Final project: data cleaning
Download the dataset to R > gb1 <- read.csv(“C:\Users\Olga
Z\Documents\00_data_raw\Green_Bonds.csv”)
Delete columns “ObjectId”, “Source”, “CTS_Full_Descriptor”,
“F1985”-“F2016” > gb1 |>
- select(“Country”, “ISO3”, “Indicator”, “Use_of_Proceed”, “F2017”,
“F2018”, “F2019”, “F2020”, “F2021”)
- Rename columns “F2017”-“F2021” to “2017”-“2021” > gb1 |>
- rename(“2017” = “F2017”, “2018” = “F2018”, “2019” = “F2019”, “2020”
= “F2020” , “2021” = “F2021”)
- Pivot years and values to the long format > gb2 <- gb1
|>
- pivot_longer(cols = matches(“\d{4}”),
- names_to = “year”,
- names_transform = as.integer)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpGaW5hbCBwcm9qZWN0OiBkYXRhIGNsZWFuaW5nDQoNCjEuIERvd25sb2FkIHRoZSBkYXRhc2V0IHRvIFINCj4gZ2IxIDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXE9sZ2EgWlxcRG9jdW1lbnRzXFwwMF9kYXRhX3Jhd1xcR3JlZW5fQm9uZHMuY3N2IikNCg0KMi4gRGVsZXRlIGNvbHVtbnMgIk9iamVjdElkIiwgIlNvdXJjZSIsICJDVFNfRnVsbF9EZXNjcmlwdG9yIiwgIkYxOTg1Ii0iRjIwMTYiDQo+IGdiMSB8Pg0KKyBzZWxlY3QoIkNvdW50cnkiLCAiSVNPMyIsICJJbmRpY2F0b3IiLCAiVXNlX29mX1Byb2NlZWQiLCAiRjIwMTciLCAiRjIwMTgiLCAiRjIwMTkiLCAiRjIwMjAiLCAiRjIwMjEiKQ0KDQozLiBSZW5hbWUgY29sdW1ucyAiRjIwMTciLSJGMjAyMSIgdG8gIjIwMTciLSIyMDIxIg0KPiBnYjEgfD4NCisgcmVuYW1lKCIyMDE3IiA9ICJGMjAxNyIsICIyMDE4IiA9ICJGMjAxOCIsICIyMDE5IiA9ICJGMjAxOSIsICIyMDIwIiA9ICJGMjAyMCIgLCAiMjAyMSIgPSAiRjIwMjEiKQ0KDQo0LiBQaXZvdCB5ZWFycyBhbmQgdmFsdWVzIHRvIHRoZSBsb25nIGZvcm1hdA0KPiBnYjIgPC0gZ2IxIHw+DQorIHBpdm90X2xvbmdlcihjb2xzID0gbWF0Y2hlcygiXFxkezR9IiksDQorIG5hbWVzX3RvID0gInllYXIiLA0KKyBuYW1lc190cmFuc2Zvcm0gPSBhcy5pbnRlZ2VyKQ0K