Input Data

retdata <- read_csv("m-fac9003.csv")
## Rows: 168 Columns: 14
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (14): AA, AGE, CAT, F, FDX, GM, HPQ, KMB, MEL, NYT, PG, TRB, TXN, SP500
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
stockret <- as.matrix(retdata[, 1:13])
head(stockret,6) # 168 x 13
##          AA    AGE    CAT     F    FDX    GM   HPQ    KMB    MEL    NYT    PG
## [1,] -16.40 -12.17  -4.44 -0.06  -2.28 -2.12 -6.19 -11.01 -10.77  -6.30 -8.89
## [2,]   4.04   4.95   8.84  6.02  10.47  8.97 -4.01  -5.20   0.34  -4.62 -0.84
## [3,]   0.12  13.08   0.17  2.06  10.84  1.57  5.67   3.21  -0.17  -0.66  5.41
## [4,]  -4.28 -11.06   0.25 -5.67  -2.44 -4.19 -5.29  -0.65  -2.20 -10.60  4.26
## [5,]   5.81  19.70   8.52  3.89 -16.17 10.94  8.81   8.83  11.85  11.59 16.35
## [6,]  -4.05  -1.44 -22.10 -5.79  -2.81 -2.70 -1.47   1.55  -7.76  -0.12  4.80
##         TRB   TXN
## [1,] -13.04 -7.61
## [2,]  -0.37  4.97
## [3,]   2.36  2.69
## [4,]  -7.98 -6.85
## [5,]   8.82 22.88
## [6,]  -0.64 -5.87
mktret <- as.matrix(retdata[, 14])
head(mktret,6) # 168x1
##      SP500
## [1,] -7.52
## [2,]  0.21
## [3,]  1.77
## [4,] -3.34
## [5,]  8.55
## [6,] -1.53
dim(mktret)
## [1] 168   1
TT <- dim(stockret)
TT
## [1] 168  13

Find Covariance Matrix

# Method 2: Use formula "inv(X'X)*X'Y" ----
ones <- rep(1, 168)
X <- as.matrix(cbind(ones, mktret))
Y <- stockret
b_hat = solve(t(X)%*%X)%*%t(X) %*% stockret
b_hat #2x13 : first row- alpha, second row - beta
##             AA       AGE       CAT         F       FDX        GM       HPQ
## ones  0.549124 0.7218061 0.8393521 0.4543643 0.7995790 0.1982025 0.6835681
## SP500 1.291591 1.5141359 0.9406928 1.2192453 0.8051166 1.0457019 1.6279512
##             KMB       MEL       NYT        PG       TRB      TXN
## ones  0.5463020 0.8849263 0.4904120 0.8880914 0.6512465 1.438887
## SP500 0.5498052 1.1228708 0.7706495 0.4688034 0.7178808 1.796412
E_hat = Y - X %*% b_hat
head(E_hat,6) #168x13
##              AA        AGE         CAT          F         FDX         GM
## [1,] -7.2363588 -1.5055042   1.7946575  8.6543606   2.9748981  5.5454755
## [2,]  3.2196419  3.9102254   7.8031024  5.3095942   9.5013465  8.5522001
## [3,] -2.7152402  9.6781734  -2.3343784 -0.5524285   8.6153645 -0.4790948
## [4,] -0.5152096 -6.7245922   2.5525617 -2.0520849  -0.5504894 -0.8955583
## [5,] -5.7822280  6.0323321  -0.3622754 -6.9889119 -23.8533263  1.8010466
## [6,] -2.6229896  0.1548218 -21.5000922 -4.3789190  -2.3777506 -1.2982786
##             HPQ        KMB        MEL        NYT        PG        TRB       TXN
## [1,]  5.3686247 -7.4217666 -3.2109382 -0.9951281 -6.252690 -8.2927829  4.460129
## [2,] -5.0354379 -5.8617611 -0.7807291 -5.2722484 -1.826540 -1.1720014  3.153867
## [3,]  2.1049583  1.6905428 -3.0424075 -2.5144615  3.692127  0.4381045 -1.928535
## [4,] -0.5362112  0.6400475  0.6654621 -8.5164428  4.937712 -6.2335246 -2.288872
## [5,] -5.7925506  3.5828633  1.3645288  4.5105352 11.453640  2.0308727  6.081793
## [6,]  0.3371972  1.8449000 -6.9269340  0.5686817  4.629178 -0.1928888 -4.560377
# Excluding constant term
b_hat = as.matrix(b_hat[-1,])
b_hat #beta 
##          [,1]
## AA  1.2915911
## AGE 1.5141359
## CAT 0.9406928
## F   1.2192453
## FDX 0.8051166
## GM  1.0457019
## HPQ 1.6279512
## KMB 0.5498052
## MEL 1.1228708
## NYT 0.7706495
## PG  0.4688034
## TRB 0.7178808
## TXN 1.7964117
diagD_hat = diag(t(E_hat) %*% E_hat)/(168-2) ### find it out
diagD_hat
##        AA       AGE       CAT         F       FDX        GM       HPQ       KMB 
##  59.19846  60.95651  59.66741  67.91031  78.39072  66.09876  89.66712  36.84610 
##       MEL       NYT        PG       TRB       TXN 
##  37.45483  43.43290  41.71711  52.05835 131.65239
diag(diagD_hat) 
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]    [,8]
##  [1,] 59.19846  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.0000
##  [2,]  0.00000 60.95651  0.00000  0.00000  0.00000  0.00000  0.00000  0.0000
##  [3,]  0.00000  0.00000 59.66741  0.00000  0.00000  0.00000  0.00000  0.0000
##  [4,]  0.00000  0.00000  0.00000 67.91031  0.00000  0.00000  0.00000  0.0000
##  [5,]  0.00000  0.00000  0.00000  0.00000 78.39072  0.00000  0.00000  0.0000
##  [6,]  0.00000  0.00000  0.00000  0.00000  0.00000 66.09876  0.00000  0.0000
##  [7,]  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 89.66712  0.0000
##  [8,]  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 36.8461
##  [9,]  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.0000
## [10,]  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.0000
## [11,]  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.0000
## [12,]  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.0000
## [13,]  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.0000
##           [,9]   [,10]    [,11]    [,12]    [,13]
##  [1,]  0.00000  0.0000  0.00000  0.00000   0.0000
##  [2,]  0.00000  0.0000  0.00000  0.00000   0.0000
##  [3,]  0.00000  0.0000  0.00000  0.00000   0.0000
##  [4,]  0.00000  0.0000  0.00000  0.00000   0.0000
##  [5,]  0.00000  0.0000  0.00000  0.00000   0.0000
##  [6,]  0.00000  0.0000  0.00000  0.00000   0.0000
##  [7,]  0.00000  0.0000  0.00000  0.00000   0.0000
##  [8,]  0.00000  0.0000  0.00000  0.00000   0.0000
##  [9,] 37.45483  0.0000  0.00000  0.00000   0.0000
## [10,]  0.00000 43.4329  0.00000  0.00000   0.0000
## [11,]  0.00000  0.0000 41.71711  0.00000   0.0000
## [12,]  0.00000  0.0000  0.00000 52.05835   0.0000
## [13,]  0.00000  0.0000  0.00000  0.00000 131.6524
# Covariance matrix by single factor model 
cov_1f.1 <- as.numeric(var(mktret))*b_hat%*%t(b_hat) + diag(diagD_hat); 
var(mktret)
##          SP500
## SP500 18.74401
cov_1f.1 #13x13
##           AA       AGE       CAT        F       FDX       GM       HPQ
## AA  90.46736  36.65662 22.773795 29.51744 19.491551 25.31602  39.41205
## AGE 36.65662 103.92918 26.697784 34.60338 22.850000 29.67804  46.20285
## CAT 22.77380  26.69778 76.254044 21.49817 14.196104 18.43819  28.70462
## F   29.51744  34.60338 21.498168 95.77439 18.399772 23.89800  37.20446
## FDX 19.49155  22.85000 14.196104 18.39977 90.540833 15.78081  24.56760
## GM  25.31602  29.67804 18.438188 23.89800 15.780808 86.59520  31.90890
## HPQ 39.41205  46.20285 28.704615 37.20446 24.567600 31.90890 139.34297
## KMB 13.31056  15.60401  9.694362 12.56500  8.297174 10.77654  16.77694
## MEL 27.18425  31.86817 19.798858 25.66158 16.945373 22.00899  34.26366
## NYT 18.65711  21.87179 13.588366 17.61207 11.629960 15.10523  23.51586
## PG  11.34954  13.30510  8.266108 10.71382  7.074766  9.18885  14.30522
## TRB 17.37961  20.37416 12.657930 16.40612 10.833622 14.07093  21.90566
## TXN 43.49041  50.98393 31.674972 41.05438 27.109857 35.21083  54.81631
##           KMB       MEL       NYT        PG       TRB       TXN
## AA  13.310564 27.184251 18.657114 11.349541 17.379606  43.49041
## AGE 15.604012 31.868174 21.871787 13.305099 20.374161  50.98393
## CAT  9.694362 19.798858 13.588366  8.266108 12.657930  31.67497
## F   12.565001 25.661582 17.612075 10.713820 16.406124  41.05438
## FDX  8.297174 16.945373 11.629960  7.074766 10.833622  27.10986
## GM  10.776539 22.008995 15.105229  9.188850 14.070929  35.21083
## HPQ 16.776942 34.263656 23.515856 14.305223 21.905656  54.81631
## KMB 42.512149 11.571807  7.941971  4.831279  7.398161  18.51302
## MEL 11.571807 61.088004 16.219938  9.866952 15.109311  37.80926
## NYT  7.941971 16.219938 54.564979  6.771894 10.369833  25.94928
## PG   4.831279  9.866952  6.771894 45.836602  6.308202  15.78553
## TRB  7.398161 15.109311 10.369833  6.308202 61.718134  24.17246
## TXN 18.513021 37.809262 25.949280 15.785529 24.172455 192.14110

Find Global minimum variance portfolio

one <- rep(1,13)
one_13_1 <- matrix(one,ncol=1)
a <- inv(cov_1f.1)%*%one_13_1 # 13x13 x 13x1 = 13x1
b <- t(one_13_1)%*%inv(cov_1f.1)%*%one_13_1 # 1x13 x 13x13 x 13x1 = 1x1
mvp <- a/as.vector(b)
as_tibble(mvp)
## Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if
## `.name_repair` is omitted as of tibble 2.0.0.
## ℹ Using compatibility `.name_repair`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## # A tibble: 13 × 1
##         V1
##      <dbl>
##  1  0.0117
##  2 -0.0306
##  3  0.0792
##  4  0.0225
##  5  0.0802
##  6  0.0533
##  7 -0.0354
##  8  0.250 
##  9  0.0703
## 10  0.154 
## 11  0.243 
## 12  0.140 
## 13 -0.0388
colnames(mvp)="Weight"
mvp
##          Weight
## AA   0.01171552
## AGE -0.03060051
## CAT  0.07924266
## F    0.02246168
## FDX  0.08020173
## GM   0.05326574
## HPQ -0.03539714
## KMB  0.25030240
## MEL  0.07031147
## NYT  0.15387826
## PG   0.24340218
## TRB  0.14003743
## TXN -0.03882144