Regresion de poisson y logistica multiple para muestra unificada (2 de Noviembre)

Prevalencia (prevere) y Extensión (cpodbere) por ciudad, con IC y p valor de Wald test, creo que para extensión solo miramos los intervalos de confianza.

Regresión Logística Uni-variada para prevere: 1) país 2) sexo 3) Escolmaerecat23 4) tipoesc 5) freqescovacat 6) usocreme 7) fluorprof Regresión Poisson Uni-variada para cpodbere: 1) país 2) sexo 3) Escolmaerecat23 4) tipoesc 5) freqescovacat 6) usocreme 7) fluorprof Si todo es parecido prevoms y cpodoms La Multi-variada en ambos modelos irían: 1) país 3) escmaerecat23 4) tipoesc 5) freqescovat Van todas las que queden <0,10 en la uni-variada. Por eso va variable país. Espero, que puedas el finde…..Besos Anun


# 3 de Noviembre 2013

#
# load('~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(28102013).RData')
load("~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(02112013).RData")

library(survey)
## 
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
##     dotchart
library(car)
## Loading required package: MASS
## Loading required package: nnet

levels(disenio_urubra$variables$prevbere)
## [1] "1-LC"  "2-NTL"
addmargins(table(disenio_urubra$variables$prevbere, disenio_urubra$variables$pais))
##        
##          Bra  Uru  Sum
##   1-LC   986  764 1750
##   2-NTL  542  390  932
##   Sum   1528 1154 2682


prevbere <- as.numeric(disenio_urubra$variables$prevbere)
table(prevbere)
## prevbere
##    1    2 
## 1750  932
prevbere <- as.factor(prevbere)

prevbere <- recode(prevbere, "1='1-LC';2='0-NTL'")
table(prevbere)
## prevbere
## 0-NTL  1-LC 
##   932  1750
disenio_urubra$variables$prevbere <- prevbere

addmargins(table(disenio_urubra$variables$cpodbere, disenio_urubra$variables$pais))
##      
##        Bra  Uru  Sum
##   0    542  390  932
##   1    272  131  403
##   2    228  104  332
##   3    154   98  252
##   4    129  107  236
##   5     77  100  177
##   6     50   64  114
##   7     23   56   79
##   8     18   27   45
##   9     14   23   37
##   10    11   22   33
##   11     4   11   15
##   12     2   10   12
##   13     1    1    2
##   14     0    4    4
##   15     0    1    1
##   17     1    1    2
##   18     2    1    3
##   20     0    1    1
##   21     0    1    1
##   26     0    1    1
##   Sum 1528 1154 2682

addmargins(table(disenio_urubra$variables$cpodbere, disenio_urubra$variables$prevbere))
##      
##       0-NTL 1-LC  Sum
##   0     932    0  932
##   1       0  403  403
##   2       0  332  332
##   3       0  252  252
##   4       0  236  236
##   5       0  177  177
##   6       0  114  114
##   7       0   79   79
##   8       0   45   45
##   9       0   37   37
##   10      0   33   33
##   11      0   15   15
##   12      0   12   12
##   13      0    2    2
##   14      0    4    4
##   15      0    1    1
##   17      0    2    2
##   18      0    3    3
##   20      0    1    1
##   21      0    1    1
##   26      0    1    1
##   Sum   932 1750 2682
round(svymean(~prevbere, disenio_urubra, deff = TRUE) * 100, 2)
##                  mean      SE DEff
## prevbere0-NTL 34.9000  0.0184 4.23
## prevbere1-LC  65.1000  0.0184 4.23
round(confint(svymean(~prevbere, disenio_urubra, deff = TRUE) * 100), 2)
##               2.5 % 97.5 %
## prevbere0-NTL 34.86  34.94
## prevbere1-LC  65.06  65.14

round(svymean(~cpodbere, disenio_urubra, deff = TRUE), 2) * 1
##           mean    SE DEff
## cpodbere 2.440 0.145 7.43
round(confint(svymean(~cpodbere, disenio_urubra, deff = TRUE)), 2)
##          2.5 % 97.5 %
## cpodbere  2.15   2.72


round(svyby(~prevbere, ~pais, disenio_urubra, svymean, deff = TRUE)[, 2:4] * 
    100, 2)
##     prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## Bra         36.47        63.53             2.06
## Uru         33.71        66.29             2.76
round(confint(svyby(~prevbere, ~pais, disenio_urubra, svymean, deff = TRUE)) * 
    100, 2)
##                   2.5 % 97.5 %
## Bra:prevbere0-NTL 32.44  40.51
## Uru:prevbere0-NTL 28.30  39.11
## Bra:prevbere1-LC  59.49  67.56
## Uru:prevbere1-LC  60.89  71.70

round(svyby(~cpodbere, ~pais, disenio_urubra, svymean, deff = TRUE)[, 2:4] * 
    1, 2)
##     cpodbere   se DEff.cpodbere
## Bra     1.96 0.10          3.05
## Uru     2.80 0.22          6.12
round(confint(svyby(~cpodbere, ~pais, disenio_urubra, svymean, deff = TRUE)) * 
    1, 2)
##     2.5 % 97.5 %
## Bra  1.76   2.16
## Uru  2.37   3.24

TABLAS

tabla1 <- svyby(~prevbere, ~pais, disenio_urubra, svymean, na.rm = TRUE, deff = TRUE)
round(tabla1[, 2:4] * 100, 1)
##     prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## Bra          36.5         63.5              2.1
## Uru          33.7         66.3              2.8
round(confint(tabla1) * 100, 2)
##                   2.5 % 97.5 %
## Bra:prevbere0-NTL 32.44  40.51
## Uru:prevbere0-NTL 28.30  39.11
## Bra:prevbere1-LC  59.49  67.56
## Uru:prevbere1-LC  60.89  71.70

svychisq(~prevbere + pais, disenio_urubra, statistic = "Chisq")
## 
##  Pearson's X^2: Rao & Scott adjustment
## 
## data:  svychisq(~prevbere + pais, disenio_urubra, statistic = "Chisq") 
## X-squared = 2.218, df = 1, p-value = 0.4239

levels(disenio_urubra$variables$sexoinv) <- c("M", "F")
tabla2 <- svyby(~prevbere, ~sexoinv + pais, disenio_urubra, svymean, keep.var = TRUE, 
    na.rm = TRUE, deff = TRUE)

round(tabla2[, 3:5] * 100, 1)
##       prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## M.Bra          39.4         60.6              2.5
## F.Bra          33.5         66.5              2.3
## M.Uru          32.6         67.4              3.9
## F.Uru          34.9         65.1              3.3



tabla3 <- svyby(~prevbere, ~socioecon4cat + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla3[, 3:5] * 100, 1)
##                  prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1-alto.Bra                48.0         52.0              3.5
## 2-medio-alto.Bra          45.4         54.6              2.7
## 3-medio-bajo.Bra          31.7         68.3              2.0
## 4-bajo.Bra                27.9         72.1              4.5
## 1-alto.Uru                52.8         47.2              6.0
## 2-medio-alto.Uru          34.8         65.2              4.2
## 3-medio-bajo.Uru          27.6         72.4              3.6
## 4-bajo.Uru                20.0         80.0              3.4




tabla4 <- svyby(~prevbere, ~socioecon3cat + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla4[, 3:5] * 100, 1)
##             prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1-alto.Bra           48.0         52.0              3.5
## 2-medio.Bra          35.9         64.1              2.0
## 3-bajo.Bra           27.9         72.1              4.5
## 1-alto.Uru           48.6         51.4              4.6
## 2-medio.Uru          29.0         71.0              2.5
## 3-bajo.Uru           20.0         80.0              3.4

tabla5 <- svyby(~prevbere, ~escolmaerecat23cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla5[, 3:5] * 100, 1)
##                          prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1-college-university.Bra          48.1         51.9              4.1
## 2-high school.Bra                 41.5         58.5              2.7
## 3-elementary school.Bra           28.8         71.2              2.2
## 1-college-university.Uru          47.0         53.0              5.7
## 2-high school.Uru                 32.6         67.4              2.6
## 3-elementary school.Uru           21.1         78.9              3.2




tabla5a <- svyby(~prevbere, ~escolmae13cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla5a[, 3:5] * 100, 1)
##                          prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1-college-university.Bra          47.8         52.2              4.0
## 2-high school.Bra                 46.2         53.8              2.7
## 3-Elementary School.Bra           29.1         70.9              2.1
## 1-college-university.Uru          55.4         44.6              4.2
## 2-high school.Uru                 36.4         63.6              5.5
## 3-Elementary School.Uru           26.2         73.8              2.6


tabla6 <- svyby(~prevbere, ~freqescovacat + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla6[, 3:5] * 100, 1)
##                                prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1-menos de 1 vez al d\xeda.Bra          25.3         74.7              2.8
## 2-veces al d\xeda.Bra                   38.5         61.5              2.5
## 3-veces al d\xeda.Bra                   40.8         59.2              3.0
## 1-menos de 1 vez al d\xeda.Uru          26.2         73.8              4.0
## 2-veces al d\xeda.Uru                   33.9         66.1              4.0
## 3-veces al d\xeda.Uru                   36.7         63.3              3.3

tabla7 <- svyby(~prevbere, ~usocreme + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla7[, 3:5] * 100, 1)
##          prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1-Si.Bra          36.7         63.3              2.0
## 2-No.Bra          24.2         75.8              9.0
## 1-Si.Uru          33.9         66.1              2.8
## 2-No.Uru          26.2         73.8             10.9

tabla8 <- svyby(~prevbere, ~visidentcatonde + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla8[, 3:5] * 100, 1)
##                             prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1-Convenio particular.Bra            42.1         57.9              2.1
## 2-Publico.Bra                        28.5         71.5              2.6
## 3-Nunca fue al dentista.Bra          34.7         65.3              3.1
## 1-Convenio particular.Uru            41.7         58.3              3.4
## 2-Publico.Uru                        21.5         78.5              2.7
## 3-Nunca fue al dentista.Uru          23.7         76.3              5.1

tabla9 <- svyby(~prevbere, ~visiquando + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla9[, 3:5] * 100, 1)
##                            prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1- menos de 1 a\xf1o.Bra            36.6         63.4              2.4
## 2- m\xe1s de 2 a\xf1os.Bra          37.9         62.1              2.8
## 3- nunca fue.Bra                    34.7         65.3              3.1
## 1- menos de 1 a\xf1o.Uru            36.4         63.6              3.0
## 2- m\xe1s de 2 a\xf1os.Uru          29.8         70.2              5.5
## 3- nunca fue.Uru                    22.6         77.4              5.1

tabla10 <- svyby(~prevbere, ~fluorprof + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla10[, 3:5] * 100, 1)
##          prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1-Si.Bra          37.3         62.7              2.1
## 2-No.Bra          35.0         65.0              2.9
## 1-Si.Uru          34.4         65.6              3.6
## 2-No.Uru          34.2         65.8              3.9

tabla11 <- svyby(~prevbere, ~isg20 + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla11[, 3:5] * 100, 1)
##                prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1- <=20.Bra             39.5         60.5              7.4
## 2- 20 a 60.Bra          42.1         57.9              2.2
## 3- >=60.Bra             24.4         75.6              2.1
## 1- <=20.Uru             35.0         65.0              4.3
## 2- 20 a 60.Uru          33.5         66.5              3.4
## 3- >=60.Uru             26.8         73.2              5.2

tabla12 <- svyby(~prevbere, ~isg45 + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla12[, 3:5] * 100, 1)
##                prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1- <=45.Bra             47.1         52.9              2.8
## 2- 45 a 60.Bra          36.9         63.1              2.5
## 3- >=60.Bra             24.4         75.6              2.1
## 1- <=45.Uru             35.7         64.3              3.3
## 2- 45 a 60.Uru          25.6         74.4              4.6
## 3- >=60.Uru             26.8         73.2              5.2

tabla13 <- svyby(~prevbere, ~tipoesc + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla13[, 3:5] * 100, 1)
##                  prevbere0-NTL prevbere1-LC se.prevbere0-NTL
## 1-Particular.Bra          52.1         47.9              2.9
## 2-Publica.Bra             32.1         67.9              1.9
## 1-Particular.Uru          46.2         53.8              4.0
## 2-Publica.Uru             29.1         70.9              2.7

tabla13 <- svyby(~cpodbere, ~pais, disenio_urubra, svymean, na.rm = TRUE, deff = TRUE)
round(tabla13[, 2:4] * 1, 1)
##     cpodbere  se DEff.cpodbere
## Bra      2.0 0.1           3.0
## Uru      2.8 0.2           6.1
round(confint(tabla13) * 1, 2)
##     2.5 % 97.5 %
## Bra  1.76   2.16
## Uru  2.37   3.24




tabla14 <- svyby(~cpodbere, ~sexoinv + pais, disenio_urubra, svymean, keep.var = TRUE, 
    na.rm = TRUE, deff = TRUE)

round(tabla14[, 3:5] * 1, 1)
##       cpodbere  se DEff.cpodbere
## M.Bra      1.9 0.1           2.3
## F.Bra      2.0 0.1           1.7
## M.Uru      2.8 0.3           4.3
## F.Uru      2.8 0.2           4.2



tabla15 <- svyby(~cpodbere, ~socioecon4cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla15[, 3:5] * 1, 1)
##                  cpodbere  se DEff.cpodbere
## 1-alto.Bra            1.2 0.1           0.9
## 2-medio-alto.Bra      1.5 0.1           0.9
## 3-medio-bajo.Bra      2.2 0.1           2.0
## 4-bajo.Bra            2.4 0.2           1.1
## 1-alto.Uru            1.7 0.4           3.3
## 2-medio-alto.Uru      2.7 0.4           7.1
## 3-medio-bajo.Uru      3.5 0.4           3.4
## 4-bajo.Uru            3.2 0.3           2.8




tabla16 <- svyby(~cpodbere, ~socioecon3cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla16[, 3:5] * 1, 1)
##             cpodbere  se DEff.cpodbere
## 1-alto.Bra       1.2 0.1           0.9
## 2-medio.Bra      2.0 0.1           2.2
## 3-bajo.Bra       2.4 0.2           1.1
## 1-alto.Uru       2.0 0.3           3.5
## 2-medio.Uru      3.2 0.2           3.4
## 3-bajo.Uru       3.2 0.3           2.8

tabla17 <- svyby(~cpodbere, ~escolmaerecat23cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla17[, 3:5] * 1, 1)
##                          cpodbere  se DEff.cpodbere
## 1-college-university.Bra      1.2 0.1           1.8
## 2-high school.Bra             1.7 0.1           0.8
## 3-elementary school.Bra       2.4 0.1           2.1
## 1-college-university.Uru      2.0 0.4           4.7
## 2-high school.Uru             2.9 0.2           2.0
## 3-elementary school.Uru       3.5 0.4           4.7

tabla17a <- svyby(~cpodbere, ~escolmae13cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla17a[, 3:5] * 1, 1)
##                          cpodbere  se DEff.cpodbere
## 1-college-university.Bra      1.2 0.1           0.9
## 2-high school.Bra             1.5 0.1           1.1
## 3-Elementary School.Bra       2.4 0.1           2.0
## 1-college-university.Uru      1.6 0.3           2.3
## 2-high school.Uru             2.6 0.4           4.5
## 3-Elementary School.Uru       3.2 0.2           3.6

tabla18 <- svyby(~cpodbere, ~freqescovacat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla18[, 3:5] * 1, 1)
##                                cpodbere  se DEff.cpodbere
## 1-menos de 1 vez al d\xeda.Bra      2.5 0.1           0.8
## 2-veces al d\xeda.Bra               1.9 0.1           2.5
## 3-veces al d\xeda.Bra               1.6 0.1           1.5
## 1-menos de 1 vez al d\xeda.Uru      3.4 0.3           2.0
## 2-veces al d\xeda.Uru               2.8 0.3           3.9
## 3-veces al d\xeda.Uru               2.6 0.3           3.8

tabla19 <- svyby(~cpodbere, ~usocreme + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla19[, 3:5] * 1, 1)
##          cpodbere  se DEff.cpodbere
## 1-Si.Bra      1.9 0.1           2.9
## 2-No.Bra      2.7 0.6           1.4
## 1-Si.Uru      2.8 0.2           5.9
## 2-No.Uru      2.6 0.8           1.8

tabla20 <- svyby(~cpodbere, ~visidentcatonde + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla20[, 3:5] * 1, 1)
##                             cpodbere  se DEff.cpodbere
## 1-Convenio particular.Bra        1.7 0.1           1.7
## 2-Publico.Bra                    2.4 0.2           1.9
## 3-Nunca fue al dentista.Bra      2.1 0.2           2.0
## 1-Convenio particular.Uru        2.4 0.3           7.1
## 2-Publico.Uru                    3.3 0.3           2.7
## 3-Nunca fue al dentista.Uru      3.6 0.4           2.9

tabla21 <- svyby(~cpodbere, ~visiquando + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla21[, 3:5] * 1, 1)
##                            cpodbere  se DEff.cpodbere
## 1- menos de 1 a\xf1o.Bra        1.9 0.1           2.3
## 2- m\xe1s de 2 a\xf1os.Bra      1.9 0.1           1.4
## 3- nunca fue.Bra                2.1 0.2           2.0
## 1- menos de 1 a\xf1o.Uru        2.6 0.3           7.0
## 2- m\xe1s de 2 a\xf1os.Uru      3.1 0.5           4.1
## 3- nunca fue.Uru                3.6 0.4           2.8

tabla22 <- svyby(~cpodbere, ~fluorprof + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla22[, 3:5] * 1, 2)
##          cpodbere   se DEff.cpodbere
## 1-Si.Bra     1.83 0.10          2.08
## 2-No.Bra     2.20 0.16          2.15
## 1-Si.Uru     2.80 0.27          4.81
## 2-No.Uru     2.77 0.29          3.79

tabla23 <- svyby(~cpodbere, ~isg20 + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla23[, 3:5] * 1, 1)
##                cpodbere  se DEff.cpodbere
## 1- <=20.Bra         1.7 0.4           1.4
## 2- 20 a 60.Bra      1.6 0.1           2.4
## 3- >=60.Bra         2.8 0.2           1.6
## 1- <=20.Uru         2.6 0.3           7.5
## 2- 20 a 60.Uru      2.9 0.2           2.4
## 3- >=60.Uru         3.7 0.4           1.3

tabla24 <- svyby(~cpodbere, ~isg45 + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla24[, 3:5] * 1, 1)
##                cpodbere  se DEff.cpodbere
## 1- <=45.Bra         1.4 0.1           1.7
## 2- 45 a 60.Bra      1.8 0.1           1.7
## 3- >=60.Bra         2.8 0.2           1.6
## 1- <=45.Uru         2.6 0.3           7.4
## 2- 45 a 60.Uru      3.3 0.4           1.4
## 3- >=60.Uru         3.7 0.4           1.3

tabla25 <- svyby(~cpodbere, ~escolmae13cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla25[, 3:5] * 1, 1)
##                          cpodbere  se DEff.cpodbere
## 1-college-university.Bra      1.2 0.1           0.9
## 2-high school.Bra             1.5 0.1           1.1
## 3-Elementary School.Bra       2.4 0.1           2.0
## 1-college-university.Uru      1.6 0.3           2.3
## 2-high school.Uru             2.6 0.4           4.5
## 3-Elementary School.Uru       3.2 0.2           3.6


tabla26 <- svyby(~cpodbere, ~tipoesc + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla26[, 3:5] * 1, 1)
##                  cpodbere  se DEff.cpodbere
## 1-Particular.Bra      1.2 0.1           1.0
## 2-Publica.Bra         2.2 0.1           2.0
## 1-Particular.Uru      1.9 0.1           0.8
## 2-Publica.Uru         3.1 0.3           6.0

RL Univariada

1) país 2) sexo 3) Escolmaerecat23 4) tipoesc 5) freqescovacat 6) usocreme 7) fluorprof


modelo1.bin <- svyglm(prevbere ~ pais, disenio_urubra, family = quasibinomial())
summary(modelo1.bin)
## 
## Call:
## svyglm(formula = prevbere ~ pais, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.5548     0.0888    6.25  1.9e-08 ***
## paisUru       0.1216     0.1521    0.80     0.43    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo1.bin)
##               2.5 % 97.5 %
## (Intercept)  0.3808 0.7288
## paisUru     -0.1765 0.4196

modelo2.bin <- svyglm(prevbere ~ sexoinv, disenio_urubra, family = quasibinomial())
summary(modelo2.bin)
## 
## Call:
## svyglm(formula = prevbere ~ sexoinv, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.5989     0.1149    5.21  1.4e-06 ***
## sexoinvF      0.0507     0.1334    0.38      0.7    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo2.bin)
##               2.5 % 97.5 %
## (Intercept)  0.3737 0.8241
## sexoinvF    -0.2107 0.3122

modelo3.bin <- svyglm(prevbere ~ escolmaerecat23cat, disenio_urubra, family = quasibinomial())
summary(modelo3.bin)
## 
## Call:
## svyglm(formula = prevbere ~ escolmaerecat23cat, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              0.105      0.162    0.65   0.5176
## escolmaerecat23cat2-high school          0.486      0.162    2.99   0.0037
## escolmaerecat23cat3-elementary school    0.951      0.195    4.89  5.2e-06
##                                          
## (Intercept)                              
## escolmaerecat23cat2-high school       ** 
## escolmaerecat23cat3-elementary school ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.003)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo3.bin)
##                                         2.5 % 97.5 %
## (Intercept)                           -0.2120 0.4225
## escolmaerecat23cat2-high school        0.1678 0.8046
## escolmaerecat23cat3-elementary school  0.5700 1.3329

modelo4.bin <- svyglm(prevbere ~ tipoesc, disenio_urubra, family = quasibinomial())
summary(modelo4.bin)
## 
## Call:
## svyglm(formula = prevbere ~ tipoesc, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.0626     0.1159    0.54     0.59    
## tipoesc2-Publica   0.7631     0.1348    5.66  2.3e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo4.bin)
##                    2.5 % 97.5 %
## (Intercept)      -0.1646 0.2898
## tipoesc2-Publica  0.4989 1.0272

modelo5.bin <- svyglm(prevbere ~ freqescovacat, disenio_urubra, family = quasibinomial())
summary(modelo5.bin)
## 
## Call:
## svyglm(formula = prevbere ~ freqescovacat, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       1.059      0.130    8.13  4.8e-12 ***
## freqescovacat2-veces al d\xeda   -0.494      0.138   -3.58    6e-04 ***
## freqescovacat3-veces al d\xeda   -0.577      0.141   -4.09    1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo5.bin)
##                                  2.5 %  97.5 %
## (Intercept)                     0.8038  1.3144
## freqescovacat2-veces al d\xeda -0.7646 -0.2231
## freqescovacat3-veces al d\xeda -0.8531 -0.3002

modelo6.bin <- svyglm(prevbere ~ usocreme, disenio_urubra, family = quasibinomial())
summary(modelo6.bin)
## 
## Call:
## svyglm(formula = prevbere ~ usocreme, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.6142     0.0825    7.45  9.8e-11 ***
## usocreme2-No   0.4657     0.3953    1.18     0.24    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.002)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo6.bin)
##                2.5 % 97.5 %
## (Intercept)   0.4525 0.7759
## usocreme2-No -0.3091 1.2404

modelo7.bin <- svyglm(prevbere ~ fluorprof, disenio_urubra, family = quasibinomial())
summary(modelo7.bin)
## 
## Call:
## svyglm(formula = prevbere ~ fluorprof, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.5880     0.0966    6.09  3.8e-08 ***
## fluorprof2-No   0.0510     0.1280    0.40     0.69    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9991)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo7.bin)
##                 2.5 % 97.5 %
## (Intercept)    0.3987 0.7774
## fluorprof2-No -0.1998 0.3018

R POISSON UNIVARIADA


modelo1.poi <- svyglm(cpodbere ~ pais, disenio_urubra, family = quasipoisson())
summary(modelo1.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ pais, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.6716     0.0516   13.02  < 2e-16 ***
## paisUru       0.3590     0.0946    3.79  0.00029 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.184)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo1.poi)
##              2.5 % 97.5 %
## (Intercept) 0.5706 0.7727
## paisUru     0.1735 0.5445

modelo2.poi <- svyglm(cpodbere ~ sexoinv, disenio_urubra, family = quasipoisson())
summary(modelo2.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ sexoinv, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.88867    0.07574   11.73   <2e-16 ***
## sexoinvF     0.00562    0.06931    0.08     0.94    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.312)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo2.poi)
##               2.5 % 97.5 %
## (Intercept)  0.7402 1.0371
## sexoinvF    -0.1302 0.1415

modelo3.poi <- svyglm(cpodbere ~ escolmaerecat23cat, disenio_urubra, family = quasipoisson())
summary(modelo3.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ escolmaerecat23cat, disenio_urubra, 
##     family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              0.570      0.171    3.34   0.0013
## escolmaerecat23cat2-high school          0.330      0.142    2.33   0.0226
## escolmaerecat23cat3-elementary school    0.471      0.184    2.55   0.0126
##                                         
## (Intercept)                           **
## escolmaerecat23cat2-high school       * 
## escolmaerecat23cat3-elementary school * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.276)
## 
## Number of Fisher Scoring iterations: 6
confint(modelo3.poi)
##                                         2.5 % 97.5 %
## (Intercept)                           0.23573 0.9041
## escolmaerecat23cat2-high school       0.05181 0.6079
## escolmaerecat23cat3-elementary school 0.10937 0.8317

modelo4.poi <- svyglm(cpodbere ~ tipoesc, disenio_urubra, family = quasipoisson())
summary(modelo4.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ tipoesc, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.4710     0.0801    5.88  9.0e-08 ***
## tipoesc2-Publica   0.5271     0.0972    5.42  6.1e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.189)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo4.poi)
##                   2.5 % 97.5 %
## (Intercept)      0.3141 0.6280
## tipoesc2-Publica 0.3366 0.7176

modelo5.poi <- svyglm(cpodbere ~ freqescovacat, disenio_urubra, family = quasipoisson())
summary(modelo5.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ freqescovacat, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      1.0850     0.0589   18.41   <2e-16 ***
## freqescovacat2-veces al d\xeda  -0.2295     0.0793   -2.89   0.0049 ** 
## freqescovacat3-veces al d\xeda  -0.2735     0.0945   -2.90   0.0049 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.231)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo5.poi)
##                                  2.5 %   97.5 %
## (Intercept)                     0.9695  1.20054
## freqescovacat2-veces al d\xeda -0.3849 -0.07414
## freqescovacat3-veces al d\xeda -0.4587 -0.08837

modelo6.poi <- svyglm(cpodbere ~ usocreme, disenio_urubra, family = quasipoisson())
summary(modelo6.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ usocreme, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.8884     0.0601   14.79   <2e-16 ***
## usocreme2-No   0.0732     0.1998    0.37     0.72    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.315)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo6.poi)
##                2.5 % 97.5 %
## (Intercept)   0.7707 1.0062
## usocreme2-No -0.3184 0.4647

modelo7.poi <- svyglm(cpodbere ~ fluorprof, disenio_urubra, family = quasipoisson())
summary(modelo7.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ fluorprof, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.8562     0.0728   11.77   <2e-16 ***
## fluorprof2-No   0.0686     0.0790    0.87     0.39    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.314)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo7.poi)
##                  2.5 % 97.5 %
## (Intercept)    0.71360 0.9989
## fluorprof2-No -0.08614 0.2234