#Loading the rvest package
library('rvest')
## Warning: package 'rvest' was built under R version 4.2.3
library ('ggplot2')
library ('stringr')
library('tidyverse')
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.0 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ tibble 3.1.8
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ readr::guess_encoding() masks rvest::guess_encoding()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
#Specifying the url for desired website to be scraped
url <- 'http://www.imdb.com/search/title?count=100&release_date=2016,2016&title_type=feature'
#Reading the HTML code from the website
webpage <- read_html(url)
#Using CSS selectors to scrape the rankings section
rank_data_html <- html_nodes(webpage,'.text-primary')
#Converting the ranking data to text
rank_data <- html_text(rank_data_html)
#Let's have a look at the rankings
head(rank_data)
## [1] "1." "2." "3." "4." "5." "6."
#Data-Preprocessing: Converting rankings to numerical
rank_data<-as.numeric(rank_data)
#Let's have another look at the rankings
head(rank_data)
## [1] 1 2 3 4 5 6
#Using CSS selectors to scrape the title section
title_data_html <- html_nodes(webpage,'.lister-item-header a')
#Converting the title data to text
title_data <- html_text(title_data_html)
#Let's have a look at the title
head(title_data)
## [1] "The Magnificent Seven" "Me Before You"
## [3] "Rogue One: A Star Wars Story" "Hidden Figures"
## [5] "Suicide Squad" "Sing"
#Using CSS selectors to scrape the description section
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted')
#Converting the description data to text
description_data <- html_text(description_data_html)
#Let's have a look at the description data
head(description_data)
## [1] "\nSeven gunmen from a variety of backgrounds are brought together by a vengeful young widow to protect her town from the private army of a destructive industrialist."
## [2] "\nA girl in a small town forms an unlikely bond with a recently-paralyzed man she's taking care of."
## [3] "\nIn a time of conflict, a group of unlikely heroes band together on a mission to steal the plans to the Death Star, the Empire's ultimate weapon of destruction."
## [4] "\nThe story of a team of female African-American mathematicians who served a vital role in NASA during the early years of the U.S. space program."
## [5] "\nA secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [6] "\nIn a city of humanoid animals, a hustling theater impresario's attempt to save his theater with a singing competition becomes grander than he anticipates even as its finalists find that their lives will never be the same."
#Data-Preprocessing: removing '\n'
description_data<-gsub("\n","",description_data)
#Let's have another look at the description data
head(description_data)
## [1] "Seven gunmen from a variety of backgrounds are brought together by a vengeful young widow to protect her town from the private army of a destructive industrialist."
## [2] "A girl in a small town forms an unlikely bond with a recently-paralyzed man she's taking care of."
## [3] "In a time of conflict, a group of unlikely heroes band together on a mission to steal the plans to the Death Star, the Empire's ultimate weapon of destruction."
## [4] "The story of a team of female African-American mathematicians who served a vital role in NASA during the early years of the U.S. space program."
## [5] "A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [6] "In a city of humanoid animals, a hustling theater impresario's attempt to save his theater with a singing competition becomes grander than he anticipates even as its finalists find that their lives will never be the same."
#Using CSS selectors to scrape the Movie runtime section
runtime_data_html <- html_nodes(webpage,'.text-muted .runtime')
#Converting the runtime data to text
runtime_data <- html_text(runtime_data_html)
#Let's have a look at the runtime
head(runtime_data)
## [1] "132 min" "106 min" "133 min" "127 min" "123 min" "108 min"
#Data-Preprocessing: removing mins and converting it to numerical
runtime_data<-gsub(" min","",runtime_data)
runtime_data<-as.numeric(runtime_data)
#Let's have another look at the runtime data
head(runtime_data)
## [1] 132 106 133 127 123 108
#Using CSS selectors to scrape the Movie genre section
genre_data_html <- html_nodes(webpage,'.genre')
#Converting the genre data to text
genre_data <- html_text(genre_data_html)
#Let's have a look at the runtime
head(genre_data)
## [1] "\nAction, Adventure, Western "
## [2] "\nDrama, Romance "
## [3] "\nAction, Adventure, Sci-Fi "
## [4] "\nBiography, Drama, History "
## [5] "\nAction, Adventure, Fantasy "
## [6] "\nAnimation, Comedy, Family "
#Data-Preprocessing: removing \n
genre_data<-gsub("\n","",genre_data)
#Data-Preprocessing: removing excess spaces
genre_data<-gsub(" ","",genre_data)
#taking only the first genre of each movie
genre_data<-gsub(",.*","",genre_data)
#Convering each genre from text to factor
genre_data<-as.factor(genre_data)
#Let's have another look at the genre data
head(genre_data)
## [1] Action Drama Action Biography Action Animation
## Levels: Action Adventure Animation Biography Comedy Crime Drama Horror
#Using CSS selectors to scrape the IMDB rating section
rating_data_html <- html_nodes(webpage,'.ratings-imdb-rating strong')
#Converting the ratings data to text
rating_data <- html_text(rating_data_html)
#Let's have a look at the ratings
head(rating_data)
## [1] "6.8" "7.4" "7.8" "7.8" "5.9" "7.1"
#Data-Preprocessing: converting ratings to numerical
rating_data<-as.numeric(rating_data)
#Let's have another look at the ratings data
head(rating_data)
## [1] 6.8 7.4 7.8 7.8 5.9 7.1
#Using CSS selectors to scrape the votes section
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)')
#Converting the votes data to text
votes_data <- html_text(votes_data_html)
#Let's have a look at the votes data
head(votes_data)
## [1] "217,177" "263,326" "652,047" "238,330" "695,550" "176,676"
#Data-Preprocessing: removing commas
votes_data<-gsub(",","",votes_data)
#Data-Preprocessing: converting votes to numerical
votes_data<-as.numeric(votes_data)
#Let's have another look at the votes data
head(votes_data)
## [1] 217177 263326 652047 238330 695550 176676
#Using CSS selectors to scrape the directors section
directors_data_html <- html_nodes(webpage,'.text-muted+ p a:nth-child(1)')
#Converting the directors data to text
directors_data <- html_text(directors_data_html)
#Let's have a look at the directors data
head(directors_data)
## [1] "Antoine Fuqua" "Thea Sharrock" "Gareth Edwards" "Theodore Melfi"
## [5] "David Ayer" "Garth Jennings"
#Data-Preprocessing: converting directors data into factors
directors_data<-as.factor(directors_data)
#Using CSS selectors to scrape the actors section
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a')
#Converting the gross actors data to text
actors_data <- html_text(actors_data_html)
#Let's have a look at the actors data
head(actors_data)
## [1] "Denzel Washington" "Emilia Clarke" "Felicity Jones"
## [4] "Taraji P. Henson" "Will Smith" "Matthew McConaughey"
#Data-Preprocessing: converting actors data into factors
actors_data<-as.factor(actors_data)
#Using CSS selectors to scrape the metascore section
metascore_data_html <- html_nodes(webpage,'.metascore')
#Converting the runtime data to text
metascore_data <- html_text(metascore_data_html)
#Let's have a look at the metascore
head(metascore_data)
## [1] "54 " "51 " "65 " "74 " "40 "
## [6] "59 "
#Data-Preprocessing: removing extra space in metascore
metascore_data<-gsub(" ","",metascore_data)
#Lets check the length of metascore data
length(metascore_data)
## [1] 96
for (i in c(39,73,80,89))
{
a<-metascore_data[1:(i-1)]
b<-metascore_data[i:length(metascore_data)]
metascore_data<-append(a,list("NA"))
metascore_data<-append(metascore_data,b)
}
#Data-Preprocessing: converting metascore to numerical
metascore_data<-as.numeric(metascore_data)
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
#Let's have another look at length of the metascore data
length(metascore_data)
## [1] 100
#Let's look at summary statistics
summary(metascore_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 21.00 46.00 60.50 59.57 73.25 99.00 4
#Using CSS selectors to scrape the gross revenue section
gross_data_html <- html_nodes(webpage,'.ghost~ .text-muted+ span')
#Converting the gross revenue data to text
gross_data <- html_text(gross_data_html)
#Let's have a look at the votes data
head(gross_data)
## [1] "$93.43M" "$56.25M" "$532.18M" "$169.61M" "$325.10M" "$270.40M"
#Data-Preprocessing: removing '$' and 'M' signs
gross_data<-gsub("M","",gross_data)
gross_data<-substring(gross_data,2,6)
#Let's check the length of gross data
length(gross_data)
## [1] 89
#Filling missing entries with NA
for (i in c(17,39,49,52,57,64,66,73,76,77,80,87,88,89))
{
a<-gross_data[1:(i-1)]
b<-gross_data[i:length(gross_data)]
gross_data<-append(a,list("NA"))
gross_data<-append(gross_data,b)
}
#Data-Preprocessing: converting gross to numerical
gross_data<-as.numeric(gross_data)
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
#Let's have another look at the length of gross data
length(gross_data)
## [1] 103
summary(gross_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.01 26.86 61.71 101.28 127.40 532.10 14
ratings_bar_data <- html_nodes(webpage,'.ratings-bar') %>%
#scrape the ratings bar and convert to text
html_text2()
head(ratings_bar_data)
## [1] "6.8\nRate this\n 1 2 3 4 5 6 7 8 9 10 6.8/10 X \n54 Metascore"
## [2] "7.4\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.4/10 X \n51 Metascore"
## [3] "7.8\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.8/10 X \n65 Metascore"
## [4] "7.8\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.8/10 X \n74 Metascore"
## [5] "5.9\nRate this\n 1 2 3 4 5 6 7 8 9 10 5.9/10 X \n40 Metascore"
## [6] "7.1\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.1/10 X \n59 Metascore"
#look at the ratings bar
metascore_data <- str_match(ratings_bar_data, "\\d{2} Metascore") %>%
#extract Metascore
str_match("\\d{2}") %>%
as.numeric()
#convert to number
length(metascore_data)
## [1] 100
metascore_data
## [1] 54 51 65 74 40 59 94 65 71 81 81 78 84 79 62 66 70 56 NA 68 67 25 73 52 96
## [26] 44 64 55 99 76 88 44 75 36 41 47 51 72 65 57 69 48 66 32 81 72 74 51 65 66
## [51] 77 NA 71 42 81 33 58 65 48 57 67 62 79 80 32 42 46 21 NA 79 52 45 48 42 77
## [76] 77 34 73 33 46 60 NA 78 61 76 66 40 58 23 44 59 22 60 58 35 39 60 34 81 49
summary(metascore_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 21.00 46.00 60.50 59.57 73.25 99.00 4
#scrape the votess bar and convert to text
votes_bar_data <- html_nodes(webpage,'.sort-num_votes-visible') %>%
html_text2()
head(votes_bar_data)
## [1] "Votes: 217,177 | Gross: $93.43M" "Votes: 263,326 | Gross: $56.25M"
## [3] "Votes: 652,047 | Gross: $532.18M" "Votes: 238,330 | Gross: $169.61M"
## [5] "Votes: 695,550 | Gross: $325.10M" "Votes: 176,676 | Gross: $270.40M"
# look at the votes bar data
gross_data <- str_match(votes_bar_data, "\\$.+$")
# extract the gross earnings
gross_data <- gsub("M","",gross_data)
# clean data: remove 'M' sign
gross_data <- substring(gross_data,2,6) %>%
as.numeric()
# clean data: remove '$' sign
length(gross_data)
## [1] 100
#Combining all the lists to form a data frame
movies_df<-data.frame(Rank = rank_data, Title = title_data,
Description = description_data, Runtime = runtime_data,
Genre = genre_data, Rating = rating_data,
Metascore = metascore_data, Votes = votes_data,
Gross_Earning_in_Mil = gross_data,
Director = directors_data, Actor = actors_data)
#Structure of the data frame
str(movies_df)
## 'data.frame': 100 obs. of 11 variables:
## $ Rank : num 1 2 3 4 5 6 7 8 9 10 ...
## $ Title : chr "The Magnificent Seven" "Me Before You" "Rogue One: A Star Wars Story" "Hidden Figures" ...
## $ Description : chr "Seven gunmen from a variety of backgrounds are brought together by a vengeful young widow to protect her town f"| __truncated__ "A girl in a small town forms an unlikely bond with a recently-paralyzed man she's taking care of." "In a time of conflict, a group of unlikely heroes band together on a mission to steal the plans to the Death St"| __truncated__ "The story of a team of female African-American mathematicians who served a vital role in NASA during the early "| __truncated__ ...
## $ Runtime : num 132 106 133 127 123 108 128 108 139 116 ...
## $ Genre : Factor w/ 8 levels "Action","Adventure",..: 1 7 1 4 1 3 5 1 4 7 ...
## $ Rating : num 6.8 7.4 7.8 7.8 5.9 7.1 8 8 8.1 7.9 ...
## $ Metascore : num 54 51 65 74 40 59 94 65 71 81 ...
## $ Votes : num 217177 263326 652047 238330 695550 ...
## $ Gross_Earning_in_Mil: num 93.4 56.2 532.1 169.6 325.1 ...
## $ Director : Factor w/ 99 levels "Aisling Walsh",..: 11 91 34 92 26 36 20 94 61 30 ...
## $ Actor : Factor w/ 92 levels "Adam Sandler",..: 19 25 30 85 91 59 74 75 4 3 ...
library('ggplot2')
qplot(data = movies_df,Runtime,fill = Genre,bins = 30)
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.

q1 <-movies_df %>% select(Title, Rank, Title, Runtime, Genre) %>%
filter(Runtime == max(Runtime))
q1
## Title Rank Runtime Genre
## 1 American Honey 64 163 Adventure
ggplot(movies_df,aes(x=Runtime,y=Rating))+
geom_point(aes(size=Votes,col=Genre))

g2 <- movies_df %>% select(Title,Rank, Runtime, Votes, Genre) %>% filter(between(Runtime, 130, 160))
g2plot <- g2 %>% ggplot(aes(x=Genre, y= Votes)) +
geom_bar(stat='identity') +
xlab("Movie Genre") +
ylab("Amount of Votes") +
ggtitle("Movie genre by Amount of Votes")
g2plot

ggplot(movies_df,aes(x=Runtime,y=Gross_Earning_in_Mil))+
geom_point(aes(size=Rating,col=Genre))
## Warning: Removed 11 rows containing missing values (`geom_point()`).

q3 <- movies_df %>% select(Runtime,Genre, Gross_Earning_in_Mil) %>%
filter(between(Runtime, 100, 120)) %>%
group_by(Genre) %>%
summarize(avgGross = mean(Gross_Earning_in_Mil))
q3
## # A tibble: 8 × 2
## Genre avgGross
## <fct> <dbl>
## 1 Action NA
## 2 Adventure 149.
## 3 Animation 216.
## 4 Biography 35.1
## 5 Comedy 45.9
## 6 Crime NA
## 7 Drama NA
## 8 Horror 69.8