Read data (removed missing)

options(scipen=999)
library(tidyverse)
library(tableone)
library(writexl)
library(gtsummary)
library(survival)
library(ggplot2)
library(readxl)
library(xlsx)
library(mice)
library(survminer)
library(tidycmprsk)
library(pec)
library(casebase)
library(cmprsk)
library(crrstep)

## get site data for extral variables 
setwd("C:\\Users\\to909\\Desktop\\Andrew final\\Data\\Final Data")

Baylor0913<- read_excel("Baylor0913.xlsx") %>% select(study_id,days_admitted_rrt,rrt_crrt)
Indiana0913 <- read_excel("Indiana0913.xlsx") %>% select(study_id,days_admitted_rrt,rrt_crrt)
Jacksonville0913<- read_excel("Jacksonville0913.xlsx") %>% select(study_id,days_admitted_rrt,rrt_crrt)
Kentukey0913<- read_excel("Kentukey0913.xlsx")  %>% select(study_id,days_admitted_rrt,rrt_crrt)
MCW0913<- read_excel("MCW0913.xlsx") %>% select(study_id,days_admitted_rrt,rrt_crrt)
MGH0913<- read_excel("MGH0913.xlsx") %>% select(study_id,days_admitted_rrt,rrt_crrt)
Michigan0913<- read_excel("Michigan0913.xlsx") %>% select(study_id,days_admitted_rrt,rrt_crrt)
Oschner0913<- read_excel("Oschner0913.xlsx") %>% select(study_id,days_admitted_rrt,rrt_crrt)
Rochester0913<- read_excel("Rochester0913.xlsx") %>% select(study_id,days_admitted_rrt,rrt_crrt)
USC0913<- read_excel("USC0913.xlsx") %>% select(study_id) %>% mutate(days_admitted_rrt= NA,rrt_crrt= NA ) #USC doesn't have days_admitted_rrt
Yale0913<- read_excel("Yale0913.xlsx") %>% select(study_id,days_admitted_rrt,rrt_crrt)

all_extral_var <- rbind(Baylor0913,Indiana0913,Jacksonville0913,Kentukey0913,MCW0913,MGH0913,Michigan0913,Oschner0913,Rochester0913,USC0913,Yale0913)



# set wd
setwd("C:/Users/to909/Desktop/Projects/RRT subgroup analysis/RRT-")

# read master data
master <- read_excel("All_edited_new_12142022.xlsx")

master <- merge(master,all_extral_var,by="study_id",all.x = T)

# subgroup rrt 

master_rrt <- master %>% filter(rrt==1) 
####### data cleaning #### 
model_master_rrt <- master_rrt %>% select(time_90days,status_90days,age_admission,sex,White,hispanic_race,liver_transplant_listed,
                                      final_type_of_aki,  site,  etiology_cirrhosis, albumin_given_admission,
                                      loop_diuretic, 
                                      aldosterone_antagonist ,
                                      lactulose, 
                                      rifaximin, 
                                      prophylactic_antibiotic, 
                                      nsaids, 
                                      beta_blockers,
                                      diabetes, 
                                      cad, 
                                      htn, 
                                      ckd,
                                      ascites_admission, 
                                      encephalopathy_admission, 
                                      gi_bleed_admission, 
                                      peritonitis_admission, 
                                      hcc_admission, 
                                      tips_admission, 
                                      lvp_admission, 
                                      alcoholic_hepatitis_admission, 
                                      MELD_Na_baseline,
                                      creatinine_admission,
                                      log_na_admit,
                                      log_k_admit,
                                      log_cl_admit,
                                      log_co2_admit,
                                      log_bun_admit,
                                      log_alt_admit,
                                      log_alkphos_admit,
                                      log_tb_admit,
                                      log_alb_admit,
                                      log_inr_admit,
                                      log_wbc_admit,
                                      log_hct_admit,
                                      log_plt_admit,
                                      sbp_admission,
                                      dbp_admission
)



all_var_model <- names(model_master_rrt)

cat_var_model <- c("sex","White","hispanic_race","liver_transplant_listed",
                   "site",
                   "final_type_of_aki",
                   "encephalopathy_admission",
                   "etiology_cirrhosis" ,
                   "albumin_given_admission",
                   "loop_diuretic" ,
                   "aldosterone_antagonist" ,
                   "lactulose" ,
                   "rifaximin" ,
                   "prophylactic_antibiotic", 
                   "nsaids", 
                   "beta_blockers",
                   "diabetes" ,
                   "cad" ,
                   "ckd", 
                   "htn",
                   "ascites_admission", 
                   "encephalopathy_admission", 
                   "gi_bleed_admission" ,
                   "peritonitis_admission" ,
                   "hcc_admission" ,
                   "tips_admission" ,
                   "lvp_admission", 
                   "alcoholic_hepatitis_admission")


num_var_model <- setdiff(all_var_model,cat_var_model)


model_master_rrt <- model_master_rrt %>%  mutate_at(cat_var_model,factor)

model_master_rrt <- model_master_rrt %>% drop_na()

Fine & Grey model status_90days 1: death 2 :transplant 0: censored

covar_names <- c( "age_admission","sex","White","hispanic_race","liver_transplant_listed","site","MELD_Na_baseline")
covar_matrix <- model.matrix(as.formula(paste0("~ ", paste(covar_names, collapse='+'))), data = model_master_rrt)[,-1]
model1 <- cmprsk::crr(ftime=model_master_rrt$time_90days,fstatus=model_master_rrt$status_90days,cov1=covar_matrix,failcode=1,cencode=0)
summary(model1)
## Competing Risks Regression
## 
## Call:
## cmprsk::crr(ftime = model_master_rrt$time_90days, fstatus = model_master_rrt$status_90days, 
##     cov1 = covar_matrix, failcode = 1, cencode = 0)
## 
##                               coef exp(coef) se(coef)        z       p-value
## age_admission             0.007362     1.007  0.00684  1.07654 0.28000000000
## sex2                      0.000937     1.001  0.14160  0.00661 0.99000000000
## White1                    0.159939     1.173  0.17883  0.89439 0.37000000000
## hispanic_race1            0.093637     1.098  0.24240  0.38629 0.70000000000
## liver_transplant_listed1 -1.465297     0.231  0.23503 -6.23448 0.00000000045
## siteindiana               1.017996     2.768  0.38416  2.64991 0.00810000000
## sitejacksonville          0.024069     1.024  0.49484  0.04864 0.96000000000
## sitekentukey              1.574550     4.829  0.39385  3.99787 0.00006400000
## siteMCW                   0.898470     2.456  0.35009  2.56638 0.01000000000
## sitemgh                   0.956257     2.602  0.35418  2.69991 0.00690000000
## sitemichigan              0.817159     2.264  0.44388  1.84093 0.06600000000
## siteoschner               1.296138     3.655  0.42188  3.07232 0.00210000000
## siterochester             0.113181     1.120  0.38122  0.29689 0.77000000000
## siteusc                   0.256459     1.292  0.45707  0.56109 0.57000000000
## siteyale                  0.359825     1.433  0.38372  0.93773 0.35000000000
## MELD_Na_baseline          0.034892     1.036  0.00817  4.26870 0.00002000000
## 
##                          exp(coef) exp(-coef)  2.5%  97.5%
## age_admission                1.007      0.993 0.994  1.021
## sex2                         1.001      0.999 0.758  1.321
## White1                       1.173      0.852 0.827  1.666
## hispanic_race1               1.098      0.911 0.683  1.766
## liver_transplant_listed1     0.231      4.329 0.146  0.366
## siteindiana                  2.768      0.361 1.303  5.876
## sitejacksonville             1.024      0.976 0.388  2.702
## sitekentukey                 4.829      0.207 2.231 10.449
## siteMCW                      2.456      0.407 1.237  4.878
## sitemgh                      2.602      0.384 1.300  5.209
## sitemichigan                 2.264      0.442 0.949  5.404
## siteoschner                  3.655      0.274 1.599  8.356
## siterochester                1.120      0.893 0.530  2.364
## siteusc                      1.292      0.774 0.528  3.165
## siteyale                     1.433      0.698 0.676  3.040
## MELD_Na_baseline             1.036      0.966 1.019  1.052
## 
## Num. cases = 363
## Pseudo Log-likelihood = -1102 
## Pseudo likelihood ratio test = 132  on 16 df,

model selection stepwise

model_selection_variables <- paste(names(model_master_rrt), collapse='+')


# remove intercept
model_selection_data <- as.data.frame(model.matrix(as.formula(paste0("~ ", model_selection_variables)), data = model_master_rrt)[,-1])

model_selection_covariates <- paste(setdiff(names(model_selection_data), c("time_90days","status_90days")), collapse='+')
model_section_func  <- as.formula(paste0("Hist(time_90days, status_90days) ~ ",model_selection_covariates))

BIC_selection <- pec::selectFGR(model_section_func, cause = 1, data = model_selection_data,rule = "BIC", direction = c("backward","forward"))

BIC_selection$fit 
## 
## Right-censored response of a competing.risks model
## 
## No.Observations: 363 
## 
## Pattern:
##          
## Cause     event right.censored
##   1         214              0
##   2          58              0
##   unknown     0             91
## 
## 
## Fine-Gray model: analysis of cause 1 
## 
## Competing Risks Regression
## 
## Call:
## riskRegression::FGR(formula = Hist(time_90days, status_90days) ~ 
##     White1 + liver_transplant_listed1 + siteindiana + sitekentukey + 
##         siteMCW + sitemgh + siteoschner + etiology_cirrhosis2 + 
##         etiology_cirrhosis6 + etiology_cirrhosis7 + loop_diuretic1 + 
##         lactulose1 + rifaximin1 + prophylactic_antibiotic1 + 
##         ckd1 + peritonitis_admission1 + alcoholic_hepatitis_admission1 + 
##         log_co2_admit + log_alt_admit + log_alkphos_admit + log_tb_admit + 
##         log_alb_admit + log_plt_admit + sbp_admission, data = data, 
##     cause = cause)
## 
##                                   coef exp(coef) se(coef)     z
## White1                          0.3945     1.484  0.16669  2.37
## liver_transplant_listed1       -1.7786     0.169  0.23707 -7.50
## siteindiana                     0.6972     2.008  0.24474  2.85
## sitekentukey                    1.0228     2.781  0.28766  3.56
## siteMCW                         0.7079     2.030  0.24010  2.95
## sitemgh                         0.9004     2.461  0.19356  4.65
## siteoschner                     0.8827     2.417  0.32230  2.74
## etiology_cirrhosis2             0.6469     1.910  0.21633  2.99
## etiology_cirrhosis6             0.5740     1.775  0.22070  2.60
## etiology_cirrhosis7             0.5448     1.724  0.24369  2.24
## loop_diuretic1                  0.2547     1.290  0.15838  1.61
## lactulose1                      0.3266     1.386  0.17554  1.86
## rifaximin1                     -0.3156     0.729  0.19338 -1.63
## prophylactic_antibiotic1       -0.4111     0.663  0.25088 -1.64
## ckd1                           -0.5016     0.606  0.18656 -2.69
## peritonitis_admission1          0.2713     1.312  0.18739  1.45
## alcoholic_hepatitis_admission1 -0.3505     0.704  0.20485 -1.71
## log_co2_admit                  -0.5287     0.589  0.23384 -2.26
## log_alt_admit                   0.1755     1.192  0.08120  2.16
## log_alkphos_admit              -0.2376     0.789  0.10373 -2.29
## log_tb_admit                    0.2945     1.342  0.06856  4.30
## log_alb_admit                  -0.6795     0.507  0.33761 -2.01
## log_plt_admit                  -0.3289     0.720  0.12314 -2.67
## sbp_admission                  -0.0153     0.985  0.00471 -3.25
##                                          p-value
## White1                         0.018000000000000
## liver_transplant_listed1       0.000000000000063
## siteindiana                    0.004400000000000
## sitekentukey                   0.000380000000000
## siteMCW                        0.003200000000000
## sitemgh                        0.000003300000000
## siteoschner                    0.006200000000000
## etiology_cirrhosis2            0.002800000000000
## etiology_cirrhosis6            0.009300000000000
## etiology_cirrhosis7            0.025000000000000
## loop_diuretic1                 0.110000000000000
## lactulose1                     0.063000000000000
## rifaximin1                     0.100000000000000
## prophylactic_antibiotic1       0.100000000000000
## ckd1                           0.007200000000000
## peritonitis_admission1         0.150000000000000
## alcoholic_hepatitis_admission1 0.087000000000000
## log_co2_admit                  0.024000000000000
## log_alt_admit                  0.031000000000000
## log_alkphos_admit              0.022000000000000
## log_tb_admit                   0.000017000000000
## log_alb_admit                  0.044000000000000
## log_plt_admit                  0.007600000000000
## sbp_admission                  0.001200000000000
## 
##                                exp(coef) exp(-coef)  2.5% 97.5%
## White1                             1.484      0.674 1.070 2.057
## liver_transplant_listed1           0.169      5.922 0.106 0.269
## siteindiana                        2.008      0.498 1.243 3.244
## sitekentukey                       2.781      0.360 1.583 4.887
## siteMCW                            2.030      0.493 1.268 3.249
## sitemgh                            2.461      0.406 1.684 3.596
## siteoschner                        2.417      0.414 1.285 4.547
## etiology_cirrhosis2                1.910      0.524 1.250 2.918
## etiology_cirrhosis6                1.775      0.563 1.152 2.736
## etiology_cirrhosis7                1.724      0.580 1.069 2.780
## loop_diuretic1                     1.290      0.775 0.946 1.760
## lactulose1                         1.386      0.721 0.983 1.956
## rifaximin1                         0.729      1.371 0.499 1.065
## prophylactic_antibiotic1           0.663      1.508 0.405 1.084
## ckd1                               0.606      1.651 0.420 0.873
## peritonitis_admission1             1.312      0.762 0.908 1.894
## alcoholic_hepatitis_admission1     0.704      1.420 0.471 1.052
## log_co2_admit                      0.589      1.697 0.373 0.932
## log_alt_admit                      1.192      0.839 1.016 1.397
## log_alkphos_admit                  0.789      1.268 0.643 0.966
## log_tb_admit                       1.342      0.745 1.174 1.536
## log_alb_admit                      0.507      1.973 0.262 0.982
## log_plt_admit                      0.720      1.389 0.565 0.916
## sbp_admission                      0.985      1.015 0.976 0.994
## 
## Num. cases = 363
## Pseudo Log-likelihood = -1055 
## Pseudo likelihood ratio test = 225  on 24 df,
## 
## Convergence: TRUE

#cox ph regression model transplant free — outcome death or transplant

model_master_rrt$status_90days_combined <- ifelse(model_master_rrt$status_90days==1|model_master_rrt$status_90days==2,1,0)

cox_model_combined <- coxph(Surv(time_90days,status_90days_combined) ~ age_admission+sex+White+hispanic_race+site+liver_transplant_listed+MELD_Na_baseline, data =model_master_rrt)

summary(cox_model_combined)
## Call:
## coxph(formula = Surv(time_90days, status_90days_combined) ~ age_admission + 
##     sex + White + hispanic_race + site + liver_transplant_listed + 
##     MELD_Na_baseline, data = model_master_rrt)
## 
##   n= 363, number of events= 272 
## 
##                               coef exp(coef)  se(coef)      z  Pr(>|z|)    
## age_admission             0.003987  1.003995  0.005153  0.774  0.439109    
## sex2                     -0.016757  0.983383  0.129261 -0.130  0.896853    
## White1                    0.041176  1.042035  0.155846  0.264  0.791620    
## hispanic_race1           -0.146831  0.863440  0.221962 -0.662  0.508281    
## siteindiana               1.024198  2.784862  0.399980  2.561  0.010448 *  
## sitejacksonville          1.096194  2.992755  0.414786  2.643  0.008222 ** 
## sitekentukey              1.468399  4.342277  0.408509  3.595  0.000325 ***
## siteMCW                   0.752270  2.121811  0.401326  1.874  0.060867 .  
## sitemgh                   1.035486  2.816475  0.388739  2.664  0.007729 ** 
## sitemichigan              0.522844  1.686818  0.508137  1.029  0.303507    
## siteoschner               1.351810  3.864412  0.432328  3.127  0.001767 ** 
## siterochester             0.160980  1.174662  0.408115  0.394  0.693250    
## siteusc                   1.129754  3.094894  0.411814  2.743  0.006081 ** 
## siteyale                  0.423606  1.527460  0.427582  0.991  0.321831    
## liver_transplant_listed1  0.125548  1.133769  0.141228  0.889  0.374019    
## MELD_Na_baseline          0.033407  1.033971  0.008042  4.154 0.0000326 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                          exp(coef) exp(-coef) lower .95 upper .95
## age_admission               1.0040     0.9960    0.9939     1.014
## sex2                        0.9834     1.0169    0.7633     1.267
## White1                      1.0420     0.9597    0.7678     1.414
## hispanic_race1              0.8634     1.1582    0.5589     1.334
## siteindiana                 2.7849     0.3591    1.2716     6.099
## sitejacksonville            2.9928     0.3341    1.3274     6.747
## sitekentukey                4.3423     0.2303    1.9498     9.670
## siteMCW                     2.1218     0.4713    0.9663     4.659
## sitemgh                     2.8165     0.3551    1.3147     6.034
## sitemichigan                1.6868     0.5928    0.6231     4.567
## siteoschner                 3.8644     0.2588    1.6561     9.017
## siterochester               1.1747     0.8513    0.5279     2.614
## siteusc                     3.0949     0.3231    1.3807     6.937
## siteyale                    1.5275     0.6547    0.6607     3.531
## liver_transplant_listed1    1.1338     0.8820    0.8596     1.495
## MELD_Na_baseline            1.0340     0.9671    1.0178     1.050
## 
## Concordance= 0.659  (se = 0.018 )
## Likelihood ratio test= 74.04  on 16 df,   p=0.000000002
## Wald test            = 66.67  on 16 df,   p=0.00000004
## Score (logrank) test = 71.31  on 16 df,   p=0.000000006