Detect matches
data$year
## [1] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [15] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [29] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [43] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [57] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [71] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [85] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [99] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [113] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [127] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [141] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [155] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [169] 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015
## [183] 2015 2015 2015 2015 2015 2015 2016 2016 2016 2016 2016 2016 2016 2016
## [197] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [211] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [225] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [239] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [253] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [267] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [281] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [295] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [309] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [323] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [337] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [351] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
## [365] 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2017 2017
## [379] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [393] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [407] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [421] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [435] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [449] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [463] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [477] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [491] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [505] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [519] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [533] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [547] 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
## [561] 2017 2017 2017 2017 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [575] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [589] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [603] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [617] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [631] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [645] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [659] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [673] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [687] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [701] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [715] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [729] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
## [743] 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2019 2019 2019 2019
## [757] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [771] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [785] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [799] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [813] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [827] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [841] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [855] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [869] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [883] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [897] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [911] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [925] 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
## [939] 2019 2019 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [953] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [967] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [981] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [995] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [1009] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [1023] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [1037] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [1051] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [1065] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [1079] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [1093] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [1107] 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
## [1121] 2020 2020 2020 2020 2020 2020 2020 2020 2021 2021 2021 2021 2021 2021
## [1135] 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021
## [1149] 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021
## [1163] 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021
## [1177] 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021
## [1191] 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021
## [1205] 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021
## [1219] 2021 2021 2021 2021
str_detect(data$year, "2015")
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [49] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [73] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [97] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [109] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [133] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [145] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [157] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [169] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [181] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
## [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1009] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1045] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1057] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1069] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1081] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1093] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1105] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1117] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1129] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1141] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1153] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1165] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1177] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1189] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1201] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1213] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
sum(str_detect(data$year, "2015"))
## [1] 188
data %>%
summarise(num_2015 = sum(str_detect(year, "2015")))
## # A tibble: 1 × 1
## num_2015
## <int>
## 1 188
Replacing matches
data %>% mutate(year_rev = year %>% str_replace("^[1-9]", "3"))
## # A tibble: 1,222 × 12
## year months state colon…¹ colon…² colon…³ colon…⁴ colon…⁵ colon…⁶ colon…⁷
## <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 2015 January-… Alab… 7000 7000 1800 26 2800 250 4
## 2 2015 January-… Ariz… 35000 35000 4600 13 3400 2100 6
## 3 2015 January-… Arka… 13000 14000 1500 11 1200 90 1
## 4 2015 January-… Cali… 1440000 1690000 255000 15 250000 124000 7
## 5 2015 January-… Colo… 3500 12500 1500 12 200 140 1
## 6 2015 January-… Conn… 3900 3900 870 22 290 NA NA
## 7 2015 January-… Flor… 305000 315000 42000 13 54000 25000 8
## 8 2015 January-… Geor… 104000 105000 14500 14 47000 9500 9
## 9 2015 January-… Hawa… 10500 10500 380 4 3400 760 7
## 10 2015 January-… Idaho 81000 88000 3700 4 2600 8000 9
## # … with 1,212 more rows, 2 more variables: `Growth of colonies` <dbl>,
## # year_rev <chr>, and abbreviated variable names ¹colony_n, ²colony_max,
## # ³colony_lost, ⁴colony_lost_pct, ⁵colony_added, ⁶colony_reno,
## # ⁷colony_reno_pct
data %>% mutate(year_rev = year %>% str_replace_all("^[1-9]", "3"))
## # A tibble: 1,222 × 12
## year months state colon…¹ colon…² colon…³ colon…⁴ colon…⁵ colon…⁶ colon…⁷
## <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 2015 January-… Alab… 7000 7000 1800 26 2800 250 4
## 2 2015 January-… Ariz… 35000 35000 4600 13 3400 2100 6
## 3 2015 January-… Arka… 13000 14000 1500 11 1200 90 1
## 4 2015 January-… Cali… 1440000 1690000 255000 15 250000 124000 7
## 5 2015 January-… Colo… 3500 12500 1500 12 200 140 1
## 6 2015 January-… Conn… 3900 3900 870 22 290 NA NA
## 7 2015 January-… Flor… 305000 315000 42000 13 54000 25000 8
## 8 2015 January-… Geor… 104000 105000 14500 14 47000 9500 9
## 9 2015 January-… Hawa… 10500 10500 380 4 3400 760 7
## 10 2015 January-… Idaho 81000 88000 3700 4 2600 8000 9
## # … with 1,212 more rows, 2 more variables: `Growth of colonies` <dbl>,
## # year_rev <chr>, and abbreviated variable names ¹colony_n, ²colony_max,
## # ³colony_lost, ⁴colony_lost_pct, ⁵colony_added, ⁶colony_reno,
## # ⁷colony_reno_pct