## 159  109      1    4   2      1    1     read    42
## 160   39      1    3   3      1    2     read    66
## 161  147      1    4   1      1    2     read    47
## 162   74      1    4   2      1    2     read    57
## 163  198      1    4   3      2    2     read    47
## 164  161      1    4   1      1    2     read    57
## 165  112      1    4   2      1    2     read    52
## 166   69      1    4   1      1    3     read    44
## 167  156      1    4   2      1    2     read    50
## 168  111      1    4   1      1    1     read    39
## 169  186      1    4   2      2    2     read    57
## 170   98      1    4   1      1    3     read    57
## 171  119      1    4   1      1    1     read    42
## 172   13      1    1   2      1    3     read    47
## 173   51      1    3   3      1    1     read    42
## 174   26      1    2   3      1    2     read    60
## 175   36      1    3   1      1    1     read    44
## 176  135      1    4   1      1    2     read    63
## 177   59      1    4   2      1    2     read    65
## 178   78      1    4   2      1    2     read    39
## 179   64      1    4   3      1    3     read    50
## 180   63      1    4   1      1    1     read    52
## 181   79      1    4   2      1    2     read    60
## 182  193      1    4   2      2    2     read    44
## 183   92      1    4   3      1    1     read    52
## 184  160      1    4   2      1    2     read    55
## 185   32      1    2   3      1    3     read    50
## 186   23      1    2   1      1    2     read    65
## 187  158      1    4   2      1    1     read    52
## 188   25      1    2   2      1    1     read    47
## 189  188      1    4   3      2    2     read    63
## 190   52      1    3   1      1    2     read    50
## 191  124      1    4   1      1    3     read    42
## 192  175      1    4   3      2    1     read    36
## 193  184      1    4   2      2    3     read    50
## 194   30      1    2   3      1    2     read    41
## 195  179      1    4   2      2    2     read    47
## 196   31      1    2   2      2    1     read    55
## 197  145      1    4   2      1    3     read    42
## 198  187      1    4   2      2    1     read    57
## 199  118      1    4   2      1    1     read    55
## 200  137      1    4   3      1    2     read    63
## 201   70      0    4   1      1    1    write    52
## 202  121      1    4   2      1    3    write    59
## 203   86      0    4   3      1    1    write    33
## 204  141      0    4   3      1    3    write    44
## 205  172      0    4   2      1    2    write    52
## 206  113      0    4   2      1    2    write    52
## 207   50      0    3   2      1    1    write    59
## 208   11      0    1   2      1    2    write    46
## 209   84      0    4   2      1    1    write    57
## 210   48      0    3   2      1    2    write    55
## 211   75      0    4   2      1    3    write    46
## 212   60      0    4   2      1    2    write    65
## 213   95      0    4   3      1    2    write    60
## 214  104      0    4   3      1    2    write    63
## 215   38      0    3   1      1    2    write    57
## 216  115      0    4   1      1    1    write    49
## 217   76      0    4   3      1    2    write    52
## 218  195      0    4   2      2    1    write    57
## 219  114      0    4   3      1    2    write    65
## 220   85      0    4   2      1    1    write    39
## 221  167      0    4   2      1    1    write    49
## 222  143      0    4   2      1    3    write    63
## 223   41      0    3   2      1    2    write    40
## 224   20      0    1   3      1    2    write    52
## 225   12      0    1   2      1    3    write    44
## 226   53      0    3   2      1    3    write    37
## 227  154      0    4   3      1    2    write    65
## 228  178      0    4   2      2    3    write    57
## 229  196      0    4   3      2    2    write    38
## 230   29      0    2   1      1    1    write    44
## 231  126      0    4   2      1    1    write    31
## 232  103      0    4   3      1    2    write    52
## 233  192      0    4   3      2    2    write    67
## 234  150      0    4   2      1    3    write    41
## 235  199      0    4   3      2    2    write    59
## 236  144      0    4   3      1    1    write    65
## 237  200      0    4   2      2    2    write    54
## 238   80      0    4   3      1    2    write    62
## 239   16      0    1   1      1    3    write    31
## 240  153      0    4   2      1    3    write    31
## 241  176      0    4   2      2    2    write    47
## 242  177      0    4   2      2    2    write    59
## 243  168      0    4   2      1    2    write    54
## 244   40      0    3   1      1    1    write    41
## 245   62      0    4   3      1    1    write    65
## 246  169      0    4   1      1    1    write    59
## 247   49      0    3   3      1    3    write    40
## 248  136      0    4   2      1    2    write    59
## 249  189      0    4   2      2    2    write    59
## 250    7      0    1   2      1    2    write    54
## 251   27      0    2   2      1    2    write    61
## 252  128      0    4   3      1    2    write    33
## 253   21      0    1   2      1    1    write    44
## 254  183      0    4   2      2    2    write    59
## 255  132      0    4   2      1    2    write    62
## 256   15      0    1   3      1    3    write    39
## 257   67      0    4   1      1    3    write    37
## 258   22      0    1   2      1    3    write    39
## 259  185      0    4   2      2    2    write    57
## 260    9      0    1   2      1    3    write    49
## 261  181      0    4   2      2    2    write    46
## 262  170      0    4   3      1    2    write    62
## 263  134      0    4   1      1    1    write    44
## 264  108      0    4   2      1    1    write    33
## 265  197      0    4   3      2    2    write    42
## 266  140      0    4   2      1    3    write    41
## 267  171      0    4   2      1    2    write    54
## 268  107      0    4   1      1    3    write    39
## 269   81      0    4   1      1    2    write    43
## 270   18      0    1   2      1    3    write    33
## 271  155      0    4   2      1    1    write    44
## 272   97      0    4   3      1    2    write    54
## 273   68      0    4   2      1    2    write    67
## 274  157      0    4   2      1    1    write    59
## 275   56      0    4   2      1    3    write    45
## 276    5      0    1   1      1    2    write    40
## 277  159      0    4   3      1    2    write    61
## 278  123      0    4   3      1    1    write    59
## 279  164      0    4   2      1    3    write    36
## 280   14      0    1   3      1    2    write    41
## 281  127      0    4   3      1    2    write    59
## 282  165      0    4   1      1    3    write    49
## 283  174      0    4   2      2    2    write    59
## 284    3      0    1   1      1    2    write    65
## 285   58      0    4   2      1    3    write    41
## 286  146      0    4   3      1    2    write    62
## 287  102      0    4   3      1    2    write    41
## 288  117      0    4   3      1    3    write    49
## 289  133      0    4   2      1    3    write    31
## 290   94      0    4   3      1    2    write    49
## 291   24      0    2   2      1    2    write    62
## 292  149      0    4   1      1    1    write    49
## 293   82      1    4   3      1    2    write    62
## 294    8      1    1   1      1    2    write    44
## 295  129      1    4   1      1    1    write    44
## 296  173      1    4   1      1    1    write    62
## 297   57      1    4   2      1    2    write    65
## 298  100      1    4   3      1    2    write    65
## 299    1      1    1   1      1    3    write    44
## 300  194      1    4   3      2    2    write    63
## 301   88      1    4   3      1    2    write    60
## 302   99      1    4   3      1    1    write    59
## 303   47      1    3   1      1    2    write    46
## 304  120      1    4   3      1    2    write    52
## 305  166      1    4   2      1    2    write    59
## 306   65      1    4   2      1    2    write    54
## 307  101      1    4   3      1    2    write    62
## 308   89      1    4   1      1    3    write    35
## 309   54      1    3   1      2    1    write    54
## 310  180      1    4   3      2    2    write    65
## 311  162      1    4   2      1    3    write    52
## 312    4      1    1   1      1    2    write    50
## 313  131      1    4   3      1    2    write    59
## 314  125      1    4   1      1    2    write    65
## 315   34      1    1   3      2    2    write    61
## 316  106      1    4   2      1    3    write    44
## 317  130      1    4   3      1    1    write    54
## 318   93      1    4   3      1    2    write    67
## 319  163      1    4   1      1    2    write    57
## 320   37      1    3   1      1    3    write    47
## 321   35      1    1   1      2    1    write    54
## 322   87      1    4   2      1    1    write    52
## 323   73      1    4   2      1    2    write    52
## 324  151      1    4   2      1    3    write    46
## 325   44      1    3   1      1    3    write    62
## 326  152      1    4   3      1    2    write    57
## 327  105      1    4   2      1    2    write    41
## 328   28      1    2   2      1    1    write    53
## 329   91      1    4   3      1    3    write    49
## 330   45      1    3   1      1    3    write    35
## 331  116      1    4   2      1    2    write    59
## 332   33      1    2   1      1    2    write    65
## 333   66      1    4   2      1    3    write    62
## 334   72      1    4   2      1    3    write    54
## 335   77      1    4   1      1    2    write    59
## 336   61      1    4   3      1    2    write    63
## 337  190      1    4   2      2    2    write    59
## 338   42      1    3   2      1    3    write    52
## 339    2      1    1   2      1    3    write    41
## 340   55      1    3   2      2    2    write    49
## 341   19      1    1   1      1    1    write    46
## 342   90      1    4   3      1    2    write    54
## 343  142      1    4   2      1    3    write    42
## 344   17      1    1   2      1    2    write    57
## 345  122      1    4   2      1    2    write    59
## 346  191      1    4   3      2    2    write    52
## 347   83      1    4   2      1    3    write    62
## 348  182      1    4   2      2    2    write    52
## 349    6      1    1   1      1    2    write    41
## 350   46      1    3   1      1    2    write    55
## 351   43      1    3   1      1    2    write    37
## 352   96      1    4   3      1    2    write    54
## 353  138      1    4   2      1    3    write    57
## 354   10      1    1   2      1    1    write    54
## 355   71      1    4   2      1    1    write    62
## 356  139      1    4   2      1    2    write    59
## 357  110      1    4   2      1    3    write    55
## 358  148      1    4   2      1    3    write    57
## 359  109      1    4   2      1    1    write    39
## 360   39      1    3   3      1    2    write    67
## 361  147      1    4   1      1    2    write    62
## 362   74      1    4   2      1    2    write    50
## 363  198      1    4   3      2    2    write    61
## 364  161      1    4   1      1    2    write    62
## 365  112      1    4   2      1    2    write    59
## 366   69      1    4   1      1    3    write    44
## 367  156      1    4   2      1    2    write    59
## 368  111      1    4   1      1    1    write    54
## 369  186      1    4   2      2    2    write    62
## 370   98      1    4   1      1    3    write    60
## 371  119      1    4   1      1    1    write    57
## 372   13      1    1   2      1    3    write    46
## 373   51      1    3   3      1    1    write    36
## 374   26      1    2   3      1    2    write    59
## 375   36      1    3   1      1    1    write    49
## 376  135      1    4   1      1    2    write    60
## 377   59      1    4   2      1    2    write    67
## 378   78      1    4   2      1    2    write    54
## 379   64      1    4   3      1    3    write    52
## 380   63      1    4   1      1    1    write    65
## 381   79      1    4   2      1    2    write    62
## 382  193      1    4   2      2    2    write    49
## 383   92      1    4   3      1    1    write    67
## 384  160      1    4   2      1    2    write    65
## 385   32      1    2   3      1    3    write    67
## 386   23      1    2   1      1    2    write    65
## 387  158      1    4   2      1    1    write    54
## 388   25      1    2   2      1    1    write    44
## 389  188      1    4   3      2    2    write    62
## 390   52      1    3   1      1    2    write    46
## 391  124      1    4   1      1    3    write    54
## 392  175      1    4   3      2    1    write    57
## 393  184      1    4   2      2    3    write    52
## 394   30      1    2   3      1    2    write    59
## 395  179      1    4   2      2    2    write    65
## 396   31      1    2   2      2    1    write    59
## 397  145      1    4   2      1    3    write    46
## 398  187      1    4   2      2    1    write    41
## 399  118      1    4   2      1    1    write    62
## 400  137      1    4   3      1    2    write    65
## 401   70      0    4   1      1    1     math    41
## 402  121      1    4   2      1    3     math    53
## 403   86      0    4   3      1    1     math    54
## 404  141      0    4   3      1    3     math    47
## 405  172      0    4   2      1    2     math    57
## 406  113      0    4   2      1    2     math    51
## 407   50      0    3   2      1    1     math    42
## 408   11      0    1   2      1    2     math    45
## 409   84      0    4   2      1    1     math    54
## 410   48      0    3   2      1    2     math    52
## 411   75      0    4   2      1    3     math    51
## 412   60      0    4   2      1    2     math    51
## 413   95      0    4   3      1    2     math    71
## 414  104      0    4   3      1    2     math    57
## 415   38      0    3   1      1    2     math    50
## 416  115      0    4   1      1    1     math    43
## 417   76      0    4   3      1    2     math    51
## 418  195      0    4   2      2    1     math    60
## 419  114      0    4   3      1    2     math    62
## 420   85      0    4   2      1    1     math    57
## 421  167      0    4   2      1    1     math    35
## 422  143      0    4   2      1    3     math    75
## 423   41      0    3   2      1    2     math    45
## 424   20      0    1   3      1    2     math    57
## 425   12      0    1   2      1    3     math    45
## 426   53      0    3   2      1    3     math    46
## 427  154      0    4   3      1    2     math    66
## 428  178      0    4   2      2    3     math    57
## 429  196      0    4   3      2    2     math    49
## 430   29      0    2   1      1    1     math    49
## 431  126      0    4   2      1    1     math    57
## 432  103      0    4   3      1    2     math    64
## 433  192      0    4   3      2    2     math    63
## 434  150      0    4   2      1    3     math    57
## 435  199      0    4   3      2    2     math    50
## 436  144      0    4   3      1    1     math    58
## 437  200      0    4   2      2    2     math    75
## 438   80      0    4   3      1    2     math    68
## 439   16      0    1   1      1    3     math    44
## 440  153      0    4   2      1    3     math    40
## 441  176      0    4   2      2    2     math    41
## 442  177      0    4   2      2    2     math    62
## 443  168      0    4   2      1    2     math    57
## 444   40      0    3   1      1    1     math    43
## 445   62      0    4   3      1    1     math    48
## 446  169      0    4   1      1    1     math    63
## 447   49      0    3   3      1    3     math    39
## 448  136      0    4   2      1    2     math    70
## 449  189      0    4   2      2    2     math    63
## 450    7      0    1   2      1    2     math    59
## 451   27      0    2   2      1    2     math    61
## 452  128      0    4   3      1    2     math    38
## 453   21      0    1   2      1    1     math    61
## 454  183      0    4   2      2    2     math    49
## 455  132      0    4   2      1    2     math    73
## 456   15      0    1   3      1    3     math    44
## 457   67      0    4   1      1    3     math    42
## 458   22      0    1   2      1    3     math    39
## 459  185      0    4   2      2    2     math    55
## 460    9      0    1   2      1    3     math    52
## 461  181      0    4   2      2    2     math    45
## 462  170      0    4   3      1    2     math    61
## 463  134      0    4   1      1    1     math    39
## 464  108      0    4   2      1    1     math    41
## 465  197      0    4   3      2    2     math    50
## 466  140      0    4   2      1    3     math    40
## 467  171      0    4   2      1    2     math    60
## 468  107      0    4   1      1    3     math    47
## 469   81      0    4   1      1    2     math    59
## 470   18      0    1   2      1    3     math    49
## 471  155      0    4   2      1    1     math    46
## 472   97      0    4   3      1    2     math    58
## 473   68      0    4   2      1    2     math    71
## 474  157      0    4   2      1    1     math    58
## 475   56      0    4   2      1    3     math    46
## 476    5      0    1   1      1    2     math    43
## 477  159      0    4   3      1    2     math    54
## 478  123      0    4   3      1    1     math    56
## 479  164      0    4   2      1    3     math    46
## 480   14      0    1   3      1    2     math    54
## 481  127      0    4   3      1    2     math    57
## 482  165      0    4   1      1    3     math    54
## 483  174      0    4   2      2    2     math    71
## 484    3      0    1   1      1    2     math    48
## 485   58      0    4   2      1    3     math    40
## 486  146      0    4   3      1    2     math    64
## 487  102      0    4   3      1    2     math    51
## 488  117      0    4   3      1    3     math    39
## 489  133      0    4   2      1    3     math    40
## 490   94      0    4   3      1    2     math    61
## 491   24      0    2   2      1    2     math    66
## 492  149      0    4   1      1    1     math    49
## 493   82      1    4   3      1    2     math    65
## 494    8      1    1   1      1    2     math    52
## 495  129      1    4   1      1    1     math    46
## 496  173      1    4   1      1    1     math    61
## 497   57      1    4   2      1    2     math    72
## 498  100      1    4   3      1    2     math    71
## 499    1      1    1   1      1    3     math    40
## 500  194      1    4   3      2    2     math    69
## 501   88      1    4   3      1    2     math    64
## 502   99      1    4   3      1    1     math    56
## 503   47      1    3   1      1    2     math    49
## 504  120      1    4   3      1    2     math    54
## 505  166      1    4   2      1    2     math    53
## 506   65      1    4   2      1    2     math    66
## 507  101      1    4   3      1    2     math    67
## 508   89      1    4   1      1    3     math    40
## 509   54      1    3   1      2    1     math    46
## 510  180      1    4   3      2    2     math    69
## 511  162      1    4   2      1    3     math    40
## 512    4      1    1   1      1    2     math    41
## 513  131      1    4   3      1    2     math    57
## 514  125      1    4   1      1    2     math    58
## 515   34      1    1   3      2    2     math    57
## 516  106      1    4   2      1    3     math    37
## 517  130      1    4   3      1    1     math    55
## 518   93      1    4   3      1    2     math    62
## 519  163      1    4   1      1    2     math    64
## 520   37      1    3   1      1    3     math    40
## 521   35      1    1   1      2    1     math    50
## 522   87      1    4   2      1    1     math    46
## 523   73      1    4   2      1    2     math    53
## 524  151      1    4   2      1    3     math    52
## 525   44      1    3   1      1    3     math    45
## 526  152      1    4   3      1    2     math    56
## 527  105      1    4   2      1    2     math    45
## 528   28      1    2   2      1    1     math    54
## 529   91      1    4   3      1    3     math    56
## 530   45      1    3   1      1    3     math    41
## 531  116      1    4   2      1    2     math    54
## 532   33      1    2   1      1    2     math    72
## 533   66      1    4   2      1    3     math    56
## 534   72      1    4   2      1    3     math    47
## 535   77      1    4   1      1    2     math    49
## 536   61      1    4   3      1    2     math    60
## 537  190      1    4   2      2    2     math    54
## 538   42      1    3   2      1    3     math    55
## 539    2      1    1   2      1    3     math    33
## 540   55      1    3   2      2    2     math    49
## 541   19      1    1   1      1    1     math    43
## 542   90      1    4   3      1    2     math    50
## 543  142      1    4   2      1    3     math    52
## 544   17      1    1   2      1    2     math    48
## 545  122      1    4   2      1    2     math    58
## 546  191      1    4   3      2    2     math    43
## 547   83      1    4   2      1    3     math    41
## 548  182      1    4   2      2    2     math    43
## 549    6      1    1   1      1    2     math    46
## 550   46      1    3   1      1    2     math    44
## 551   43      1    3   1      1    2     math    43
## 552   96      1    4   3      1    2     math    61
## 553  138      1    4   2      1    3     math    40
## 554   10      1    1   2      1    1     math    49
## 555   71      1    4   2      1    1     math    56
## 556  139      1    4   2      1    2     math    61
## 557  110      1    4   2      1    3     math    50
## 558  148      1    4   2      1    3     math    51
## 559  109      1    4   2      1    1     math    42
## 560   39      1    3   3      1    2     math    67
## 561  147      1    4   1      1    2     math    53
## 562   74      1    4   2      1    2     math    50
## 563  198      1    4   3      2    2     math    51
## 564  161      1    4   1      1    2     math    72
## 565  112      1    4   2      1    2     math    48
## 566   69      1    4   1      1    3     math    40
## 567  156      1    4   2      1    2     math    53
## 568  111      1    4   1      1    1     math    39
## 569  186      1    4   2      2    2     math    63
## 570   98      1    4   1      1    3     math    51
## 571  119      1    4   1      1    1     math    45
## 572   13      1    1   2      1    3     math    39
## 573   51      1    3   3      1    1     math    42
## 574   26      1    2   3      1    2     math    62
## 575   36      1    3   1      1    1     math    44
## 576  135      1    4   1      1    2     math    65
## 577   59      1    4   2      1    2     math    63
## 578   78      1    4   2      1    2     math    54
## 579   64      1    4   3      1    3     math    45
## 580   63      1    4   1      1    1     math    60
## 581   79      1    4   2      1    2     math    49
## 582  193      1    4   2      2    2     math    48
## 583   92      1    4   3      1    1     math    57
## 584  160      1    4   2      1    2     math    55
## 585   32      1    2   3      1    3     math    66
## 586   23      1    2   1      1    2     math    64
## 587  158      1    4   2      1    1     math    55
## 588   25      1    2   2      1    1     math    42
## 589  188      1    4   3      2    2     math    56
## 590   52      1    3   1      1    2     math    53
## 591  124      1    4   1      1    3     math    41
## 592  175      1    4   3      2    1     math    42
## 593  184      1    4   2      2    3     math    53
## 594   30      1    2   3      1    2     math    42
## 595  179      1    4   2      2    2     math    60
## 596   31      1    2   2      2    1     math    52
## 597  145      1    4   2      1    3     math    38
## 598  187      1    4   2      2    1     math    57
## 599  118      1    4   2      1    1     math    58
## 600  137      1    4   3      1    2     math    65
## 601   70      0    4   1      1    1  science    47
## 602  121      1    4   2      1    3  science    63
## 603   86      0    4   3      1    1  science    58
## 604  141      0    4   3      1    3  science    53
## 605  172      0    4   2      1    2  science    53
## 606  113      0    4   2      1    2  science    63
## 607   50      0    3   2      1    1  science    53
## 608   11      0    1   2      1    2  science    39
## 609   84      0    4   2      1    1  science    58
## 610   48      0    3   2      1    2  science    50
## 611   75      0    4   2      1    3  science    53
## 612   60      0    4   2      1    2  science    63
## 613   95      0    4   3      1    2  science    61
## 614  104      0    4   3      1    2  science    55
## 615   38      0    3   1      1    2  science    31
## 616  115      0    4   1      1    1  science    50
## 617   76      0    4   3      1    2  science    50
## 618  195      0    4   2      2    1  science    58
## 619  114      0    4   3      1    2  science    55
## 620   85      0    4   2      1    1  science    53
## 621  167      0    4   2      1    1  science    66
## 622  143      0    4   2      1    3  science    72
## 623   41      0    3   2      1    2  science    55
## 624   20      0    1   3      1    2  science    61
## 625   12      0    1   2      1    3  science    39
## 626   53      0    3   2      1    3  science    39
## 627  154      0    4   3      1    2  science    61
## 628  178      0    4   2      2    3  science    58
## 629  196      0    4   3      2    2  science    39
## 630   29      0    2   1      1    1  science    55
## 631  126      0    4   2      1    1  science    47
## 632  103      0    4   3      1    2  science    64
## 633  192      0    4   3      2    2  science    66
## 634  150      0    4   2      1    3  science    72
## 635  199      0    4   3      2    2  science    61
## 636  144      0    4   3      1    1  science    61
## 637  200      0    4   2      2    2  science    66
## 638   80      0    4   3      1    2  science    66
## 639   16      0    1   1      1    3  science    36
## 640  153      0    4   2      1    3  science    39
## 641  176      0    4   2      2    2  science    42
## 642  177      0    4   2      2    2  science    58
## 643  168      0    4   2      1    2  science    55
## 644   40      0    3   1      1    1  science    50
## 645   62      0    4   3      1    1  science    63
## 646  169      0    4   1      1    1  science    69
## 647   49      0    3   3      1    3  science    49
## 648  136      0    4   2      1    2  science    63
## 649  189      0    4   2      2    2  science    53
## 650    7      0    1   2      1    2  science    47
## 651   27      0    2   2      1    2  science    57
## 652  128      0    4   3      1    2  science    47
## 653   21      0    1   2      1    1  science    50
## 654  183      0    4   2      2    2  science    55
## 655  132      0    4   2      1    2  science    69
## 656   15      0    1   3      1    3  science    26
## 657   67      0    4   1      1    3  science    33
## 658   22      0    1   2      1    3  science    56
## 659  185      0    4   2      2    2  science    58
## 660    9      0    1   2      1    3  science    44
## 661  181      0    4   2      2    2  science    58
## 662  170      0    4   3      1    2  science    69
## 663  134      0    4   1      1    1  science    34
## 664  108      0    4   2      1    1  science    36
## 665  197      0    4   3      2    2  science    36
## 666  140      0    4   2      1    3  science    50
## 667  171      0    4   2      1    2  science    55
## 668  107      0    4   1      1    3  science    42
## 669   81      0    4   1      1    2  science    65
## 670   18      0    1   2      1    3  science    44
## 671  155      0    4   2      1    1  science    39
## 672   97      0    4   3      1    2  science    58
## 673   68      0    4   2      1    2  science    63
## 674  157      0    4   2      1    1  science    74
## 675   56      0    4   2      1    3  science    58
## 676    5      0    1   1      1    2  science    45
## 677  159      0    4   3      1    2  science    49
## 678  123      0    4   3      1    1  science    63
## 679  164      0    4   2      1    3  science    39
## 680   14      0    1   3      1    2  science    42
## 681  127      0    4   3      1    2  science    55
## 682  165      0    4   1      1    3  science    61
## 683  174      0    4   2      2    2  science    66
## 684    3      0    1   1      1    2  science    63
## 685   58      0    4   2      1    3  science    44
## 686  146      0    4   3      1    2  science    63
## 687  102      0    4   3      1    2  science    53
## 688  117      0    4   3      1    3  science    42
## 689  133      0    4   2      1    3  science    34
## 690   94      0    4   3      1    2  science    61
## 691   24      0    2   2      1    2  science    47
## 692  149      0    4   1      1    1  science    66
## 693   82      1    4   3      1    2  science    69
## 694    8      1    1   1      1    2  science    44
## 695  129      1    4   1      1    1  science    47
## 696  173      1    4   1      1    1  science    63
## 697   57      1    4   2      1    2  science    66
## 698  100      1    4   3      1    2  science    69
## 699    1      1    1   1      1    3  science    39
## 700  194      1    4   3      2    2  science    61
## 701   88      1    4   3      1    2  science    69
## 702   99      1    4   3      1    1  science    66
## 703   47      1    3   1      1    2  science    33
## 704  120      1    4   3      1    2  science    50
## 705  166      1    4   2      1    2  science    61
## 706   65      1    4   2      1    2  science    42
## 707  101      1    4   3      1    2  science    50
## 708   89      1    4   1      1    3  science    51
## 709   54      1    3   1      2    1  science    50
## 710  180      1    4   3      2    2  science    58
## 711  162      1    4   2      1    3  science    61
## 712    4      1    1   1      1    2  science    39
## 713  131      1    4   3      1    2  science    46
## 714  125      1    4   1      1    2  science    59
## 715   34      1    1   3      2    2  science    55
## 716  106      1    4   2      1    3  science    42
## 717  130      1    4   3      1    1  science    55
## 718   93      1    4   3      1    2  science    58
## 719  163      1    4   1      1    2  science    58
## 720   37      1    3   1      1    3  science    39
## 721   35      1    1   1      2    1  science    50
## 722   87      1    4   2      1    1  science    50
## 723   73      1    4   2      1    2  science    39
## 724  151      1    4   2      1    3  science    48
## 725   44      1    3   1      1    3  science    34
## 726  152      1    4   3      1    2  science    58
## 727  105      1    4   2      1    2  science    44
## 728   28      1    2   2      1    1  science    50
## 729   91      1    4   3      1    3  science    47
## 730   45      1    3   1      1    3  science    29
## 731  116      1    4   2      1    2  science    50
## 732   33      1    2   1      1    2  science    54
## 733   66      1    4   2      1    3  science    50
## 734   72      1    4   2      1    3  science    47
## 735   77      1    4   1      1    2  science    44
## 736   61      1    4   3      1    2  science    67
## 737  190      1    4   2      2    2  science    58
## 738   42      1    3   2      1    3  science    44
## 739    2      1    1   2      1    3  science    42
## 740   55      1    3   2      2    2  science    44
## 741   19      1    1   1      1    1  science    44
## 742   90      1    4   3      1    2  science    50
## 743  142      1    4   2      1    3  science    39
## 744   17      1    1   2      1    2  science    44
## 745  122      1    4   2      1    2  science    53
## 746  191      1    4   3      2    2  science    48
## 747   83      1    4   2      1    3  science    55
## 748  182      1    4   2      2    2  science    44
## 749    6      1    1   1      1    2  science    40
## 750   46      1    3   1      1    2  science    34
## 751   43      1    3   1      1    2  science    42
## 752   96      1    4   3      1    2  science    58
## 753  138      1    4   2      1    3  science    50
## 754   10      1    1   2      1    1  science    53
## 755   71      1    4   2      1    1  science    58
## 756  139      1    4   2      1    2  science    55
## 757  110      1    4   2      1    3  science    54
## 758  148      1    4   2      1    3  science    47
## 759  109      1    4   2      1    1  science    42
## 760   39      1    3   3      1    2  science    61
## 761  147      1    4   1      1    2  science    53
## 762   74      1    4   2      1    2  science    51
## 763  198      1    4   3      2    2  science    63
## 764  161      1    4   1      1    2  science    61
## 765  112      1    4   2      1    2  science    55
## 766   69      1    4   1      1    3  science    40
## 767  156      1    4   2      1    2  science    61
## 768  111      1    4   1      1    1  science    47
## 769  186      1    4   2      2    2  science    55
## 770   98      1    4   1      1    3  science    53
## 771  119      1    4   1      1    1  science    50
## 772   13      1    1   2      1    3  science    47
## 773   51      1    3   3      1    1  science    31
## 774   26      1    2   3      1    2  science    61
## 775   36      1    3   1      1    1  science    35
## 776  135      1    4   1      1    2  science    54
## 777   59      1    4   2      1    2  science    55
## 778   78      1    4   2      1    2  science    53
## 779   64      1    4   3      1    3  science    58
## 780   63      1    4   1      1    1  science    56
## 781   79      1    4   2      1    2  science    50
## 782  193      1    4   2      2    2  science    39
## 783   92      1    4   3      1    1  science    63
## 784  160      1    4   2      1    2  science    50
## 785   32      1    2   3      1    3  science    66
## 786   23      1    2   1      1    2  science    58
## 787  158      1    4   2      1    1  science    53
## 788   25      1    2   2      1    1  science    42
## 789  188      1    4   3      2    2  science    55
## 790   52      1    3   1      1    2  science    53
## 791  124      1    4   1      1    3  science    42
## 792  175      1    4   3      2    1  science    50
## 793  184      1    4   2      2    3  science    55
## 794   30      1    2   3      1    2  science    34
## 795  179      1    4   2      2    2  science    50
## 796   31      1    2   2      2    1  science    42
## 797  145      1    4   2      1    3  science    36
## 798  187      1    4   2      2    1  science    55
## 799  118      1    4   2      1    1  science    58
## 800  137      1    4   3      1    2  science    53
## 801   70      0    4   1      1    1    socst    57
## 802  121      1    4   2      1    3    socst    61
## 803   86      0    4   3      1    1    socst    31
## 804  141      0    4   3      1    3    socst    56
## 805  172      0    4   2      1    2    socst    61
## 806  113      0    4   2      1    2    socst    61
## 807   50      0    3   2      1    1    socst    61
## 808   11      0    1   2      1    2    socst    36
## 809   84      0    4   2      1    1    socst    51
## 810   48      0    3   2      1    2    socst    51
## 811   75      0    4   2      1    3    socst    61
## 812   60      0    4   2      1    2    socst    61
## 813   95      0    4   3      1    2    socst    71
## 814  104      0    4   3      1    2    socst    46
## 815   38      0    3   1      1    2    socst    56
## 816  115      0    4   1      1    1    socst    56
## 817   76      0    4   3      1    2    socst    56
## 818  195      0    4   2      2    1    socst    56
## 819  114      0    4   3      1    2    socst    61
## 820   85      0    4   2      1    1    socst    46
## 821  167      0    4   2      1    1    socst    41
## 822  143      0    4   2      1    3    socst    66
## 823   41      0    3   2      1    2    socst    56
## 824   20      0    1   3      1    2    socst    61
## 825   12      0    1   2      1    3    socst    46
## 826   53      0    3   2      1    3    socst    31
## 827  154      0    4   3      1    2    socst    66
## 828  178      0    4   2      2    3    socst    46
## 829  196      0    4   3      2    2    socst    46
## 830   29      0    2   1      1    1    socst    41
## 831  126      0    4   2      1    1    socst    51
## 832  103      0    4   3      1    2    socst    61
## 833  192      0    4   3      2    2    socst    71
## 834  150      0    4   2      1    3    socst    31
## 835  199      0    4   3      2    2    socst    61
## 836  144      0    4   3      1    1    socst    66
## 837  200      0    4   2      2    2    socst    66
## 838   80      0    4   3      1    2    socst    66
## 839   16      0    1   1      1    3    socst    36
## 840  153      0    4   2      1    3    socst    51
## 841  176      0    4   2      2    2    socst    51
## 842  177      0    4   2      2    2    socst    51
## 843  168      0    4   2      1    2    socst    51
## 844   40      0    3   1      1    1    socst    41
## 845   62      0    4   3      1    1    socst    66
## 846  169      0    4   1      1    1    socst    46
## 847   49      0    3   3      1    3    socst    47
## 848  136      0    4   2      1    2    socst    51
## 849  189      0    4   2      2    2    socst    46
## 850    7      0    1   2      1    2    socst    51
## 851   27      0    2   2      1    2    socst    56
## 852  128      0    4   3      1    2    socst    41
## 853   21      0    1   2      1    1    socst    46
## 854  183      0    4   2      2    2    socst    71
## 855  132      0    4   2      1    2    socst    66
## 856   15      0    1   3      1    3    socst    42
## 857   67      0    4   1      1    3    socst    32
## 858   22      0    1   2      1    3    socst    46
## 859  185      0    4   2      2    2    socst    41
## 860    9      0    1   2      1    3    socst    51
## 861  181      0    4   2      2    2    socst    61
## 862  170      0    4   3      1    2    socst    66
## 863  134      0    4   1      1    1    socst    46
## 864  108      0    4   2      1    1    socst    36
## 865  197      0    4   3      2    2    socst    61
## 866  140      0    4   2      1    3    socst    26
## 867  171      0    4   2      1    2    socst    66
## 868  107      0    4   1      1    3    socst    26
## 869   81      0    4   1      1    2    socst    44
## 870   18      0    1   2      1    3    socst    36
## 871  155      0    4   2      1    1    socst    51
## 872   97      0    4   3      1    2    socst    61
## 873   68      0    4   2      1    2    socst    66
## 874  157      0    4   2      1    1    socst    66
## 875   56      0    4   2      1    3    socst    51
## 876    5      0    1   1      1    2    socst    31
## 877  159      0    4   3      1    2    socst    61
## 878  123      0    4   3      1    1    socst    66
## 879  164      0    4   2      1    3    socst    46
## 880   14      0    1   3      1    2    socst    56
## 881  127      0    4   3      1    2    socst    56
## 882  165      0    4   1      1    3    socst    36
## 883  174      0    4   2      2    2    socst    56
## 884    3      0    1   1      1    2    socst    56
## 885   58      0    4   2      1    3    socst    41
## 886  146      0    4   3      1    2    socst    66
## 887  102      0    4   3      1    2    socst    56
## 888  117      0    4   3      1    3    socst    56
## 889  133      0    4   2      1    3    socst    31
## 890   94      0    4   3      1    2    socst    56
## 891   24      0    2   2      1    2    socst    46
## 892  149      0    4   1      1    1    socst    46
## 893   82      1    4   3      1    2    socst    61
## 894    8      1    1   1      1    2    socst    48
## 895  129      1    4   1      1    1    socst    51
## 896  173      1    4   1      1    1    socst    51
## 897   57      1    4   2      1    2    socst    56
## 898  100      1    4   3      1    2    socst    71
## 899    1      1    1   1      1    3    socst    41
## 900  194      1    4   3      2    2    socst    61
## 901   88      1    4   3      1    2    socst    66
## 902   99      1    4   3      1    1    socst    61
## 903   47      1    3   1      1    2    socst    41
## 904  120      1    4   3      1    2    socst    51
## 905  166      1    4   2      1    2    socst    51
## 906   65      1    4   2      1    2    socst    56
## 907  101      1    4   3      1    2    socst    56
## 908   89      1    4   1      1    3    socst    33
## 909   54      1    3   1      2    1    socst    56
## 910  180      1    4   3      2    2    socst    71
## 911  162      1    4   2      1    3    socst    56
## 912    4      1    1   1      1    2    socst    51
## 913  131      1    4   3      1    2    socst    66
## 914  125      1    4   1      1    2    socst    56
## 915   34      1    1   3      2    2    socst    66
## 916  106      1    4   2      1    3    socst    41
## 917  130      1    4   3      1    1    socst    46
## 918   93      1    4   3      1    2    socst    66
## 919  163      1    4   1      1    2    socst    56
## 920   37      1    3   1      1    3    socst    51
## 921   35      1    1   1      2    1    socst    51
## 922   87      1    4   2      1    1    socst    56
## 923   73      1    4   2      1    2    socst    56
## 924  151      1    4   2      1    3    socst    46
## 925   44      1    3   1      1    3    socst    46
## 926  152      1    4   3      1    2    socst    61
## 927  105      1    4   2      1    2    socst    56
## 928   28      1    2   2      1    1    socst    41
## 929   91      1    4   3      1    3    socst    46
## 930   45      1    3   1      1    3    socst    26
## 931  116      1    4   2      1    2    socst    56
## 932   33      1    2   1      1    2    socst    56
## 933   66      1    4   2      1    3    socst    51
## 934   72      1    4   2      1    3    socst    46
## 935   77      1    4   1      1    2    socst    66
## 936   61      1    4   3      1    2    socst    66
## 937  190      1    4   2      2    2    socst    46
## 938   42      1    3   2      1    3    socst    56
## 939    2      1    1   2      1    3    socst    41
## 940   55      1    3   2      2    2    socst    61
## 941   19      1    1   1      1    1    socst    51
## 942   90      1    4   3      1    2    socst    52
## 943  142      1    4   2      1    3    socst    51
## 944   17      1    1   2      1    2    socst    41
## 945  122      1    4   2      1    2    socst    66
## 946  191      1    4   3      2    2    socst    61
## 947   83      1    4   2      1    3    socst    31
## 948  182      1    4   2      2    2    socst    51
## 949    6      1    1   1      1    2    socst    41
## 950   46      1    3   1      1    2    socst    41
## 951   43      1    3   1      1    2    socst    46
## 952   96      1    4   3      1    2    socst    56
## 953  138      1    4   2      1    3    socst    51
## 954   10      1    1   2      1    1    socst    61
## 955   71      1    4   2      1    1    socst    66
## 956  139      1    4   2      1    2    socst    71
## 957  110      1    4   2      1    3    socst    61
## 958  148      1    4   2      1    3    socst    61
## 959  109      1    4   2      1    1    socst    41
## 960   39      1    3   3      1    2    socst    66
## 961  147      1    4   1      1    2    socst    61
## 962   74      1    4   2      1    2    socst    58
## 963  198      1    4   3      2    2    socst    31
## 964  161      1    4   1      1    2    socst    61
## 965  112      1    4   2      1    2    socst    61
## 966   69      1    4   1      1    3    socst    31
## 967  156      1    4   2      1    2    socst    61
## 968  111      1    4   1      1    1    socst    36
## 969  186      1    4   2      2    2    socst    41
## 970   98      1    4   1      1    3    socst    37
## 971  119      1    4   1      1    1    socst    43
## 972   13      1    1   2      1    3    socst    61
## 973   51      1    3   3      1    1    socst    39
## 974   26      1    2   3      1    2    socst    51
## 975   36      1    3   1      1    1    socst    51
## 976  135      1    4   1      1    2    socst    66
## 977   59      1    4   2      1    2    socst    71
## 978   78      1    4   2      1    2    socst    41
## 979   64      1    4   3      1    3    socst    36
## 980   63      1    4   1      1    1    socst    51
## 981   79      1    4   2      1    2    socst    51
## 982  193      1    4   2      2    2    socst    51
## 983   92      1    4   3      1    1    socst    61
## 984  160      1    4   2      1    2    socst    61
## 985   32      1    2   3      1    3    socst    56
## 986   23      1    2   1      1    2    socst    71
## 987  158      1    4   2      1    1    socst    51
## 988   25      1    2   2      1    1    socst    36
## 989  188      1    4   3      2    2    socst    61
## 990   52      1    3   1      1    2    socst    66
## 991  124      1    4   1      1    3    socst    41
## 992  175      1    4   3      2    1    socst    41
## 993  184      1    4   2      2    3    socst    56
## 994   30      1    2   3      1    2    socst    51
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
library(readr)
hsb2 <- read_csv("files/hsb2.csv")
## New names:
## Rows: 200 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (12): ...1, id, female, race, ses, schtyp, prog, read, write, math, scie...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
#Remark: Pay extra attention to the last 2 columns
head(hsb2_long)
##    id female race ses schtyp prog variable value
## 1  70      0    4   1      1    1     read    57
## 2 121      1    4   2      1    3     read    68
## 3  86      0    4   3      1    1     read    44
## 4 141      0    4   3      1    3     read    63
## 5 172      0    4   2      1    2     read    47
## 6 113      0    4   2      1    2     read    44
tail(hsb2_long)
##       id female race ses schtyp prog variable value
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
# get thefrequency
table(hsb2_long$variable)
## 
##    read   write    math science   socst 
##     200     200     200     200     200
# This means that the tables hsb2_long and hsb2_wide are the same
# tables displayed in two ways
# display data structure of the hsb2_long dataset
str(hsb2_long)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : num  0 1 0 0 0 0 0 0 0 0 ...
##  $ race    : num  4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : num  1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : num  1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
# the variables female, race, ses, schtyp, prog are stored as numbers
# for encoding purposes. However these variables are actually qualitative variables
# so we convert each from integer type to categorical type
# defining some variables to become factor variable
# we use another variable to preserve the file hsb2_long
data <- hsb2_long
data$ses = factor(data$ses, labels=c("low", "middle", "high"))
data$schtyp = factor(data$schtyp, labels=c("public", "private"))
data$prog = factor(data$prog, labels=c("general", "academic", "vocational"))
data$race = factor(data$race, labels=c("hispanic", "asian", "african-
amer","white"))
data$female = factor(data$female, labels=c("female", "male"))
# check data structure again. The former integer variables are now categorical variable
str(data)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : Factor w/ 2 levels "female","male": 1 2 1 1 1 1 1 1 1 1 ...
##  $ race    : Factor w/ 4 levels "hispanic","asian",..: 4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : Factor w/ 3 levels "low","middle",..: 1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : Factor w/ 3 levels "general","academic",..: 1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
# we compare student performance by using boxplots

library(gplots)
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
# compute the average value by group using tapply() command
means <- round(tapply(data$value, data$variable, mean), digits=2)
# create boxplot by group
boxplot(data$value ~ data$variable, main= "Student Performance by Subject
(brown dot = mean score)",
        xlab="Subject matter", ylab="Percentage Scores", col=rainbow(5))
# insert the average values
points(means, col="brown", pch=18)
# can also compute the median values
medians = round(tapply(data$value, data$variable, median), digits=2)
medians
##    read   write    math science   socst 
##      50      54      52      53      52
points(medians, col="red", pch=18)

# Lab Exercise 9: How to plot categorical variables
library(ggplot2)

# we load variable names to memory to avoid the dollar notation
attach(hsb2_long)
# create the plot object p
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~race)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

library(ggplot2)
attach(hsb2_long)
## The following objects are masked from hsb2_long (pos = 3):
## 
##     female, id, prog, race, schtyp, ses, value, variable
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~schtyp)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

# Lab Exercise 10: Scatter Plots with marginal Distributions
# Advance Scatter plots using libraries
# install.packages("ggExtra")
# install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ stringr   1.5.0
## ✔ forcats   1.0.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggExtra)
# set theme appearance of grid background
theme_set(theme_bw(1))
# create X and Y vector
(xAxis <- rnorm(1000)) # normal distribution with mean 0 and sd=1
##    [1]  1.587920e+00 -1.722684e-01  1.739227e-01 -9.073087e-01  1.092217e+00
##    [6] -2.492513e+00 -2.658749e-01 -1.983148e+00 -1.569309e-01 -1.529130e+00
##   [11] -7.915475e-01  7.357725e-01  2.035541e-01  6.193544e-01  5.212013e-01
##   [16] -4.698678e-01 -4.777037e-01 -1.006837e+00 -1.144046e-01 -5.595166e-01
##   [21] -1.326968e-01 -1.469577e-01  1.623082e-01 -4.025620e-01 -4.825773e-01
##   [26]  1.575530e+00  2.314619e-02  1.841717e+00  1.141920e+00  7.576980e-01
##   [31] -1.121785e-01  5.612200e-01  2.396383e+00 -5.824677e-01 -2.166031e+00
##   [36] -4.547742e-01  2.624247e+00 -8.974293e-01  1.197871e-01 -5.985503e-01
##   [41]  4.043213e-01  3.786685e-01  6.295023e-01  2.018307e+00  6.157220e-01
##   [46]  9.800435e-01  5.662733e-01  1.449137e+00  2.179945e-01  2.424981e-01
##   [51]  4.917759e-02 -6.647182e-01 -7.355422e-01 -5.115664e-01  3.099128e-01
##   [56]  2.965093e-01 -1.006876e+00  7.842893e-01 -6.445985e-01 -1.095109e-01
##   [61] -3.450017e-01  4.524661e-01 -2.148408e-01 -1.262717e+00 -4.017046e-01
##   [66] -1.322333e+00 -8.591730e-01 -3.602382e-01  7.131889e-02  1.157999e+00
##   [71] -4.894134e-01  1.736630e+00 -1.424746e-02 -1.053363e-01  6.175860e-01
##   [76] -1.609722e+00  2.405156e-01 -4.451738e-01 -4.250929e-01  6.646878e-01
##   [81]  1.238249e+00 -7.737099e-01  7.781273e-01  7.892664e-01  1.209510e+00
##   [86]  9.856757e-01  1.218858e+00  4.715056e-01  4.109596e-01 -8.660229e-01
##   [91] -4.768793e-01  1.579949e+00  4.744178e-01 -8.050216e-01 -8.215773e-01
##   [96] -1.324710e-01 -1.124988e+00  1.892529e-01  3.517427e-01 -1.151522e-01
##  [101]  2.393821e+00  7.954308e-01 -1.442011e-01  2.093998e+00 -1.237386e+00
##  [106]  8.019452e-02 -8.551382e-01  1.154670e+00  6.630603e-01  1.020724e+00
##  [111]  8.666457e-04 -1.551402e+00 -3.246046e-01  9.575904e-01 -5.042361e-01
##  [116] -3.381010e-01  1.738801e+00  7.979930e-01 -1.833400e+00 -5.311788e-01
##  [121] -3.850130e-01  8.476324e-02  4.959785e-01 -9.061115e-02  9.362350e-02
##  [126] -1.163593e+00 -2.406275e-02 -1.387455e+00 -1.004692e+00 -1.032002e+00
##  [131] -2.069973e-01  3.614803e-01  6.291514e-01  2.012165e-01  4.968673e-01
##  [136] -1.183342e-01  5.005629e-01 -1.205854e+00 -1.421657e-01 -2.034007e+00
##  [141]  4.231552e-01  2.294028e-01  8.328690e-01 -5.386442e-01 -7.319092e-01
##  [146] -6.466631e-01 -1.976410e-01 -8.517918e-01  5.554984e-02  6.043288e-01
##  [151] -8.353317e-01  4.876827e-01  1.309247e+00  8.990664e-02  7.229827e-01
##  [156] -2.076048e+00  6.287588e-02  5.656863e-01 -9.701690e-02  3.679533e-01
##  [161]  1.770489e+00  1.897416e-01  1.346829e+00 -4.708850e-01  7.339856e-01
##  [166] -2.737404e+00 -1.439972e+00  1.363184e+00  1.314152e+00  3.917118e-01
##  [171]  8.432119e-01  6.795898e-01 -1.388424e+00  1.933951e+00  6.189742e-01
##  [176] -1.063640e+00 -8.480410e-01 -7.392480e-01  6.982161e-01 -9.030033e-01
##  [181] -6.119994e-02 -1.567804e+00  4.692320e-01  3.727023e-01  1.153730e+00
##  [186]  1.351707e+00  1.825505e-01  5.648123e-01  2.252145e+00 -1.318443e+00
##  [191] -1.484874e+00 -3.132031e-01  3.917951e-01 -5.223503e-01 -1.308493e+00
##  [196]  1.923254e+00  2.082199e+00  2.500971e-01 -1.603403e+00 -4.203267e-01
##  [201]  7.512202e-02  1.459077e-01  5.361882e-01 -7.550430e-01  1.231330e+00
##  [206]  2.283683e-01  2.635353e-01 -6.494000e-01 -1.708576e-01  1.550781e-01
##  [211] -8.159940e-01 -1.888456e-01  3.672309e-01  3.036284e-01 -1.189241e-01
##  [216]  4.626075e-01 -2.751402e-03  2.713570e-01 -2.605269e-01 -2.221418e-01
##  [221]  4.457677e-01  1.696281e+00  3.752946e-01  7.353636e-01 -1.237369e+00
##  [226] -1.253690e+00  5.386757e-01 -1.311890e+00  1.456827e+00 -4.190606e-01
##  [231] -1.014613e+00  6.227033e-01 -3.857563e-01 -5.775524e-01 -4.829732e-01
##  [236] -1.424377e+00 -1.673106e+00  8.894994e-01  1.393524e+00  6.901717e-01
##  [241]  8.683768e-01  1.041279e+00 -5.090490e-01  1.502113e+00  1.020895e+00
##  [246]  8.157094e-01 -6.540571e-01  8.572644e-01  8.378394e-01  7.798819e-01
##  [251] -7.527332e-01  1.118876e+00  2.166046e+00  5.810223e-01  3.827395e-01
##  [256]  8.871889e-01 -4.156320e-01 -1.203535e+00  6.086916e-01  6.494979e-01
##  [261] -2.540508e-01  7.188356e-01  4.650806e-01 -9.542081e-01 -1.202039e+00
##  [266] -1.955842e+00  1.748330e+00 -9.600780e-01  1.309636e+00  2.063876e-01
##  [271]  4.872189e-01 -8.300234e-01 -4.302574e-01 -8.390864e-01 -2.043572e-01
##  [276] -7.685188e-01 -9.179052e-01 -4.296205e-01 -9.687062e-01 -2.101671e+00
##  [281] -1.113589e-01  1.295357e+00  1.236836e+00  1.928263e-01  3.136773e-01
##  [286] -2.571475e+00 -9.616608e-01  4.070666e-01  1.804002e-01  4.993185e-01
##  [291] -7.511410e-02  5.842219e-01 -1.070416e+00 -7.710947e-01  1.141717e+00
##  [296] -2.139739e+00  1.051565e+00 -6.826369e-02 -2.276987e+00 -6.067323e-01
##  [301] -7.855414e-01  3.806401e-01 -8.081830e-01  1.050269e+00  1.074957e-02
##  [306]  6.144769e-01  1.242727e+00 -1.004271e+00 -9.487057e-01 -1.208176e+00
##  [311] -1.171731e+00 -1.080440e+00 -1.043333e+00  1.163805e-01  1.665792e+00
##  [316]  1.447482e+00 -1.677617e+00  1.355175e+00  9.820998e-01  5.204716e-01
##  [321] -1.177960e+00  1.426903e+00  6.972220e-01 -1.261489e+00 -1.250603e+00
##  [326] -8.761825e-01 -3.653293e-01 -6.655556e-01 -3.725246e-01  7.780749e-02
##  [331] -6.962576e-01  1.023039e+00  2.385984e-01  5.206476e-01 -3.549041e-01
##  [336]  5.988435e-01  7.646724e-01  1.790202e+00  4.559988e-01 -2.214319e-01
##  [341]  1.199537e+00 -1.521541e+00  9.326165e-01  1.178065e+00  3.399747e-01
##  [346] -6.567897e-01  8.862869e-01 -7.641756e-01  9.170380e-02 -6.698229e-01
##  [351] -6.937477e-01 -2.021864e+00  1.358977e+00 -1.397386e+00  7.701506e-01
##  [356] -6.786974e-01  4.688485e-01 -9.018908e-01 -4.296670e-01  3.393110e-01
##  [361] -8.144784e-01  5.052416e-02 -2.584927e-01 -1.403037e+00  1.037124e+00
##  [366]  6.276008e-01  7.380609e-01 -1.355911e+00 -5.777747e-02 -3.114570e-01
##  [371]  4.366156e-01  2.822506e-01  4.153534e-01 -6.927618e-01  2.314731e-01
##  [376]  1.486319e-01 -1.104513e+00 -2.954959e-01  2.257242e-01 -7.397352e-01
##  [381] -2.014193e+00  1.300619e+00 -1.407738e+00  1.719300e+00  7.088482e-02
##  [386] -4.335020e-01 -1.340300e+00  1.612962e-01  5.954215e-01 -6.507162e-01
##  [391]  2.679015e-01  6.368845e-01  4.772100e-01 -3.123329e-01 -5.897703e-01
##  [396]  7.854413e-01  1.275706e+00  1.775983e-01  1.190427e+00 -1.006629e+00
##  [401] -2.253115e+00 -2.710180e-01  2.660507e-01 -1.166923e+00 -2.889998e-01
##  [406]  1.695463e-01 -4.329863e-01  9.721005e-01 -2.026829e-01 -1.019386e+00
##  [411]  1.460996e+00  5.016765e-01  4.164739e-01  5.261165e-01 -1.309019e+00
##  [416] -1.116773e-01 -4.393346e-01 -3.816180e-01 -3.287046e-01  1.190312e+00
##  [421]  7.069153e-01  2.255733e+00  1.347851e+00 -1.299155e+00 -5.640608e-01
##  [426] -2.044972e+00 -4.175260e-01 -2.526593e-01 -8.967489e-01  1.188883e+00
##  [431] -1.545875e-01 -1.783447e+00  2.041462e+00 -4.057847e-01 -1.053198e+00
##  [436] -1.107032e-01  5.425271e-01 -1.197815e+00 -2.004802e+00  1.842444e-01
##  [441]  1.348885e-01  2.526817e-01  1.166934e+00 -9.459504e-01  1.112717e+00
##  [446] -5.419582e-01 -4.414428e-01 -4.052473e-03 -1.068742e+00  6.532021e-01
##  [451]  2.238384e-01  1.154699e+00  1.433123e+00 -1.337020e+00  4.622788e-01
##  [456]  6.382277e-01 -3.613751e-01  9.853963e-01  6.911597e-01 -8.344802e-01
##  [461]  1.548869e-01 -1.095792e-01  4.735023e-01 -9.382432e-01 -1.819842e+00
##  [466] -7.404112e-01 -1.752297e+00  5.804744e-01 -1.208336e+00  3.063091e-01
##  [471] -1.062633e+00  2.971290e-01  7.552643e-01 -4.631582e-01  2.224515e-01
##  [476]  1.264256e+00 -1.494961e+00 -5.825505e-02 -1.327722e+00  1.282183e+00
##  [481] -4.025265e-01 -4.334305e-02 -2.809226e-01  3.194257e-01 -9.016231e-01
##  [486] -3.953599e-01 -1.244410e+00  2.744827e-01  1.320680e-02  9.763440e-01
##  [491]  1.235548e+00  4.661964e-02  2.943566e-01  4.265324e-02 -9.043202e-02
##  [496]  1.334373e+00  2.253190e-01  7.874351e-01  3.588021e-01 -1.804968e+00
##  [501]  3.023324e-01 -2.760986e-01  1.074364e+00 -3.902785e-01 -1.840134e+00
##  [506]  6.417341e-02 -6.321286e-02 -9.494583e-01  3.320812e-01  1.442835e+00
##  [511]  5.459025e-01 -9.408383e-01  1.427490e+00  7.991998e-02  8.448521e-01
##  [516] -1.770719e+00  2.400379e+00  1.017199e+00 -6.792368e-01  4.350424e-01
##  [521]  3.154344e-01  8.421561e-01  4.057257e-01  1.236673e+00 -2.149587e+00
##  [526] -1.963326e+00  7.581834e-01  5.606442e-01  2.837747e-01 -2.177778e+00
##  [531] -1.303607e+00 -1.546795e-01  2.401308e+00 -1.092800e-01  5.287177e-01
##  [536]  1.049573e+00 -6.758937e-01  1.405475e-02  7.318892e-01  1.349366e-01
##  [541] -8.714640e-01  6.232904e-01 -8.011786e-01  1.813640e+00  1.080708e+00
##  [546] -7.665278e-01  9.584773e-01 -2.133968e-01  9.513218e-01 -1.782608e-01
##  [551] -6.021844e-01  1.628400e+00  1.218155e-01  5.344282e-01  9.045496e-01
##  [556] -8.839628e-01 -2.557967e+00  2.227381e+00 -1.321629e+00 -1.088787e+00
##  [561] -1.565141e+00 -1.453535e+00  6.319854e-01 -7.809648e-01  1.522945e+00
##  [566]  9.029934e-02 -2.797284e-01  4.185699e-01 -1.585899e-01 -1.792403e-01
##  [571]  1.486680e+00 -2.686903e-01 -1.394359e+00 -7.698163e-01 -1.820830e+00
##  [576]  1.266016e-01  1.127257e+00 -9.182546e-01 -8.871931e-01  9.841554e-01
##  [581]  2.557485e-01 -2.326206e+00 -7.965680e-01  1.831275e-01  6.725072e-01
##  [586]  6.964315e-01  2.165534e-01 -6.206525e-01 -3.050678e-01  1.510169e+00
##  [591]  4.539191e-01 -1.017537e+00 -8.267657e-01  3.799883e-01  4.092645e-01
##  [596]  1.225345e+00  2.189696e+00 -1.189546e-01 -6.773289e-02  3.367233e-01
##  [601]  2.377913e-01  1.153212e-01 -2.399492e+00  7.925335e-02  2.405997e-02
##  [606] -1.802921e+00  1.339116e+00 -4.122206e-02  6.998854e-01  2.522495e-01
##  [611] -9.829355e-01 -1.299466e+00  5.569971e-01  2.670161e-02 -9.655104e-01
##  [616] -2.849972e+00 -3.988447e-01 -6.313206e-01  1.191732e-01 -9.634025e-02
##  [621] -9.873734e-01 -7.102051e-01 -1.390819e+00 -4.806562e-01 -1.631363e+00
##  [626] -5.792961e-01 -1.408615e+00  1.321824e-02 -2.289589e-01 -1.364367e+00
##  [631]  1.609274e+00 -6.719274e-02 -9.753534e-01 -1.027597e+00  1.165179e+00
##  [636] -1.792818e+00  3.158730e-02 -1.840595e+00 -2.442885e-01 -1.225801e-01
##  [641]  6.023907e-01  1.846469e-01  8.617494e-02  5.454921e-01 -5.047661e-01
##  [646]  8.603903e-01 -1.191987e+00  1.229764e+00  1.421339e-01 -5.928203e-01
##  [651]  3.598239e-01 -1.316635e+00 -7.101537e-01  9.490581e-01  3.643707e-01
##  [656]  5.789703e-01  1.894122e+00  8.475010e-01  8.068502e-01 -1.181573e-01
##  [661]  8.068468e-01 -1.460556e-01 -5.358690e-01 -4.469229e-01 -1.163796e+00
##  [666] -1.342720e+00  1.874075e+00  5.850382e-01  1.526727e-01 -3.501679e-01
##  [671] -2.542741e-01 -3.590981e-01 -5.481337e-01  6.353007e-01  1.313162e+00
##  [676] -1.612170e+00  1.678656e-01 -2.252613e-02 -5.774876e-01 -2.523652e-01
##  [681]  1.258481e+00  1.049350e+00  6.727288e-01 -4.412843e-01  3.881518e-01
##  [686] -1.076975e+00 -8.467576e-01 -1.439741e+00 -4.386674e-01 -6.845034e-02
##  [691]  1.247991e+00  4.389307e-01  1.744021e-02  8.671408e-01  1.067637e+00
##  [696] -1.961215e-01 -1.498702e+00 -4.412995e-05 -1.408235e-02 -1.125704e-01
##  [701]  5.147691e-01 -4.011832e-01  1.437481e+00  1.478325e-01 -1.992783e+00
##  [706]  3.664397e-01 -6.420429e-01  3.293169e-01  7.009921e-01 -6.206347e-01
##  [711] -1.724955e+00  1.966063e+00 -1.378130e+00 -2.096398e+00  8.709066e-01
##  [716] -3.347134e-01 -2.706323e+00 -7.757772e-01  6.849135e-01  7.488897e-01
##  [721]  9.017515e-01 -2.120076e+00 -6.219932e-01  1.080956e+00  1.550415e+00
##  [726]  1.083739e+00  2.932667e-01 -1.901664e+00  2.373534e+00 -9.291860e-01
##  [731]  2.171234e-01 -1.712410e-01  1.782172e+00 -2.207666e+00 -7.860882e-01
##  [736]  1.465355e+00 -2.624971e-01  6.733573e-02  5.697707e-02 -1.930726e-01
##  [741] -3.901339e-01 -7.745444e-01  7.834643e-01  3.731615e-01  9.211562e-01
##  [746]  5.089627e-01  9.950958e-02  1.227317e+00  2.197760e-01  6.293086e-01
##  [751]  1.422318e+00 -9.589117e-02 -9.656918e-02 -5.096619e-01  7.086683e-01
##  [756] -7.708509e-01  2.129448e+00  2.104802e-01  1.790848e+00 -5.181278e-01
##  [761] -1.720068e-01 -8.867273e-01 -9.183296e-01 -2.298048e-01  1.871784e-01
##  [766]  1.005625e-03 -1.222135e-01  6.470755e-01 -7.919465e-01  1.324825e+00
##  [771] -1.061270e-01  1.512414e-01 -6.931698e-01 -7.367563e-01 -4.336118e-01
##  [776] -1.385414e+00  4.811309e-01 -6.752681e-02  5.056360e-01 -8.011701e-02
##  [781]  6.497062e-02 -1.197788e+00  1.217554e+00 -1.008586e+00  1.179052e+00
##  [786]  4.970738e-01  1.049546e+00 -6.820005e-01  8.855230e-01 -7.892403e-03
##  [791]  4.232710e-02  1.309521e+00  1.725715e+00 -1.281865e-02  3.621396e-01
##  [796] -3.922082e-02  1.874299e+00 -1.260730e+00  3.609923e-01 -6.553099e-02
##  [801]  3.925885e-02 -7.834902e-01 -1.322833e+00  1.413263e+00 -7.180274e-02
##  [806]  8.343967e-02 -2.522373e+00 -4.592799e-02  3.324277e-01 -1.827789e-01
##  [811] -1.270345e+00 -5.467073e-02 -9.018603e-01  1.356938e+00 -3.265134e+00
##  [816] -7.474620e-01 -1.539634e+00  3.966849e-02  1.722299e+00 -3.324001e-01
##  [821]  3.103110e-01  1.159218e+00 -4.528714e-01 -1.286412e-01  1.128268e+00
##  [826]  3.261200e-01  5.235325e-01 -8.613885e-01  2.303658e+00  4.215063e-01
##  [831]  6.404882e-01  3.974760e-01  4.710888e-01 -1.350545e+00  5.297218e-01
##  [836] -3.038522e-01 -1.080807e+00 -5.563953e-02 -1.085609e-01  5.341072e-01
##  [841] -1.297302e+00 -1.702463e-01 -1.141634e+00 -5.331321e-01  2.756679e-01
##  [846]  8.440601e-01 -5.661866e-01 -1.307921e+00 -5.586357e-01  1.333560e+00
##  [851]  5.261104e-01  4.791047e-01 -3.548517e-01  1.249250e+00 -7.171962e-01
##  [856] -1.248341e+00  2.448731e+00 -9.274024e-01  2.235744e+00  7.128474e-01
##  [861] -1.413706e+00  1.605148e+00  1.427332e+00  3.914653e-01 -2.271177e-01
##  [866] -1.023709e+00  3.535959e-01 -1.174833e+00  1.517896e+00  7.629983e-01
##  [871] -2.510879e-01 -2.579189e-01 -1.917327e+00  3.310220e-01 -9.235488e-01
##  [876] -1.545510e-02 -2.275592e+00 -9.938606e-01  2.082797e-01 -6.429848e-01
##  [881]  2.964704e-01 -7.017275e-01  1.217546e+00 -1.363014e+00  1.287549e+00
##  [886] -3.590104e-01  1.420157e+00  6.103295e-01 -1.196685e+00  9.884190e-01
##  [891]  5.963686e-01 -6.004858e-01 -7.175605e-01  4.783243e-01  2.407407e+00
##  [896]  2.281850e-01  1.317716e+00 -4.068819e-01  3.327106e-01  1.365657e-01
##  [901]  1.660959e+00 -5.759613e-01  2.529256e-01 -2.364811e-01 -6.756963e-01
##  [906]  5.423077e-01  5.882883e-01  1.411416e+00 -1.194420e+00  1.129333e+00
##  [911]  9.025991e-02  1.358759e+00 -1.020273e-01 -3.893023e-01  1.936781e-01
##  [916]  4.086870e-01  4.477241e-01 -1.821216e+00  8.730719e-01  2.885244e-01
##  [921] -7.462940e-01  9.523097e-01 -2.876205e+00  1.118481e+00 -2.196460e+00
##  [926] -7.733950e-01 -6.300549e-01 -7.529747e-01  5.432819e-01  1.314132e-01
##  [931]  8.849305e-01  2.066789e-01 -1.006989e+00 -8.160521e-02  1.640901e+00
##  [936]  3.742038e-01  5.854166e-01  2.390587e-01 -2.295413e-01 -9.629658e-01
##  [941] -2.255773e-02 -5.195199e-01 -4.282264e-02  4.629206e-01 -7.719536e-01
##  [946] -1.170939e+00  2.049763e+00  1.540887e+00  5.195690e-01  4.967553e-01
##  [951]  2.396223e-01 -1.666823e+00 -2.187899e+00  1.547943e+00 -2.667950e-01
##  [956]  7.846768e-01 -2.749822e-01  3.202576e-02  3.284753e-01 -1.498395e-01
##  [961] -1.290523e+00 -5.647034e-01 -1.670944e+00 -8.933681e-01 -6.794873e-03
##  [966]  3.677879e-01 -6.329348e-01  1.592931e+00 -2.565216e+00  7.984405e-01
##  [971]  9.820522e-01  4.341561e-01  1.714618e+00  1.100938e+00  1.471831e+00
##  [976]  2.872211e-01 -9.200646e-02 -5.603371e-01 -1.205059e+00 -1.622053e+00
##  [981]  2.629682e-01 -5.287396e-01  1.253856e+00 -1.455286e-01 -2.377610e-01
##  [986]  1.124305e+00  9.514621e-01 -3.884070e-01 -5.958029e-01  1.229423e+00
##  [991] -4.575000e-02  2.154987e+00 -5.293851e-01  4.443761e-01 -6.529698e-02
##  [996]  1.374856e+00 -9.477124e-01 -4.901842e-01 -2.220450e-01 -6.790426e-01
yAxis <- rnorm(1000) + xAxis + 10
yAxis
##    [1] 12.858202 10.450053  7.973499  9.804130 11.705375  9.140396  8.684837
##    [8]  6.904541  9.447328  8.506702 10.468682  9.199943 10.865112  8.755689
##   [15] 10.620495 11.098420 10.449749  9.514995  8.612542  8.629453 10.132214
##   [22] 10.870784  9.555070  9.599892 10.702501 11.633033 11.157602 10.842463
##   [29] 11.881683  9.645046  8.255140 12.162382 12.073453 10.455491  8.541129
##   [36] 10.710455 12.643852  8.355286 10.596005  9.051496  8.803906  8.627566
##   [43]  9.443287 11.701000 11.904993  9.350054  8.706583 12.217386 11.122724
##   [50] 11.138865 10.640437  9.248904  9.701436 10.134808 10.984945  8.873166
##   [57] 12.415597 11.241851 10.041725  9.963063  9.955581 11.341549 11.343044
##   [64]  8.751038 10.298108  8.909491  8.502412 10.147688  7.893566 12.413980
##   [71]  9.268398 10.617186  9.871219 11.625209 10.200729  9.502388  9.696322
##   [78] 10.189461 10.207098  9.978578 10.767468  9.340189 10.687299 10.420433
##   [85] 12.020486 11.411679 12.245207 10.654938 11.533057 10.469342 10.117874
##   [92] 11.785222 10.723962  9.424680 10.887535  9.786850  9.351778 11.688869
##   [99] 11.028409  9.314565 13.401882  9.732396 10.128195 12.937801  8.268736
##  [106]  7.930497  7.240712  9.634912 11.473259 11.161942  9.233876  6.591847
##  [113] 10.028025 11.919780  6.038375  9.746041 12.427613 11.376710  7.914191
##  [120] 10.354814  9.667361  9.880528 10.591862  9.221200 10.755720  7.393746
##  [127]  9.889811  7.229342  8.307046 10.087323  9.043552 12.085320 11.020317
##  [134]  9.328496 11.961566  9.583389 10.981460  8.556313  9.718339  7.814994
##  [141]  9.127152  8.568466 11.204308  9.102156  9.876655  9.033366  9.245308
##  [148]  9.116725 11.910207 11.351994  8.431926  9.902107 10.904677 11.722683
##  [155] 10.755089 10.290501 10.100888 10.909645  9.264179 10.589112 12.269007
##  [162]  9.380865 10.611334  9.548785  9.207968  5.897152  7.862949 10.916942
##  [169] 11.077137  9.965263 10.603848 10.768878  9.426520 11.629979 11.615665
##  [176]  9.730581  9.166736  9.279551  9.774718  9.230228 11.911969  8.164626
##  [183]  9.699774  9.996645 12.289181  9.605297  9.494172  9.531329 12.198329
##  [190]  7.957018  9.075295  8.684309 12.126759  8.768028  7.315457  9.958315
##  [197] 12.176043 11.650941  9.546992  9.067951 11.234876  9.514655  9.835454
##  [204]  7.743964 11.071646 11.188005  9.358992  9.164330 11.631874 10.613095
##  [211]  9.700522  9.997647 10.689112  9.942406  9.075333 10.510947 11.972301
##  [218]  7.948874 11.208151  8.876299 10.824394 11.560989 13.097054 13.486209
##  [225] 10.857442  8.133475 13.852441  7.978906 12.385980  9.734912  8.800432
##  [232] 12.085913 10.580900  9.469683  9.373662  8.909205  8.684608 10.580798
##  [239]  9.423482 10.159570 11.323376 10.837768  8.867331  9.942828  9.688696
##  [246] 11.631777  9.721952 11.999982 11.392989 10.942976  9.470928 10.677681
##  [253] 12.306570 10.113021  9.115334 11.490635  9.891692  8.498328  9.844758
##  [260]  8.947376  9.592685 10.581147  9.223111  9.681138  8.134376  9.820114
##  [267] 11.826635  8.640563 11.404768 10.242990 11.879221  9.604775 10.772525
##  [274]  9.238371 10.360400  6.284950  6.893152 10.553055  9.647761  7.520120
##  [281]  9.556595 12.329999 11.490455 10.402318 11.422096  7.092446  9.080324
##  [288]  8.631418  9.646492 11.408877 10.477738 10.809337  8.226104 10.079772
##  [295] 12.949151  7.507392 10.983795  9.540336  9.009895  9.864485  7.417869
##  [302] 10.740889  9.308572  9.773703 11.434582  9.816908  9.940477 11.413812
##  [309]  9.467228  8.363340  7.962255  8.011566  9.034747  9.264340 13.279177
##  [316] 12.825380  8.740425 12.146229 11.648921 10.730196  8.739335 10.943186
##  [323] 10.064625  9.672414  7.978168  9.176113  9.425653  7.934142  8.688109
##  [330]  8.135524  8.840435 12.636475 11.160951 10.688278  9.268857 10.583222
##  [337] 10.338536 12.129916 11.928040 11.590747 10.054775  7.318926 10.937615
##  [344] 11.189277 11.848614  9.352623 12.321753  9.056826 10.803272  9.027816
##  [351]  8.980377  8.687783 10.549128  8.693660 10.368668  7.700297  9.739361
##  [358]  7.400834  9.257748 10.252715  9.833660  9.454472 11.801366  9.072245
##  [365]  9.182189 11.452374 10.727548  9.796922  9.875479 10.507273 11.134131
##  [372] 10.213844  9.931941  9.061758 11.282289 10.672451  7.735260  8.696164
##  [379] 10.191437 10.584235  7.284486 10.788928 10.542705 11.766552  9.542601
##  [386] 10.417421  9.483797 10.233731  9.344611  8.663897  8.446844 12.073200
##  [393] 10.668761 10.701693 10.044902  9.347365 11.279909 11.068526 10.584092
##  [400]  8.741879  8.797404 10.965583 10.701024  8.293406  9.218065 11.026014
##  [407] 10.706391 11.508981  9.910122  9.775579 11.103863  8.170613  9.714673
##  [414] 11.969255  7.822242 10.540815  8.063420  9.844739  9.084322 10.559020
##  [421] 11.167489 13.285966 11.598804  9.817684 10.951220  8.250175  9.407186
##  [428] 10.785726  9.923777 11.744880 10.723216  7.481911 12.592406 10.359029
##  [435] 10.838510 11.339755 11.510344  8.085862  8.659511 10.141665  9.989575
##  [442] 11.326565 10.783156  9.451459 13.184271  9.883683  8.470291 10.017013
##  [449]  9.487431 10.271854  9.655017 11.776970 11.161131  8.668228 11.414378
##  [456] 10.580480  8.885560  9.769623 10.081463  8.134739 11.653189 10.376632
##  [463]  8.806937  8.771698  8.082600  8.600086  8.369857 10.001842 10.726682
##  [470]  8.033985  9.343435 10.487011 11.475001 11.525434 11.391175 12.172212
##  [477] 10.274308  9.137781  6.078494 14.078051  8.975279  8.343538  9.354721
##  [484] 10.283261  7.965245  8.810825  8.885044  8.747697 11.151141  9.178326
##  [491] 11.860422  8.580027  8.357955  8.957275  9.531758 11.105655  9.931108
##  [498]  8.171034 10.378738  7.434567 10.803444 11.095122 10.826056 10.197245
##  [505]  7.657616  9.700526 10.388954  6.907859 13.026878 10.711151  9.636707
##  [512]  9.487991  9.822952 10.498332  9.868076  7.719956 12.371045  9.933829
##  [519]  9.012460 12.763864 10.016078 13.211016 10.226910  9.124894  7.935177
##  [526]  8.896317 10.624753 12.239066 10.153096  9.283131  8.462300  9.105876
##  [533] 12.331300  9.588258  9.788015 10.045627  8.397816 11.380330 10.029814
##  [540] 10.938033 10.553997  9.870539  8.792605 13.252664 12.382035  8.796898
##  [547] 10.849519  8.467375 10.714796 11.227371  9.595585  9.533914 11.062022
##  [554]  9.386233 12.581207 10.810762  7.188136 12.953817  8.574244  8.300827
##  [561]  8.707167  7.339783 13.244647  9.170302 10.730277  8.876456 10.717515
##  [568] 12.239513  8.508106  9.856236 11.405286  8.488080  9.470342  8.797175
##  [575]  7.204711 10.299493 11.030463  9.655800 10.860950 12.444790 11.253246
##  [582]  8.277880  8.817180  8.947783  9.917328 11.414059 11.976479  9.666041
##  [589] 10.984156 12.697825 10.673886 10.753395 10.912767 10.085458 11.148138
##  [596] 11.148181 12.369016 10.028256 10.511946 10.882988 11.437323  9.761198
##  [603]  7.654628 10.583660 10.418859 10.467120 10.632943  9.886885 10.611258
##  [610]  8.989468  9.907008  8.852660 10.169823  9.477050  8.228856  7.067630
##  [617]  9.169030  9.397053 12.296873 10.144626  8.990192 10.319144  7.193988
##  [624]  9.704787  7.990164  9.524352  9.293393  9.927994  9.923158  6.987689
##  [631]  9.954964 10.289173  9.894746  7.864069  9.984701  9.430769  9.930460
##  [638]  8.625004  7.927901  9.025538 10.129145  8.372316 11.022510  9.267801
##  [645] 10.101582 11.861589 10.029420 11.799093 10.688462  7.487452 10.401111
##  [652]  9.620537  8.961081 11.953499 11.324345  9.974565 13.168429 10.253012
##  [659] 11.711577  8.643224 11.238344 10.099403  8.778691  9.257141  7.975115
##  [666]  7.323719 11.971810 10.385331 10.070031  9.588081  9.792634  8.923643
##  [673] 10.115565 10.127809 11.553225  8.347676 10.236204 10.896992  8.973038
##  [680] 11.730299  9.193285 12.875374  9.927278  9.702941 11.007120  8.182762
##  [687]  8.237191  9.532508  9.629628 10.639203 11.282989  7.779327  9.841453
##  [694] 10.908446 10.288152  8.532280  9.800567 12.049866  9.177682  9.283223
##  [701] 10.133465  9.653212 10.508403  8.576544  7.290885  9.334689  8.856388
##  [708]  9.479334 11.900570  9.370373  7.944047 14.194136  9.152558  6.590012
##  [715] 10.326404  9.680541  8.622651 10.111123 11.204618 10.531965 13.423958
##  [722]  8.476359 10.515956 10.867089 11.664650 11.773994 11.636733 10.296259
##  [729] 12.056620  9.231008  9.506599 11.299672 12.943716  8.507641 11.062469
##  [736] 10.823858 10.385817 11.505285 11.617394  9.919874 10.846171  8.027122
##  [743] 10.084414 11.129140 12.080421 10.303104 10.250848 10.437238 11.592183
##  [750] 11.911966 10.382590  9.716509  9.720805  9.933256  9.489256  9.080723
##  [757] 11.553500  9.469332 12.117977  8.733452  7.388666  9.751798  8.406310
##  [764]  8.979235 10.400131 10.834120 11.949658  9.778500  9.599600  9.512204
##  [771]  8.760611 10.005995  9.205645  9.552940  9.163635  9.368585 10.579151
##  [778]  9.860382 10.968473 10.543131 10.598860  9.476668 11.552915  9.346468
##  [785] 10.487576  9.221862 11.379269  8.372821 10.561787  9.903619 10.707832
##  [792] 11.350889 11.090246 10.786376 11.048636 11.497259 11.288286  9.061557
##  [799]  8.967561 11.364306  9.827197  7.414492 10.308290 10.481870 10.259202
##  [806] 11.084093  7.017503 10.914135  9.614732 10.941418  8.454141  9.693754
##  [813]  9.462195 11.376554  7.268569  8.921821  7.574261  9.517249 11.235884
##  [820] 10.445435 11.014326 11.106054 10.457813  9.128757 10.775415  8.663882
##  [827] 11.673654 11.163195 12.256713 10.724789  9.851802  9.846061  9.992491
##  [834]  9.900028 10.682211  8.458173  9.528381 10.185105  7.657042  9.930346
##  [841]  9.190073  9.718608  8.410603  8.949800  9.292042 10.520880  9.609677
##  [848]  7.893512 10.119866 10.966762 11.201329 10.119363  9.197879 12.474925
##  [855] 10.511912  9.676029 11.209840  8.741813 13.047551 11.356995  7.943111
##  [862]  9.036008 11.231525  9.605832 10.510941  8.752998 10.626784  8.902926
##  [869] 12.681329  9.953176  9.524386 10.411043  7.899455 11.060155  9.607261
##  [876]  9.536025 10.016053  8.976997 10.373543  9.583726  9.644134 10.399501
##  [883] 11.069852  9.206039 12.332846  8.641618 13.322059 11.616505  9.826443
##  [890] 11.236897  9.611061  8.094135  8.968859  9.178086 13.090560  9.216666
##  [897] 12.339203  9.556505 10.796612  7.971692  9.448064  8.752859 11.118736
##  [904]  8.983777  7.820510 10.432668 11.359030 12.342615  9.636642 11.729757
##  [911]  9.757715 13.476826  8.600476  9.636584 12.889550 10.249955  8.849509
##  [918]  5.108820  9.906377  9.844527  9.230932 10.200697  8.321209 12.261194
##  [925]  6.731665  8.063948  7.795110  9.870286  9.795484 10.974811 10.298370
##  [932] 10.106334  8.840706 11.066609 10.312099 11.127701 11.904224 10.475510
##  [939]  8.434056  8.905210 10.894513  8.218543  9.278008  9.897465  9.472427
##  [946] 10.085902 12.924584 11.699472 10.817617 12.152696  9.564680  6.640854
##  [953]  8.028104 10.104044 10.176515 12.140814  8.195849  7.853641 11.098955
##  [960] 11.306532  8.454365 10.135233  9.045784  9.318619 10.854664 10.772542
##  [967]  8.848331 12.477270  7.726578 12.485904 12.171552 10.929178 12.251802
##  [974] 14.240875 10.419803  8.928807 10.431183  9.405601 10.179110  8.454998
##  [981] 11.408781  9.985489 11.914763  9.471801  9.762661  9.512483 11.745518
##  [988]  9.224966  8.135371 11.547913 11.293135 13.889097  7.345768 12.636716
##  [995]  9.296362 10.988637 10.474198 10.120656 11.016877  7.346064
# create groups for different values of X
(group <- rep(1,1000)) # a vector consisting of 1000 elements
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1
group[xAxis > -1.5] <- 2
group[xAxis > -.5] <- 3
group[xAxis > .5] <- 4
group[xAxis > 1.5] <- 5
group
##    [1] 5 3 3 2 4 1 3 1 3 1 2 4 3 4 4 3 3 2 3 2 3 3 3 3 3 5 3 5 4 4 3 4 5 2 1 3 5
##   [38] 2 3 2 3 3 4 5 4 4 4 4 3 3 3 2 2 2 3 3 2 4 2 3 3 3 3 2 3 2 2 3 3 4 3 5 3 3
##   [75] 4 1 3 3 3 4 4 2 4 4 4 4 4 3 3 2 3 5 3 2 2 3 2 3 3 3 5 4 3 5 2 3 2 4 4 4 3
##  [112] 1 3 4 2 3 5 4 1 2 3 3 3 3 3 2 3 2 2 2 3 3 4 3 3 3 4 2 3 1 3 3 4 2 2 2 3 2
##  [149] 3 4 2 3 4 3 4 1 3 4 3 3 5 3 4 3 4 1 2 4 4 3 4 4 2 5 4 2 2 2 4 2 3 1 3 3 4
##  [186] 4 3 4 5 2 2 3 3 2 2 5 5 3 1 3 3 3 4 2 4 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 5
##  [223] 3 4 2 2 4 2 4 3 2 4 3 2 3 2 1 4 4 4 4 4 2 5 4 4 2 4 4 4 2 4 5 4 3 4 3 2 4
##  [260] 4 3 4 3 2 2 1 5 2 4 3 3 2 3 2 3 2 2 3 2 1 3 4 4 3 3 1 2 3 3 3 3 4 2 2 4 1
##  [297] 4 3 1 2 2 3 2 4 3 4 4 2 2 2 2 2 2 3 5 4 1 4 4 4 2 4 4 2 2 2 3 2 3 3 2 4 3
##  [334] 4 3 4 4 5 3 3 4 1 4 4 3 2 4 2 3 2 2 1 4 2 4 2 3 2 3 3 2 3 3 2 4 4 4 2 3 3
##  [371] 3 3 3 2 3 3 2 3 3 2 1 4 2 5 3 3 2 3 4 2 3 4 3 3 2 4 4 3 4 2 1 3 3 2 3 3 3
##  [408] 4 3 2 4 4 3 4 2 3 3 3 3 4 4 5 4 2 2 1 3 3 2 4 3 1 5 3 2 3 4 2 1 3 3 3 4 2
##  [445] 4 2 3 3 2 4 3 4 4 2 3 4 3 4 4 2 3 3 3 2 1 2 1 4 2 3 2 3 4 3 3 4 2 3 2 4 3
##  [482] 3 3 3 2 3 2 3 3 4 4 3 3 3 3 4 3 4 3 1 3 3 4 3 1 3 3 2 3 4 4 2 4 3 4 1 5 4
##  [519] 2 3 3 4 3 4 1 1 4 4 3 1 2 3 5 3 4 4 2 3 4 3 2 4 2 5 4 2 4 3 4 3 2 5 3 4 4
##  [556] 2 1 5 2 2 1 2 4 2 5 3 3 3 3 3 4 3 2 2 1 3 4 2 2 4 3 1 2 3 4 4 3 2 3 5 3 2
##  [593] 2 3 3 4 5 3 3 3 3 3 1 3 3 1 4 3 4 3 2 2 4 3 2 1 3 2 3 3 2 2 2 3 1 2 2 3 3
##  [630] 2 5 3 2 2 4 1 3 1 3 3 4 3 3 4 2 4 2 4 3 2 3 2 2 4 3 4 5 4 4 3 4 3 2 3 2 2
##  [667] 5 4 3 3 3 3 2 4 4 1 3 3 2 3 4 4 4 3 3 2 2 2 3 3 4 3 3 4 4 3 2 3 3 3 4 3 4
##  [704] 3 1 3 2 3 4 2 1 5 2 1 4 3 1 2 4 4 4 1 2 4 5 4 3 1 5 2 3 3 5 1 2 4 3 3 3 3
##  [741] 3 2 4 3 4 4 3 4 3 4 4 3 3 2 4 2 5 3 5 2 3 2 2 3 3 3 3 4 2 4 3 3 2 2 3 2 3
##  [778] 3 4 3 3 2 4 2 4 3 4 2 4 3 3 4 5 3 3 3 5 2 3 3 3 2 2 4 3 3 1 3 3 3 2 3 2 4
##  [815] 1 2 1 3 5 3 3 4 3 3 4 3 4 2 5 3 4 3 3 2 4 3 2 3 3 4 2 3 2 2 3 4 2 2 2 4 4
##  [852] 3 3 4 2 2 5 2 5 4 2 5 4 3 3 2 3 2 5 4 3 3 1 3 2 3 1 2 3 2 3 2 4 2 4 3 4 4
##  [889] 2 4 4 2 2 3 5 3 4 3 3 3 5 2 3 3 2 4 4 4 2 4 3 4 3 3 3 3 3 1 4 3 2 4 1 4 1
##  [926] 2 2 2 4 3 4 3 2 3 5 3 4 3 3 2 3 2 3 3 2 2 5 5 4 3 3 1 1 5 3 4 3 3 3 3 2 2
##  [963] 1 2 3 3 2 5 1 4 4 3 5 4 4 3 3 2 2 1 3 2 4 3 3 4 4 3 2 4 3 5 2 3 3 4 2 3 3
## [1000] 2
# create sample dataframe by joining variables
sample_data <- data.frame(xAxis,yAxis,group)
sample_data
##              xAxis     yAxis group
## 1     1.587920e+00 12.858202     5
## 2    -1.722684e-01 10.450053     3
## 3     1.739227e-01  7.973499     3
## 4    -9.073087e-01  9.804130     2
## 5     1.092217e+00 11.705375     4
## 6    -2.492513e+00  9.140396     1
## 7    -2.658749e-01  8.684837     3
## 8    -1.983148e+00  6.904541     1
## 9    -1.569309e-01  9.447328     3
## 10   -1.529130e+00  8.506702     1
## 11   -7.915475e-01 10.468682     2
## 12    7.357725e-01  9.199943     4
## 13    2.035541e-01 10.865112     3
## 14    6.193544e-01  8.755689     4
## 15    5.212013e-01 10.620495     4
## 16   -4.698678e-01 11.098420     3
## 17   -4.777037e-01 10.449749     3
## 18   -1.006837e+00  9.514995     2
## 19   -1.144046e-01  8.612542     3
## 20   -5.595166e-01  8.629453     2
## 21   -1.326968e-01 10.132214     3
## 22   -1.469577e-01 10.870784     3
## 23    1.623082e-01  9.555070     3
## 24   -4.025620e-01  9.599892     3
## 25   -4.825773e-01 10.702501     3
## 26    1.575530e+00 11.633033     5
## 27    2.314619e-02 11.157602     3
## 28    1.841717e+00 10.842463     5
## 29    1.141920e+00 11.881683     4
## 30    7.576980e-01  9.645046     4
## 31   -1.121785e-01  8.255140     3
## 32    5.612200e-01 12.162382     4
## 33    2.396383e+00 12.073453     5
## 34   -5.824677e-01 10.455491     2
## 35   -2.166031e+00  8.541129     1
## 36   -4.547742e-01 10.710455     3
## 37    2.624247e+00 12.643852     5
## 38   -8.974293e-01  8.355286     2
## 39    1.197871e-01 10.596005     3
## 40   -5.985503e-01  9.051496     2
## 41    4.043213e-01  8.803906     3
## 42    3.786685e-01  8.627566     3
## 43    6.295023e-01  9.443287     4
## 44    2.018307e+00 11.701000     5
## 45    6.157220e-01 11.904993     4
## 46    9.800435e-01  9.350054     4
## 47    5.662733e-01  8.706583     4
## 48    1.449137e+00 12.217386     4
## 49    2.179945e-01 11.122724     3
## 50    2.424981e-01 11.138865     3
## 51    4.917759e-02 10.640437     3
## 52   -6.647182e-01  9.248904     2
## 53   -7.355422e-01  9.701436     2
## 54   -5.115664e-01 10.134808     2
## 55    3.099128e-01 10.984945     3
## 56    2.965093e-01  8.873166     3
## 57   -1.006876e+00 12.415597     2
## 58    7.842893e-01 11.241851     4
## 59   -6.445985e-01 10.041725     2
## 60   -1.095109e-01  9.963063     3
## 61   -3.450017e-01  9.955581     3
## 62    4.524661e-01 11.341549     3
## 63   -2.148408e-01 11.343044     3
## 64   -1.262717e+00  8.751038     2
## 65   -4.017046e-01 10.298108     3
## 66   -1.322333e+00  8.909491     2
## 67   -8.591730e-01  8.502412     2
## 68   -3.602382e-01 10.147688     3
## 69    7.131889e-02  7.893566     3
## 70    1.157999e+00 12.413980     4
## 71   -4.894134e-01  9.268398     3
## 72    1.736630e+00 10.617186     5
## 73   -1.424746e-02  9.871219     3
## 74   -1.053363e-01 11.625209     3
## 75    6.175860e-01 10.200729     4
## 76   -1.609722e+00  9.502388     1
## 77    2.405156e-01  9.696322     3
## 78   -4.451738e-01 10.189461     3
## 79   -4.250929e-01 10.207098     3
## 80    6.646878e-01  9.978578     4
## 81    1.238249e+00 10.767468     4
## 82   -7.737099e-01  9.340189     2
## 83    7.781273e-01 10.687299     4
## 84    7.892664e-01 10.420433     4
## 85    1.209510e+00 12.020486     4
## 86    9.856757e-01 11.411679     4
## 87    1.218858e+00 12.245207     4
## 88    4.715056e-01 10.654938     3
## 89    4.109596e-01 11.533057     3
## 90   -8.660229e-01 10.469342     2
## 91   -4.768793e-01 10.117874     3
## 92    1.579949e+00 11.785222     5
## 93    4.744178e-01 10.723962     3
## 94   -8.050216e-01  9.424680     2
## 95   -8.215773e-01 10.887535     2
## 96   -1.324710e-01  9.786850     3
## 97   -1.124988e+00  9.351778     2
## 98    1.892529e-01 11.688869     3
## 99    3.517427e-01 11.028409     3
## 100  -1.151522e-01  9.314565     3
## 101   2.393821e+00 13.401882     5
## 102   7.954308e-01  9.732396     4
## 103  -1.442011e-01 10.128195     3
## 104   2.093998e+00 12.937801     5
## 105  -1.237386e+00  8.268736     2
## 106   8.019452e-02  7.930497     3
## 107  -8.551382e-01  7.240712     2
## 108   1.154670e+00  9.634912     4
## 109   6.630603e-01 11.473259     4
## 110   1.020724e+00 11.161942     4
## 111   8.666457e-04  9.233876     3
## 112  -1.551402e+00  6.591847     1
## 113  -3.246046e-01 10.028025     3
## 114   9.575904e-01 11.919780     4
## 115  -5.042361e-01  6.038375     2
## 116  -3.381010e-01  9.746041     3
## 117   1.738801e+00 12.427613     5
## 118   7.979930e-01 11.376710     4
## 119  -1.833400e+00  7.914191     1
## 120  -5.311788e-01 10.354814     2
## 121  -3.850130e-01  9.667361     3
## 122   8.476324e-02  9.880528     3
## 123   4.959785e-01 10.591862     3
## 124  -9.061115e-02  9.221200     3
## 125   9.362350e-02 10.755720     3
## 126  -1.163593e+00  7.393746     2
## 127  -2.406275e-02  9.889811     3
## 128  -1.387455e+00  7.229342     2
## 129  -1.004692e+00  8.307046     2
## 130  -1.032002e+00 10.087323     2
## 131  -2.069973e-01  9.043552     3
## 132   3.614803e-01 12.085320     3
## 133   6.291514e-01 11.020317     4
## 134   2.012165e-01  9.328496     3
## 135   4.968673e-01 11.961566     3
## 136  -1.183342e-01  9.583389     3
## 137   5.005629e-01 10.981460     4
## 138  -1.205854e+00  8.556313     2
## 139  -1.421657e-01  9.718339     3
## 140  -2.034007e+00  7.814994     1
## 141   4.231552e-01  9.127152     3
## 142   2.294028e-01  8.568466     3
## 143   8.328690e-01 11.204308     4
## 144  -5.386442e-01  9.102156     2
## 145  -7.319092e-01  9.876655     2
## 146  -6.466631e-01  9.033366     2
## 147  -1.976410e-01  9.245308     3
## 148  -8.517918e-01  9.116725     2
## 149   5.554984e-02 11.910207     3
## 150   6.043288e-01 11.351994     4
## 151  -8.353317e-01  8.431926     2
## 152   4.876827e-01  9.902107     3
## 153   1.309247e+00 10.904677     4
## 154   8.990664e-02 11.722683     3
## 155   7.229827e-01 10.755089     4
## 156  -2.076048e+00 10.290501     1
## 157   6.287588e-02 10.100888     3
## 158   5.656863e-01 10.909645     4
## 159  -9.701690e-02  9.264179     3
## 160   3.679533e-01 10.589112     3
## 161   1.770489e+00 12.269007     5
## 162   1.897416e-01  9.380865     3
## 163   1.346829e+00 10.611334     4
## 164  -4.708850e-01  9.548785     3
## 165   7.339856e-01  9.207968     4
## 166  -2.737404e+00  5.897152     1
## 167  -1.439972e+00  7.862949     2
## 168   1.363184e+00 10.916942     4
## 169   1.314152e+00 11.077137     4
## 170   3.917118e-01  9.965263     3
## 171   8.432119e-01 10.603848     4
## 172   6.795898e-01 10.768878     4
## 173  -1.388424e+00  9.426520     2
## 174   1.933951e+00 11.629979     5
## 175   6.189742e-01 11.615665     4
## 176  -1.063640e+00  9.730581     2
## 177  -8.480410e-01  9.166736     2
## 178  -7.392480e-01  9.279551     2
## 179   6.982161e-01  9.774718     4
## 180  -9.030033e-01  9.230228     2
## 181  -6.119994e-02 11.911969     3
## 182  -1.567804e+00  8.164626     1
## 183   4.692320e-01  9.699774     3
## 184   3.727023e-01  9.996645     3
## 185   1.153730e+00 12.289181     4
## 186   1.351707e+00  9.605297     4
## 187   1.825505e-01  9.494172     3
## 188   5.648123e-01  9.531329     4
## 189   2.252145e+00 12.198329     5
## 190  -1.318443e+00  7.957018     2
## 191  -1.484874e+00  9.075295     2
## 192  -3.132031e-01  8.684309     3
## 193   3.917951e-01 12.126759     3
## 194  -5.223503e-01  8.768028     2
## 195  -1.308493e+00  7.315457     2
## 196   1.923254e+00  9.958315     5
## 197   2.082199e+00 12.176043     5
## 198   2.500971e-01 11.650941     3
## 199  -1.603403e+00  9.546992     1
## 200  -4.203267e-01  9.067951     3
## 201   7.512202e-02 11.234876     3
## 202   1.459077e-01  9.514655     3
## 203   5.361882e-01  9.835454     4
## 204  -7.550430e-01  7.743964     2
## 205   1.231330e+00 11.071646     4
## 206   2.283683e-01 11.188005     3
## 207   2.635353e-01  9.358992     3
## 208  -6.494000e-01  9.164330     2
## 209  -1.708576e-01 11.631874     3
## 210   1.550781e-01 10.613095     3
## 211  -8.159940e-01  9.700522     2
## 212  -1.888456e-01  9.997647     3
## 213   3.672309e-01 10.689112     3
## 214   3.036284e-01  9.942406     3
## 215  -1.189241e-01  9.075333     3
## 216   4.626075e-01 10.510947     3
## 217  -2.751402e-03 11.972301     3
## 218   2.713570e-01  7.948874     3
## 219  -2.605269e-01 11.208151     3
## 220  -2.221418e-01  8.876299     3
## 221   4.457677e-01 10.824394     3
## 222   1.696281e+00 11.560989     5
## 223   3.752946e-01 13.097054     3
## 224   7.353636e-01 13.486209     4
## 225  -1.237369e+00 10.857442     2
## 226  -1.253690e+00  8.133475     2
## 227   5.386757e-01 13.852441     4
## 228  -1.311890e+00  7.978906     2
## 229   1.456827e+00 12.385980     4
## 230  -4.190606e-01  9.734912     3
## 231  -1.014613e+00  8.800432     2
## 232   6.227033e-01 12.085913     4
## 233  -3.857563e-01 10.580900     3
## 234  -5.775524e-01  9.469683     2
## 235  -4.829732e-01  9.373662     3
## 236  -1.424377e+00  8.909205     2
## 237  -1.673106e+00  8.684608     1
## 238   8.894994e-01 10.580798     4
## 239   1.393524e+00  9.423482     4
## 240   6.901717e-01 10.159570     4
## 241   8.683768e-01 11.323376     4
## 242   1.041279e+00 10.837768     4
## 243  -5.090490e-01  8.867331     2
## 244   1.502113e+00  9.942828     5
## 245   1.020895e+00  9.688696     4
## 246   8.157094e-01 11.631777     4
## 247  -6.540571e-01  9.721952     2
## 248   8.572644e-01 11.999982     4
## 249   8.378394e-01 11.392989     4
## 250   7.798819e-01 10.942976     4
## 251  -7.527332e-01  9.470928     2
## 252   1.118876e+00 10.677681     4
## 253   2.166046e+00 12.306570     5
## 254   5.810223e-01 10.113021     4
## 255   3.827395e-01  9.115334     3
## 256   8.871889e-01 11.490635     4
## 257  -4.156320e-01  9.891692     3
## 258  -1.203535e+00  8.498328     2
## 259   6.086916e-01  9.844758     4
## 260   6.494979e-01  8.947376     4
## 261  -2.540508e-01  9.592685     3
## 262   7.188356e-01 10.581147     4
## 263   4.650806e-01  9.223111     3
## 264  -9.542081e-01  9.681138     2
## 265  -1.202039e+00  8.134376     2
## 266  -1.955842e+00  9.820114     1
## 267   1.748330e+00 11.826635     5
## 268  -9.600780e-01  8.640563     2
## 269   1.309636e+00 11.404768     4
## 270   2.063876e-01 10.242990     3
## 271   4.872189e-01 11.879221     3
## 272  -8.300234e-01  9.604775     2
## 273  -4.302574e-01 10.772525     3
## 274  -8.390864e-01  9.238371     2
## 275  -2.043572e-01 10.360400     3
## 276  -7.685188e-01  6.284950     2
## 277  -9.179052e-01  6.893152     2
## 278  -4.296205e-01 10.553055     3
## 279  -9.687062e-01  9.647761     2
## 280  -2.101671e+00  7.520120     1
## 281  -1.113589e-01  9.556595     3
## 282   1.295357e+00 12.329999     4
## 283   1.236836e+00 11.490455     4
## 284   1.928263e-01 10.402318     3
## 285   3.136773e-01 11.422096     3
## 286  -2.571475e+00  7.092446     1
## 287  -9.616608e-01  9.080324     2
## 288   4.070666e-01  8.631418     3
## 289   1.804002e-01  9.646492     3
## 290   4.993185e-01 11.408877     3
## 291  -7.511410e-02 10.477738     3
## 292   5.842219e-01 10.809337     4
## 293  -1.070416e+00  8.226104     2
## 294  -7.710947e-01 10.079772     2
## 295   1.141717e+00 12.949151     4
## 296  -2.139739e+00  7.507392     1
## 297   1.051565e+00 10.983795     4
## 298  -6.826369e-02  9.540336     3
## 299  -2.276987e+00  9.009895     1
## 300  -6.067323e-01  9.864485     2
## 301  -7.855414e-01  7.417869     2
## 302   3.806401e-01 10.740889     3
## 303  -8.081830e-01  9.308572     2
## 304   1.050269e+00  9.773703     4
## 305   1.074957e-02 11.434582     3
## 306   6.144769e-01  9.816908     4
## 307   1.242727e+00  9.940477     4
## 308  -1.004271e+00 11.413812     2
## 309  -9.487057e-01  9.467228     2
## 310  -1.208176e+00  8.363340     2
## 311  -1.171731e+00  7.962255     2
## 312  -1.080440e+00  8.011566     2
## 313  -1.043333e+00  9.034747     2
## 314   1.163805e-01  9.264340     3
## 315   1.665792e+00 13.279177     5
## 316   1.447482e+00 12.825380     4
## 317  -1.677617e+00  8.740425     1
## 318   1.355175e+00 12.146229     4
## 319   9.820998e-01 11.648921     4
## 320   5.204716e-01 10.730196     4
## 321  -1.177960e+00  8.739335     2
## 322   1.426903e+00 10.943186     4
## 323   6.972220e-01 10.064625     4
## 324  -1.261489e+00  9.672414     2
## 325  -1.250603e+00  7.978168     2
## 326  -8.761825e-01  9.176113     2
## 327  -3.653293e-01  9.425653     3
## 328  -6.655556e-01  7.934142     2
## 329  -3.725246e-01  8.688109     3
## 330   7.780749e-02  8.135524     3
## 331  -6.962576e-01  8.840435     2
## 332   1.023039e+00 12.636475     4
## 333   2.385984e-01 11.160951     3
## 334   5.206476e-01 10.688278     4
## 335  -3.549041e-01  9.268857     3
## 336   5.988435e-01 10.583222     4
## 337   7.646724e-01 10.338536     4
## 338   1.790202e+00 12.129916     5
## 339   4.559988e-01 11.928040     3
## 340  -2.214319e-01 11.590747     3
## 341   1.199537e+00 10.054775     4
## 342  -1.521541e+00  7.318926     1
## 343   9.326165e-01 10.937615     4
## 344   1.178065e+00 11.189277     4
## 345   3.399747e-01 11.848614     3
## 346  -6.567897e-01  9.352623     2
## 347   8.862869e-01 12.321753     4
## 348  -7.641756e-01  9.056826     2
## 349   9.170380e-02 10.803272     3
## 350  -6.698229e-01  9.027816     2
## 351  -6.937477e-01  8.980377     2
## 352  -2.021864e+00  8.687783     1
## 353   1.358977e+00 10.549128     4
## 354  -1.397386e+00  8.693660     2
## 355   7.701506e-01 10.368668     4
## 356  -6.786974e-01  7.700297     2
## 357   4.688485e-01  9.739361     3
## 358  -9.018908e-01  7.400834     2
## 359  -4.296670e-01  9.257748     3
## 360   3.393110e-01 10.252715     3
## 361  -8.144784e-01  9.833660     2
## 362   5.052416e-02  9.454472     3
## 363  -2.584927e-01 11.801366     3
## 364  -1.403037e+00  9.072245     2
## 365   1.037124e+00  9.182189     4
## 366   6.276008e-01 11.452374     4
## 367   7.380609e-01 10.727548     4
## 368  -1.355911e+00  9.796922     2
## 369  -5.777747e-02  9.875479     3
## 370  -3.114570e-01 10.507273     3
## 371   4.366156e-01 11.134131     3
## 372   2.822506e-01 10.213844     3
## 373   4.153534e-01  9.931941     3
## 374  -6.927618e-01  9.061758     2
## 375   2.314731e-01 11.282289     3
## 376   1.486319e-01 10.672451     3
## 377  -1.104513e+00  7.735260     2
## 378  -2.954959e-01  8.696164     3
## 379   2.257242e-01 10.191437     3
## 380  -7.397352e-01 10.584235     2
## 381  -2.014193e+00  7.284486     1
## 382   1.300619e+00 10.788928     4
## 383  -1.407738e+00 10.542705     2
## 384   1.719300e+00 11.766552     5
## 385   7.088482e-02  9.542601     3
## 386  -4.335020e-01 10.417421     3
## 387  -1.340300e+00  9.483797     2
## 388   1.612962e-01 10.233731     3
## 389   5.954215e-01  9.344611     4
## 390  -6.507162e-01  8.663897     2
## 391   2.679015e-01  8.446844     3
## 392   6.368845e-01 12.073200     4
## 393   4.772100e-01 10.668761     3
## 394  -3.123329e-01 10.701693     3
## 395  -5.897703e-01 10.044902     2
## 396   7.854413e-01  9.347365     4
## 397   1.275706e+00 11.279909     4
## 398   1.775983e-01 11.068526     3
## 399   1.190427e+00 10.584092     4
## 400  -1.006629e+00  8.741879     2
## 401  -2.253115e+00  8.797404     1
## 402  -2.710180e-01 10.965583     3
## 403   2.660507e-01 10.701024     3
## 404  -1.166923e+00  8.293406     2
## 405  -2.889998e-01  9.218065     3
## 406   1.695463e-01 11.026014     3
## 407  -4.329863e-01 10.706391     3
## 408   9.721005e-01 11.508981     4
## 409  -2.026829e-01  9.910122     3
## 410  -1.019386e+00  9.775579     2
## 411   1.460996e+00 11.103863     4
## 412   5.016765e-01  8.170613     4
## 413   4.164739e-01  9.714673     3
## 414   5.261165e-01 11.969255     4
## 415  -1.309019e+00  7.822242     2
## 416  -1.116773e-01 10.540815     3
## 417  -4.393346e-01  8.063420     3
## 418  -3.816180e-01  9.844739     3
## 419  -3.287046e-01  9.084322     3
## 420   1.190312e+00 10.559020     4
## 421   7.069153e-01 11.167489     4
## 422   2.255733e+00 13.285966     5
## 423   1.347851e+00 11.598804     4
## 424  -1.299155e+00  9.817684     2
## 425  -5.640608e-01 10.951220     2
## 426  -2.044972e+00  8.250175     1
## 427  -4.175260e-01  9.407186     3
## 428  -2.526593e-01 10.785726     3
## 429  -8.967489e-01  9.923777     2
## 430   1.188883e+00 11.744880     4
## 431  -1.545875e-01 10.723216     3
## 432  -1.783447e+00  7.481911     1
## 433   2.041462e+00 12.592406     5
## 434  -4.057847e-01 10.359029     3
## 435  -1.053198e+00 10.838510     2
## 436  -1.107032e-01 11.339755     3
## 437   5.425271e-01 11.510344     4
## 438  -1.197815e+00  8.085862     2
## 439  -2.004802e+00  8.659511     1
## 440   1.842444e-01 10.141665     3
## 441   1.348885e-01  9.989575     3
## 442   2.526817e-01 11.326565     3
## 443   1.166934e+00 10.783156     4
## 444  -9.459504e-01  9.451459     2
## 445   1.112717e+00 13.184271     4
## 446  -5.419582e-01  9.883683     2
## 447  -4.414428e-01  8.470291     3
## 448  -4.052473e-03 10.017013     3
## 449  -1.068742e+00  9.487431     2
## 450   6.532021e-01 10.271854     4
## 451   2.238384e-01  9.655017     3
## 452   1.154699e+00 11.776970     4
## 453   1.433123e+00 11.161131     4
## 454  -1.337020e+00  8.668228     2
## 455   4.622788e-01 11.414378     3
## 456   6.382277e-01 10.580480     4
## 457  -3.613751e-01  8.885560     3
## 458   9.853963e-01  9.769623     4
## 459   6.911597e-01 10.081463     4
## 460  -8.344802e-01  8.134739     2
## 461   1.548869e-01 11.653189     3
## 462  -1.095792e-01 10.376632     3
## 463   4.735023e-01  8.806937     3
## 464  -9.382432e-01  8.771698     2
## 465  -1.819842e+00  8.082600     1
## 466  -7.404112e-01  8.600086     2
## 467  -1.752297e+00  8.369857     1
## 468   5.804744e-01 10.001842     4
## 469  -1.208336e+00 10.726682     2
## 470   3.063091e-01  8.033985     3
## 471  -1.062633e+00  9.343435     2
## 472   2.971290e-01 10.487011     3
## 473   7.552643e-01 11.475001     4
## 474  -4.631582e-01 11.525434     3
## 475   2.224515e-01 11.391175     3
## 476   1.264256e+00 12.172212     4
## 477  -1.494961e+00 10.274308     2
## 478  -5.825505e-02  9.137781     3
## 479  -1.327722e+00  6.078494     2
## 480   1.282183e+00 14.078051     4
## 481  -4.025265e-01  8.975279     3
## 482  -4.334305e-02  8.343538     3
## 483  -2.809226e-01  9.354721     3
## 484   3.194257e-01 10.283261     3
## 485  -9.016231e-01  7.965245     2
## 486  -3.953599e-01  8.810825     3
## 487  -1.244410e+00  8.885044     2
## 488   2.744827e-01  8.747697     3
## 489   1.320680e-02 11.151141     3
## 490   9.763440e-01  9.178326     4
## 491   1.235548e+00 11.860422     4
## 492   4.661964e-02  8.580027     3
## 493   2.943566e-01  8.357955     3
## 494   4.265324e-02  8.957275     3
## 495  -9.043202e-02  9.531758     3
## 496   1.334373e+00 11.105655     4
## 497   2.253190e-01  9.931108     3
## 498   7.874351e-01  8.171034     4
## 499   3.588021e-01 10.378738     3
## 500  -1.804968e+00  7.434567     1
## 501   3.023324e-01 10.803444     3
## 502  -2.760986e-01 11.095122     3
## 503   1.074364e+00 10.826056     4
## 504  -3.902785e-01 10.197245     3
## 505  -1.840134e+00  7.657616     1
## 506   6.417341e-02  9.700526     3
## 507  -6.321286e-02 10.388954     3
## 508  -9.494583e-01  6.907859     2
## 509   3.320812e-01 13.026878     3
## 510   1.442835e+00 10.711151     4
## 511   5.459025e-01  9.636707     4
## 512  -9.408383e-01  9.487991     2
## 513   1.427490e+00  9.822952     4
## 514   7.991998e-02 10.498332     3
## 515   8.448521e-01  9.868076     4
## 516  -1.770719e+00  7.719956     1
## 517   2.400379e+00 12.371045     5
## 518   1.017199e+00  9.933829     4
## 519  -6.792368e-01  9.012460     2
## 520   4.350424e-01 12.763864     3
## 521   3.154344e-01 10.016078     3
## 522   8.421561e-01 13.211016     4
## 523   4.057257e-01 10.226910     3
## 524   1.236673e+00  9.124894     4
## 525  -2.149587e+00  7.935177     1
## 526  -1.963326e+00  8.896317     1
## 527   7.581834e-01 10.624753     4
## 528   5.606442e-01 12.239066     4
## 529   2.837747e-01 10.153096     3
## 530  -2.177778e+00  9.283131     1
## 531  -1.303607e+00  8.462300     2
## 532  -1.546795e-01  9.105876     3
## 533   2.401308e+00 12.331300     5
## 534  -1.092800e-01  9.588258     3
## 535   5.287177e-01  9.788015     4
## 536   1.049573e+00 10.045627     4
## 537  -6.758937e-01  8.397816     2
## 538   1.405475e-02 11.380330     3
## 539   7.318892e-01 10.029814     4
## 540   1.349366e-01 10.938033     3
## 541  -8.714640e-01 10.553997     2
## 542   6.232904e-01  9.870539     4
## 543  -8.011786e-01  8.792605     2
## 544   1.813640e+00 13.252664     5
## 545   1.080708e+00 12.382035     4
## 546  -7.665278e-01  8.796898     2
## 547   9.584773e-01 10.849519     4
## 548  -2.133968e-01  8.467375     3
## 549   9.513218e-01 10.714796     4
## 550  -1.782608e-01 11.227371     3
## 551  -6.021844e-01  9.595585     2
## 552   1.628400e+00  9.533914     5
## 553   1.218155e-01 11.062022     3
## 554   5.344282e-01  9.386233     4
## 555   9.045496e-01 12.581207     4
## 556  -8.839628e-01 10.810762     2
## 557  -2.557967e+00  7.188136     1
## 558   2.227381e+00 12.953817     5
## 559  -1.321629e+00  8.574244     2
## 560  -1.088787e+00  8.300827     2
## 561  -1.565141e+00  8.707167     1
## 562  -1.453535e+00  7.339783     2
## 563   6.319854e-01 13.244647     4
## 564  -7.809648e-01  9.170302     2
## 565   1.522945e+00 10.730277     5
## 566   9.029934e-02  8.876456     3
## 567  -2.797284e-01 10.717515     3
## 568   4.185699e-01 12.239513     3
## 569  -1.585899e-01  8.508106     3
## 570  -1.792403e-01  9.856236     3
## 571   1.486680e+00 11.405286     4
## 572  -2.686903e-01  8.488080     3
## 573  -1.394359e+00  9.470342     2
## 574  -7.698163e-01  8.797175     2
## 575  -1.820830e+00  7.204711     1
## 576   1.266016e-01 10.299493     3
## 577   1.127257e+00 11.030463     4
## 578  -9.182546e-01  9.655800     2
## 579  -8.871931e-01 10.860950     2
## 580   9.841554e-01 12.444790     4
## 581   2.557485e-01 11.253246     3
## 582  -2.326206e+00  8.277880     1
## 583  -7.965680e-01  8.817180     2
## 584   1.831275e-01  8.947783     3
## 585   6.725072e-01  9.917328     4
## 586   6.964315e-01 11.414059     4
## 587   2.165534e-01 11.976479     3
## 588  -6.206525e-01  9.666041     2
## 589  -3.050678e-01 10.984156     3
## 590   1.510169e+00 12.697825     5
## 591   4.539191e-01 10.673886     3
## 592  -1.017537e+00 10.753395     2
## 593  -8.267657e-01 10.912767     2
## 594   3.799883e-01 10.085458     3
## 595   4.092645e-01 11.148138     3
## 596   1.225345e+00 11.148181     4
## 597   2.189696e+00 12.369016     5
## 598  -1.189546e-01 10.028256     3
## 599  -6.773289e-02 10.511946     3
## 600   3.367233e-01 10.882988     3
## 601   2.377913e-01 11.437323     3
## 602   1.153212e-01  9.761198     3
## 603  -2.399492e+00  7.654628     1
## 604   7.925335e-02 10.583660     3
## 605   2.405997e-02 10.418859     3
## 606  -1.802921e+00 10.467120     1
## 607   1.339116e+00 10.632943     4
## 608  -4.122206e-02  9.886885     3
## 609   6.998854e-01 10.611258     4
## 610   2.522495e-01  8.989468     3
## 611  -9.829355e-01  9.907008     2
## 612  -1.299466e+00  8.852660     2
## 613   5.569971e-01 10.169823     4
## 614   2.670161e-02  9.477050     3
## 615  -9.655104e-01  8.228856     2
## 616  -2.849972e+00  7.067630     1
## 617  -3.988447e-01  9.169030     3
## 618  -6.313206e-01  9.397053     2
## 619   1.191732e-01 12.296873     3
## 620  -9.634025e-02 10.144626     3
## 621  -9.873734e-01  8.990192     2
## 622  -7.102051e-01 10.319144     2
## 623  -1.390819e+00  7.193988     2
## 624  -4.806562e-01  9.704787     3
## 625  -1.631363e+00  7.990164     1
## 626  -5.792961e-01  9.524352     2
## 627  -1.408615e+00  9.293393     2
## 628   1.321824e-02  9.927994     3
## 629  -2.289589e-01  9.923158     3
## 630  -1.364367e+00  6.987689     2
## 631   1.609274e+00  9.954964     5
## 632  -6.719274e-02 10.289173     3
## 633  -9.753534e-01  9.894746     2
## 634  -1.027597e+00  7.864069     2
## 635   1.165179e+00  9.984701     4
## 636  -1.792818e+00  9.430769     1
## 637   3.158730e-02  9.930460     3
## 638  -1.840595e+00  8.625004     1
## 639  -2.442885e-01  7.927901     3
## 640  -1.225801e-01  9.025538     3
## 641   6.023907e-01 10.129145     4
## 642   1.846469e-01  8.372316     3
## 643   8.617494e-02 11.022510     3
## 644   5.454921e-01  9.267801     4
## 645  -5.047661e-01 10.101582     2
## 646   8.603903e-01 11.861589     4
## 647  -1.191987e+00 10.029420     2
## 648   1.229764e+00 11.799093     4
## 649   1.421339e-01 10.688462     3
## 650  -5.928203e-01  7.487452     2
## 651   3.598239e-01 10.401111     3
## 652  -1.316635e+00  9.620537     2
## 653  -7.101537e-01  8.961081     2
## 654   9.490581e-01 11.953499     4
## 655   3.643707e-01 11.324345     3
## 656   5.789703e-01  9.974565     4
## 657   1.894122e+00 13.168429     5
## 658   8.475010e-01 10.253012     4
## 659   8.068502e-01 11.711577     4
## 660  -1.181573e-01  8.643224     3
## 661   8.068468e-01 11.238344     4
## 662  -1.460556e-01 10.099403     3
## 663  -5.358690e-01  8.778691     2
## 664  -4.469229e-01  9.257141     3
## 665  -1.163796e+00  7.975115     2
## 666  -1.342720e+00  7.323719     2
## 667   1.874075e+00 11.971810     5
## 668   5.850382e-01 10.385331     4
## 669   1.526727e-01 10.070031     3
## 670  -3.501679e-01  9.588081     3
## 671  -2.542741e-01  9.792634     3
## 672  -3.590981e-01  8.923643     3
## 673  -5.481337e-01 10.115565     2
## 674   6.353007e-01 10.127809     4
## 675   1.313162e+00 11.553225     4
## 676  -1.612170e+00  8.347676     1
## 677   1.678656e-01 10.236204     3
## 678  -2.252613e-02 10.896992     3
## 679  -5.774876e-01  8.973038     2
## 680  -2.523652e-01 11.730299     3
## 681   1.258481e+00  9.193285     4
## 682   1.049350e+00 12.875374     4
## 683   6.727288e-01  9.927278     4
## 684  -4.412843e-01  9.702941     3
## 685   3.881518e-01 11.007120     3
## 686  -1.076975e+00  8.182762     2
## 687  -8.467576e-01  8.237191     2
## 688  -1.439741e+00  9.532508     2
## 689  -4.386674e-01  9.629628     3
## 690  -6.845034e-02 10.639203     3
## 691   1.247991e+00 11.282989     4
## 692   4.389307e-01  7.779327     3
## 693   1.744021e-02  9.841453     3
## 694   8.671408e-01 10.908446     4
## 695   1.067637e+00 10.288152     4
## 696  -1.961215e-01  8.532280     3
## 697  -1.498702e+00  9.800567     2
## 698  -4.412995e-05 12.049866     3
## 699  -1.408235e-02  9.177682     3
## 700  -1.125704e-01  9.283223     3
## 701   5.147691e-01 10.133465     4
## 702  -4.011832e-01  9.653212     3
## 703   1.437481e+00 10.508403     4
## 704   1.478325e-01  8.576544     3
## 705  -1.992783e+00  7.290885     1
## 706   3.664397e-01  9.334689     3
## 707  -6.420429e-01  8.856388     2
## 708   3.293169e-01  9.479334     3
## 709   7.009921e-01 11.900570     4
## 710  -6.206347e-01  9.370373     2
## 711  -1.724955e+00  7.944047     1
## 712   1.966063e+00 14.194136     5
## 713  -1.378130e+00  9.152558     2
## 714  -2.096398e+00  6.590012     1
## 715   8.709066e-01 10.326404     4
## 716  -3.347134e-01  9.680541     3
## 717  -2.706323e+00  8.622651     1
## 718  -7.757772e-01 10.111123     2
## 719   6.849135e-01 11.204618     4
## 720   7.488897e-01 10.531965     4
## 721   9.017515e-01 13.423958     4
## 722  -2.120076e+00  8.476359     1
## 723  -6.219932e-01 10.515956     2
## 724   1.080956e+00 10.867089     4
## 725   1.550415e+00 11.664650     5
## 726   1.083739e+00 11.773994     4
## 727   2.932667e-01 11.636733     3
## 728  -1.901664e+00 10.296259     1
## 729   2.373534e+00 12.056620     5
## 730  -9.291860e-01  9.231008     2
## 731   2.171234e-01  9.506599     3
## 732  -1.712410e-01 11.299672     3
## 733   1.782172e+00 12.943716     5
## 734  -2.207666e+00  8.507641     1
## 735  -7.860882e-01 11.062469     2
## 736   1.465355e+00 10.823858     4
## 737  -2.624971e-01 10.385817     3
## 738   6.733573e-02 11.505285     3
## 739   5.697707e-02 11.617394     3
## 740  -1.930726e-01  9.919874     3
## 741  -3.901339e-01 10.846171     3
## 742  -7.745444e-01  8.027122     2
## 743   7.834643e-01 10.084414     4
## 744   3.731615e-01 11.129140     3
## 745   9.211562e-01 12.080421     4
## 746   5.089627e-01 10.303104     4
## 747   9.950958e-02 10.250848     3
## 748   1.227317e+00 10.437238     4
## 749   2.197760e-01 11.592183     3
## 750   6.293086e-01 11.911966     4
## 751   1.422318e+00 10.382590     4
## 752  -9.589117e-02  9.716509     3
## 753  -9.656918e-02  9.720805     3
## 754  -5.096619e-01  9.933256     2
## 755   7.086683e-01  9.489256     4
## 756  -7.708509e-01  9.080723     2
## 757   2.129448e+00 11.553500     5
## 758   2.104802e-01  9.469332     3
## 759   1.790848e+00 12.117977     5
## 760  -5.181278e-01  8.733452     2
## 761  -1.720068e-01  7.388666     3
## 762  -8.867273e-01  9.751798     2
## 763  -9.183296e-01  8.406310     2
## 764  -2.298048e-01  8.979235     3
## 765   1.871784e-01 10.400131     3
## 766   1.005625e-03 10.834120     3
## 767  -1.222135e-01 11.949658     3
## 768   6.470755e-01  9.778500     4
## 769  -7.919465e-01  9.599600     2
## 770   1.324825e+00  9.512204     4
## 771  -1.061270e-01  8.760611     3
## 772   1.512414e-01 10.005995     3
## 773  -6.931698e-01  9.205645     2
## 774  -7.367563e-01  9.552940     2
## 775  -4.336118e-01  9.163635     3
## 776  -1.385414e+00  9.368585     2
## 777   4.811309e-01 10.579151     3
## 778  -6.752681e-02  9.860382     3
## 779   5.056360e-01 10.968473     4
## 780  -8.011701e-02 10.543131     3
## 781   6.497062e-02 10.598860     3
## 782  -1.197788e+00  9.476668     2
## 783   1.217554e+00 11.552915     4
## 784  -1.008586e+00  9.346468     2
## 785   1.179052e+00 10.487576     4
## 786   4.970738e-01  9.221862     3
## 787   1.049546e+00 11.379269     4
## 788  -6.820005e-01  8.372821     2
## 789   8.855230e-01 10.561787     4
## 790  -7.892403e-03  9.903619     3
## 791   4.232710e-02 10.707832     3
## 792   1.309521e+00 11.350889     4
## 793   1.725715e+00 11.090246     5
## 794  -1.281865e-02 10.786376     3
## 795   3.621396e-01 11.048636     3
## 796  -3.922082e-02 11.497259     3
## 797   1.874299e+00 11.288286     5
## 798  -1.260730e+00  9.061557     2
## 799   3.609923e-01  8.967561     3
## 800  -6.553099e-02 11.364306     3
## 801   3.925885e-02  9.827197     3
## 802  -7.834902e-01  7.414492     2
## 803  -1.322833e+00 10.308290     2
## 804   1.413263e+00 10.481870     4
## 805  -7.180274e-02 10.259202     3
## 806   8.343967e-02 11.084093     3
## 807  -2.522373e+00  7.017503     1
## 808  -4.592799e-02 10.914135     3
## 809   3.324277e-01  9.614732     3
## 810  -1.827789e-01 10.941418     3
## 811  -1.270345e+00  8.454141     2
## 812  -5.467073e-02  9.693754     3
## 813  -9.018603e-01  9.462195     2
## 814   1.356938e+00 11.376554     4
## 815  -3.265134e+00  7.268569     1
## 816  -7.474620e-01  8.921821     2
## 817  -1.539634e+00  7.574261     1
## 818   3.966849e-02  9.517249     3
## 819   1.722299e+00 11.235884     5
## 820  -3.324001e-01 10.445435     3
## 821   3.103110e-01 11.014326     3
## 822   1.159218e+00 11.106054     4
## 823  -4.528714e-01 10.457813     3
## 824  -1.286412e-01  9.128757     3
## 825   1.128268e+00 10.775415     4
## 826   3.261200e-01  8.663882     3
## 827   5.235325e-01 11.673654     4
## 828  -8.613885e-01 11.163195     2
## 829   2.303658e+00 12.256713     5
## 830   4.215063e-01 10.724789     3
## 831   6.404882e-01  9.851802     4
## 832   3.974760e-01  9.846061     3
## 833   4.710888e-01  9.992491     3
## 834  -1.350545e+00  9.900028     2
## 835   5.297218e-01 10.682211     4
## 836  -3.038522e-01  8.458173     3
## 837  -1.080807e+00  9.528381     2
## 838  -5.563953e-02 10.185105     3
## 839  -1.085609e-01  7.657042     3
## 840   5.341072e-01  9.930346     4
## 841  -1.297302e+00  9.190073     2
## 842  -1.702463e-01  9.718608     3
## 843  -1.141634e+00  8.410603     2
## 844  -5.331321e-01  8.949800     2
## 845   2.756679e-01  9.292042     3
## 846   8.440601e-01 10.520880     4
## 847  -5.661866e-01  9.609677     2
## 848  -1.307921e+00  7.893512     2
## 849  -5.586357e-01 10.119866     2
## 850   1.333560e+00 10.966762     4
## 851   5.261104e-01 11.201329     4
## 852   4.791047e-01 10.119363     3
## 853  -3.548517e-01  9.197879     3
## 854   1.249250e+00 12.474925     4
## 855  -7.171962e-01 10.511912     2
## 856  -1.248341e+00  9.676029     2
## 857   2.448731e+00 11.209840     5
## 858  -9.274024e-01  8.741813     2
## 859   2.235744e+00 13.047551     5
## 860   7.128474e-01 11.356995     4
## 861  -1.413706e+00  7.943111     2
## 862   1.605148e+00  9.036008     5
## 863   1.427332e+00 11.231525     4
## 864   3.914653e-01  9.605832     3
## 865  -2.271177e-01 10.510941     3
## 866  -1.023709e+00  8.752998     2
## 867   3.535959e-01 10.626784     3
## 868  -1.174833e+00  8.902926     2
## 869   1.517896e+00 12.681329     5
## 870   7.629983e-01  9.953176     4
## 871  -2.510879e-01  9.524386     3
## 872  -2.579189e-01 10.411043     3
## 873  -1.917327e+00  7.899455     1
## 874   3.310220e-01 11.060155     3
## 875  -9.235488e-01  9.607261     2
## 876  -1.545510e-02  9.536025     3
## 877  -2.275592e+00 10.016053     1
## 878  -9.938606e-01  8.976997     2
## 879   2.082797e-01 10.373543     3
## 880  -6.429848e-01  9.583726     2
## 881   2.964704e-01  9.644134     3
## 882  -7.017275e-01 10.399501     2
## 883   1.217546e+00 11.069852     4
## 884  -1.363014e+00  9.206039     2
## 885   1.287549e+00 12.332846     4
## 886  -3.590104e-01  8.641618     3
## 887   1.420157e+00 13.322059     4
## 888   6.103295e-01 11.616505     4
## 889  -1.196685e+00  9.826443     2
## 890   9.884190e-01 11.236897     4
## 891   5.963686e-01  9.611061     4
## 892  -6.004858e-01  8.094135     2
## 893  -7.175605e-01  8.968859     2
## 894   4.783243e-01  9.178086     3
## 895   2.407407e+00 13.090560     5
## 896   2.281850e-01  9.216666     3
## 897   1.317716e+00 12.339203     4
## 898  -4.068819e-01  9.556505     3
## 899   3.327106e-01 10.796612     3
## 900   1.365657e-01  7.971692     3
## 901   1.660959e+00  9.448064     5
## 902  -5.759613e-01  8.752859     2
## 903   2.529256e-01 11.118736     3
## 904  -2.364811e-01  8.983777     3
## 905  -6.756963e-01  7.820510     2
## 906   5.423077e-01 10.432668     4
## 907   5.882883e-01 11.359030     4
## 908   1.411416e+00 12.342615     4
## 909  -1.194420e+00  9.636642     2
## 910   1.129333e+00 11.729757     4
## 911   9.025991e-02  9.757715     3
## 912   1.358759e+00 13.476826     4
## 913  -1.020273e-01  8.600476     3
## 914  -3.893023e-01  9.636584     3
## 915   1.936781e-01 12.889550     3
## 916   4.086870e-01 10.249955     3
## 917   4.477241e-01  8.849509     3
## 918  -1.821216e+00  5.108820     1
## 919   8.730719e-01  9.906377     4
## 920   2.885244e-01  9.844527     3
## 921  -7.462940e-01  9.230932     2
## 922   9.523097e-01 10.200697     4
## 923  -2.876205e+00  8.321209     1
## 924   1.118481e+00 12.261194     4
## 925  -2.196460e+00  6.731665     1
## 926  -7.733950e-01  8.063948     2
## 927  -6.300549e-01  7.795110     2
## 928  -7.529747e-01  9.870286     2
## 929   5.432819e-01  9.795484     4
## 930   1.314132e-01 10.974811     3
## 931   8.849305e-01 10.298370     4
## 932   2.066789e-01 10.106334     3
## 933  -1.006989e+00  8.840706     2
## 934  -8.160521e-02 11.066609     3
## 935   1.640901e+00 10.312099     5
## 936   3.742038e-01 11.127701     3
## 937   5.854166e-01 11.904224     4
## 938   2.390587e-01 10.475510     3
## 939  -2.295413e-01  8.434056     3
## 940  -9.629658e-01  8.905210     2
## 941  -2.255773e-02 10.894513     3
## 942  -5.195199e-01  8.218543     2
## 943  -4.282264e-02  9.278008     3
## 944   4.629206e-01  9.897465     3
## 945  -7.719536e-01  9.472427     2
## 946  -1.170939e+00 10.085902     2
## 947   2.049763e+00 12.924584     5
## 948   1.540887e+00 11.699472     5
## 949   5.195690e-01 10.817617     4
## 950   4.967553e-01 12.152696     3
## 951   2.396223e-01  9.564680     3
## 952  -1.666823e+00  6.640854     1
## 953  -2.187899e+00  8.028104     1
## 954   1.547943e+00 10.104044     5
## 955  -2.667950e-01 10.176515     3
## 956   7.846768e-01 12.140814     4
## 957  -2.749822e-01  8.195849     3
## 958   3.202576e-02  7.853641     3
## 959   3.284753e-01 11.098955     3
## 960  -1.498395e-01 11.306532     3
## 961  -1.290523e+00  8.454365     2
## 962  -5.647034e-01 10.135233     2
## 963  -1.670944e+00  9.045784     1
## 964  -8.933681e-01  9.318619     2
## 965  -6.794873e-03 10.854664     3
## 966   3.677879e-01 10.772542     3
## 967  -6.329348e-01  8.848331     2
## 968   1.592931e+00 12.477270     5
## 969  -2.565216e+00  7.726578     1
## 970   7.984405e-01 12.485904     4
## 971   9.820522e-01 12.171552     4
## 972   4.341561e-01 10.929178     3
## 973   1.714618e+00 12.251802     5
## 974   1.100938e+00 14.240875     4
## 975   1.471831e+00 10.419803     4
## 976   2.872211e-01  8.928807     3
## 977  -9.200646e-02 10.431183     3
## 978  -5.603371e-01  9.405601     2
## 979  -1.205059e+00 10.179110     2
## 980  -1.622053e+00  8.454998     1
## 981   2.629682e-01 11.408781     3
## 982  -5.287396e-01  9.985489     2
## 983   1.253856e+00 11.914763     4
## 984  -1.455286e-01  9.471801     3
## 985  -2.377610e-01  9.762661     3
## 986   1.124305e+00  9.512483     4
## 987   9.514621e-01 11.745518     4
## 988  -3.884070e-01  9.224966     3
## 989  -5.958029e-01  8.135371     2
## 990   1.229423e+00 11.547913     4
## 991  -4.575000e-02 11.293135     3
## 992   2.154987e+00 13.889097     5
## 993  -5.293851e-01  7.345768     2
## 994   4.443761e-01 12.636716     3
## 995  -6.529698e-02  9.296362     3
## 996   1.374856e+00 10.988637     4
## 997  -9.477124e-01 10.474198     2
## 998  -4.901842e-01 10.120656     3
## 999  -2.220450e-01 11.016877     3
## 1000 -6.790426e-01  7.346064     2
# creates plot object using ggplot
plot <- ggplot(sample_data, aes(x = xAxis, y= yAxis, col = as.factor(group)))+
  geom_point()+theme(legend.position = "none")
# Display plot
plot
# Insert marginal ditribution using marginal function
ggMarginal(plot,type= 'histogram',groupColour=TRUE,groupFill=TRUE)