# Mindanao State University
# General Santos City
# Introduction to R base commands
# Prepared by: Ancheta, Rose Ann
# Faculty
# Math Department
# April 03, 2023
# Processing of continuous data
# Using random number generator

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements 
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  2.35515061  2.03784276  4.48406460  2.33469818  2.28778070  0.07512243
##  [7]  0.24620434  0.09135989  3.73369035  2.44040058  3.09213733  0.16562831
## [13]  2.65014108  2.04954014  4.20662936 -0.08443052  4.03450523  1.04067316
## [19]  1.75746407  2.71914849
data[1:300] # display the first 300 elements 
##   [1]  2.35515061  2.03784276  4.48406460  2.33469818  2.28778070  0.07512243
##   [7]  0.24620434  0.09135989  3.73369035  2.44040058  3.09213733  0.16562831
##  [13]  2.65014108  2.04954014  4.20662936 -0.08443052  4.03450523  1.04067316
##  [19]  1.75746407  2.71914849  2.48328238  0.38909565  2.04769039  2.66033505
##  [25]  2.25877033  3.50824569  0.88389432  1.56043456  3.02613288 -0.93812646
##  [31]  1.04872914  2.55068966  2.21895952  2.15956329  0.13285920  1.82359943
##  [37]  1.51302690  5.64466788  0.65656697  2.56922037  4.65118933  1.94578859
##  [43]  1.90167973 -0.11190364  3.48220261  0.64182019  3.06094867 -1.31938002
##  [49]  1.39251400  1.93665095  3.72500254  2.28443498  3.56954452  3.70893496
##  [55]  0.77563486  2.13636066  2.70127385  4.79739817  4.29412129  2.29164173
##  [61]  4.10122671  2.07341361  5.00095972  2.81330435  1.36619255  3.76867261
##  [67]  4.59242247  1.93722085  0.85088631  0.82800654  5.09289608  2.89073251
##  [73]  3.42862766  2.61635435  1.08447838  2.00951686  0.77805371  5.48022270
##  [79]  1.28090664  3.59344584  2.18920481  3.06645979  1.89064195  1.64921807
##  [85]  4.51202507  3.59251420  0.64036584  2.47983829  2.67312867  2.99724581
##  [91]  2.35532536  4.12805268  3.70915116  1.94072311  0.85281593  1.36161321
##  [97]  2.43107658  1.99641704  1.62778571  0.57227230  1.48241532  0.03115562
## [103]  0.68764291  2.30130641  2.77024477  2.50576128 -1.33406554  3.02614094
## [109]  0.69587068  0.31273944 -1.33038561  0.03344238  3.78913611  2.04691494
## [115]  4.74626513  3.12588641  1.07437728  2.27269291  1.69907473  3.55841068
## [121]  2.00348198  2.56060818  2.66583691  2.91671536  1.24460813  1.84448846
## [127]  2.25963705  2.88608820  2.10800830  0.99367552  4.59542339  2.23903440
## [133]  0.26797534  1.95983495  5.29173663  0.71395839  1.45719232  2.21435680
## [139]  1.74523607  1.94125797  1.53908021  1.51258150  1.68844892  3.30855099
## [145]  2.46855981  3.39395057  2.33069404  2.17289937  0.69635263  1.29971384
## [151] -0.38224264  2.55754028  0.88614590  0.90970822  1.61480175  3.15898442
## [157]  3.14468844  1.43296918  1.02601351  2.92585918  1.74804206  3.03484524
## [163]  1.34585374  1.55113041  2.78249456  1.21592970  2.84894149  2.10984117
## [169]  1.94401527  0.85538371  3.11895256 -0.72693519  1.92573552  4.67793850
## [175]  2.79811979  2.68168373  0.89681319  2.87617925  2.56327231  2.49610497
## [181]  2.14158517  2.85865619  2.16529780  3.49724417  3.21406291  2.17678982
## [187]  1.77899248  2.00472888  2.91373201  1.79974062  3.45427861  1.97932486
## [193]  1.68231463  1.41363388  3.74986845  4.70679105  1.21022745  1.82097921
## [199]  2.36162544  2.67947565  2.90313915  1.32784683  1.30782111  3.27268588
## [205]  1.28847544  0.38654204  3.37796299  2.84897416  0.96939111  2.63135443
## [211]  2.38558057  3.70835530 -0.19187835  2.55937454  1.84615779  3.60487174
## [217]  4.13523814  2.46019280  3.33181466  0.88235729 -0.12913278  1.33961279
## [223]  1.39926908  1.68149629  3.57827983 -0.34423730  4.60365151  3.92204841
## [229]  3.13291995  2.49557168  3.45538272  1.12376745  0.75919140  1.86512235
## [235]  2.13503237  0.38135706  1.88328559 -0.15127975 -0.75704303  3.05488975
## [241]  1.03274913  2.34104865  1.14084445  1.79617054  2.25457266  2.96713893
## [247]  0.45651298  1.08766466  0.16768128  1.49472162  0.90654507  3.80000074
## [253]  1.55864827  0.37010129  0.44461967 -0.19406676  2.51789848  2.66001437
## [259] -0.44919453  2.38675983  0.01116665  2.18534801  0.46476382  0.87442404
## [265]  1.35559978  4.08734429  4.99785863  1.74389633  3.78091413  2.88176841
## [271]  3.51217710  1.16953394  3.36791110  2.98506166  0.86307659  1.68986727
## [277]  1.66661775  0.82646236 -0.18296022 -0.30660790 -1.57096039  2.52950315
## [283]  2.48209636  2.04962171  1.12820744  0.49525717  3.52433781  3.03065919
## [289]  0.43568730  2.88136364  0.79351574  1.54089976  2.19407813  2.93052285
## [295]  2.65489775 -0.80477697  2.18107157  1.27741555  1.63286301  2.42564155
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle) 

hist(data, breaks=40,col="lightblue",main = maintitle)  

hist(data, breaks=300,col="gray",main = maintitle) 

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle) 

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?

# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -3.03210392 -2.93913499 -2.84616606 -2.75319713 -2.66022820 -2.56725927
##   [7] -2.47429034 -2.38132141 -2.28835248 -2.19538355 -2.10241462 -2.00944569
##  [13] -1.91647676 -1.82350784 -1.73053891 -1.63756998 -1.54460105 -1.45163212
##  [19] -1.35866319 -1.26569426 -1.17272533 -1.07975640 -0.98678747 -0.89381854
##  [25] -0.80084961 -0.70788069 -0.61491176 -0.52194283 -0.42897390 -0.33600497
##  [31] -0.24303604 -0.15006711 -0.05709818  0.03587075  0.12883968  0.22180861
##  [37]  0.31477754  0.40774646  0.50071539  0.59368432  0.68665325  0.77962218
##  [43]  0.87259111  0.96556004  1.05852897  1.15149790  1.24446683  1.33743576
##  [49]  1.43040469  1.52337362  1.61634254  1.70931147  1.80228040  1.89524933
##  [55]  1.98821826  2.08118719  2.17415612  2.26712505  2.36009398  2.45306291
##  [61]  2.54603184  2.63900077  2.73196969  2.82493862  2.91790755  3.01087648
##  [67]  3.10384541  3.19681434  3.28978327  3.38275220  3.47572113  3.56869006
##  [73]  3.66165899  3.75462792  3.84759685  3.94056577  4.03353470  4.12650363
##  [79]  4.21947256  4.31244149  4.40541042  4.49837935  4.59134828  4.68431721
##  [85]  4.77728614  4.87025507  4.96322400  5.05619292  5.14916185  5.24213078
##  [91]  5.33509971  5.42806864  5.52103757  5.61400650  5.70697543  5.79994436
##  [97]  5.89291329  5.98588222  6.07885115  6.17182008
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles 
##         0%        25%        50%        75%       100% 
## -3.0321039  0.9682219  2.0912618  3.0629656  6.1718201
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
11
## [1] 11
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data 
##    [1]  2.355150606  2.037842755  4.484064601  2.334698179  2.287780703
##    [6]  0.075122430  0.246204337  0.091359888  3.733690345  2.440400579
##   [11]  3.092137328  0.165628307  2.650141076  2.049540138  4.206629360
##   [16] -0.084430522  4.034505232  1.040673159  1.757464067  2.719148486
##   [21]  2.483282379  0.389095645  2.047690385  2.660335052  2.258770331
##   [26]  3.508245688  0.883894321  1.560434559  3.026132880 -0.938126464
##   [31]  1.048729142  2.550689658  2.218959522  2.159563291  0.132859196
##   [36]  1.823599432  1.513026897  5.644667883  0.656566968  2.569220366
##   [41]  4.651189331  1.945788591  1.901679735 -0.111903638  3.482202612
##   [46]  0.641820193  3.060948671 -1.319380018  1.392513998  1.936650954
##   [51]  3.725002541  2.284434983  3.569544521  3.708934961  0.775634863
##   [56]  2.136360660  2.701273846  4.797398169  4.294121293  2.291641727
##   [61]  4.101226706  2.073413613  5.000959718  2.813304353  1.366192547
##   [66]  3.768672611  4.592422468  1.937220850  0.850886310  0.828006537
##   [71]  5.092896076  2.890732510  3.428627655  2.616354349  1.084478378
##   [76]  2.009516856  0.778053712  5.480222696  1.280906642  3.593445839
##   [81]  2.189204807  3.066459788  1.890641946  1.649218073  4.512025072
##   [86]  3.592514196  0.640365839  2.479838287  2.673128671  2.997245812
##   [91]  2.355325359  4.128052680  3.709151156  1.940723114  0.852815935
##   [96]  1.361613212  2.431076582  1.996417040  1.627785708  0.572272296
##  [101]  1.482415319  0.031155623  0.687642913  2.301306406  2.770244766
##  [106]  2.505761281 -1.334065540  3.026140940  0.695870683  0.312739437
##  [111] -1.330385611  0.033442380  3.789136114  2.046914940  4.746265132
##  [116]  3.125886413  1.074377277  2.272692915  1.699074735  3.558410683
##  [121]  2.003481984  2.560608181  2.665836913  2.916715358  1.244608129
##  [126]  1.844488461  2.259637053  2.886088196  2.108008305  0.993675520
##  [131]  4.595423389  2.239034398  0.267975340  1.959834948  5.291736625
##  [136]  0.713958388  1.457192318  2.214356804  1.745236074  1.941257968
##  [141]  1.539080213  1.512581504  1.688448915  3.308550985  2.468559810
##  [146]  3.393950573  2.330694041  2.172899372  0.696352625  1.299713838
##  [151] -0.382242642  2.557540278  0.886145903  0.909708223  1.614801751
##  [156]  3.158984424  3.144688442  1.432969184  1.026013507  2.925859181
##  [161]  1.748042064  3.034845243  1.345853744  1.551130414  2.782494562
##  [166]  1.215929698  2.848941491  2.109841174  1.944015270  0.855383708
##  [171]  3.118952556 -0.726935185  1.925735520  4.677938501  2.798119786
##  [176]  2.681683727  0.896813195  2.876179249  2.563272311  2.496104970
##  [181]  2.141585172  2.858656187  2.165297803  3.497244175  3.214062912
##  [186]  2.176789823  1.778992477  2.004728878  2.913732009  1.799740624
##  [191]  3.454278613  1.979324862  1.682314628  1.413633885  3.749868448
##  [196]  4.706791046  1.210227447  1.820979211  2.361625438  2.679475652
##  [201]  2.903139149  1.327846826  1.307821114  3.272685878  1.288475436
##  [206]  0.386542041  3.377962993  2.848974158  0.969391111  2.631354432
##  [211]  2.385580571  3.708355304 -0.191878346  2.559374537  1.846157790
##  [216]  3.604871742  4.135238137  2.460192795  3.331814661  0.882357288
##  [221] -0.129132781  1.339612786  1.399269081  1.681496293  3.578279834
##  [226] -0.344237298  4.603651505  3.922048411  3.132919947  2.495571681
##  [231]  3.455382720  1.123767447  0.759191400  1.865122347  2.135032369
##  [236]  0.381357055  1.883285586 -0.151279755 -0.757043028  3.054889751
##  [241]  1.032749131  2.341048654  1.140844448  1.796170538  2.254572656
##  [246]  2.967138929  0.456512980  1.087664655  0.167681279  1.494721617
##  [251]  0.906545072  3.800000735  1.558648266  0.370101292  0.444619668
##  [256] -0.194066761  2.517898481  2.660014367 -0.449194525  2.386759828
##  [261]  0.011166652  2.185348014  0.464763816  0.874424036  1.355599780
##  [266]  4.087344291  4.997858626  1.743896332  3.780914128  2.881768415
##  [271]  3.512177096  1.169533942  3.367911104  2.985061656  0.863076595
##  [276]  1.689867265  1.666617751  0.826462356 -0.182960219 -0.306607897
##  [281] -1.570960393  2.529503154  2.482096357  2.049621712  1.128207445
##  [286]  0.495257169  3.524337808  3.030659185  0.435687297  2.881363639
##  [291]  0.793515740  1.540899759  2.194078130  2.930522846  2.654897754
##  [296] -0.804776971  2.181071568  1.277415549  1.632863008  2.425641547
##  [301]  0.834862288  0.867317659  1.417117056 -1.465767851  3.189287748
##  [306]  2.218335610  2.385605742  0.745596294  3.846844514 -0.293381707
##  [311]  3.549456502 -0.938651823  2.422045156  0.633884670  1.234301884
##  [316]  5.377325215  1.889350594  3.638136790 -0.552912653  2.127272122
##  [321]  2.935746536  0.880031059 -0.748029080  6.171820075  4.499856615
##  [326] -1.931323615  4.327854771  2.541508395  5.312239912  2.250146922
##  [331]  4.523247362  0.340278684  0.060596409  1.148533770  2.056697967
##  [336]  2.221620580  3.249830262 -0.058297231  2.167555547 -0.202726186
##  [341]  3.477293812  0.518690902  1.293467179  5.607258747  2.628624487
##  [346]  4.523853957  3.438987547  3.214987061  3.568588946  1.330787489
##  [351]  1.057882615  0.958245866  2.208839113  1.504112182  1.511911877
##  [356]  0.233947797 -0.046471909  4.647026086  3.369564942  3.700364812
##  [361]  3.560674306  2.953636836  0.080946757  1.852942614  1.803336820
##  [366]  3.860592067  1.107694776  2.907235251  0.925754866  3.131695324
##  [371]  2.961769827  1.607747193  1.000778476 -0.587831244  1.435040453
##  [376] -0.410771524 -1.569148185  1.995837292  3.545443715  1.818171825
##  [381]  0.978969557  2.871893249 -2.206846028  4.228216416  3.729382704
##  [386]  3.015991437  4.035289365 -0.127668897  2.739061542 -0.862073537
##  [391]  1.574009139  2.993038897 -0.806419899  3.578044781  2.379476345
##  [396]  1.542734984  2.859282409 -0.016931752  4.609057161  3.125745259
##  [401] -0.612877989  1.758565325  4.526386379  4.865329530  4.604677240
##  [406]  1.181497195  0.908821090 -0.780073750  3.377281098  2.901794234
##  [411]  2.477845386  2.603962316  2.176764873  0.440190337  2.117713831
##  [416]  1.021562360  0.698167977  2.793280876 -0.280407670  1.404543790
##  [421]  2.131678600  4.976641041  1.748579698  3.327428735  4.996529388
##  [426]  3.684569558  3.883329898  3.094632222  1.899708354  2.362732602
##  [431]  2.091775276  1.502873771  2.415499000  1.236500306  3.319895414
##  [436]  0.406080575  2.502279914  2.775391312  0.427425463  0.642407122
##  [441]  2.194521973  1.590472685  0.900818257  4.261912232  0.512064283
##  [446]  3.682470052  5.190277891  2.438799248  2.156885844  4.113827686
##  [451]  0.881111507  1.760659508  1.863012463  2.380053693  0.940952689
##  [456]  1.662256115  5.056488927  2.090748348  0.695894016  2.016282896
##  [461]  1.392682250  1.206051299  1.609686601  2.667437686  0.041488750
##  [466] -0.496294446  1.460513553  2.095065070  1.090947359  1.201415801
##  [471]  0.603368368  3.612917721  2.516166865  3.525292314  3.200073646
##  [476]  0.711614614  3.462177038  0.081926905  1.557969532 -0.041376406
##  [481]  1.382459493  3.990845828  3.698306781  3.261057416 -0.115064953
##  [486]  3.631331429  2.258793365  4.839719502  1.808337152  0.385830771
##  [491] -0.559890903 -0.069016176  0.070711444  2.990980195  1.654535954
##  [496]  1.235918885  1.403164661  1.917360020  2.826475537 -0.834204359
##  [501]  0.779800621  1.611117596  2.048654830  0.580877979  3.026427862
##  [506]  0.842043801  2.623589108  0.844410636 -0.685968825  1.114074591
##  [511]  1.701702581  5.067613879  4.314816570  4.175804388  1.548534208
##  [516]  2.866514727  0.646550549  4.012731897 -1.017398295  3.641650109
##  [521]  3.461067669  3.173118045  0.385334751  1.904036687  1.330792899
##  [526] -0.126368757  1.686652380  0.054269871  2.687181948 -1.248502914
##  [531]  0.948732588  3.509273859  4.194702761  3.807183093  3.990041171
##  [536]  0.566196493  2.321997313  1.560641696  3.292109946  5.064179158
##  [541]  2.385009751  1.050325979  2.217017618  2.798292375  4.274637180
##  [546]  2.043169342  2.896547954 -0.231854903  1.595249561  0.498654747
##  [551]  4.157274079  1.543097289  3.730660539  5.102465079  1.263503205
##  [556]  3.240144399  2.152032556  2.309929103  2.960325928  2.237081022
##  [561]  1.884649978  2.171957945  2.611740672  1.427387166  3.136034155
##  [566]  2.682420928  1.775648580  0.113756562  3.034178233  3.126653540
##  [571]  3.227582464 -0.854388649  2.722073018  1.958376430  2.262606274
##  [576] -0.121435503  2.801981002  2.020598306  2.817741795  1.613274682
##  [581]  3.142733325  0.484272993  3.208649410  3.035083282  1.479167395
##  [586]  1.150790759  3.701087768  1.085508002  0.648694871  1.672787574
##  [591] -0.030538133 -0.329367811  3.614505846  2.895135526 -1.117699726
##  [596] -0.257930268  1.560001235  4.226804028  0.580031301  3.589155364
##  [601]  2.924109030  3.509968140  0.382780650  2.768471804  1.146847999
##  [606]  1.199226841  1.199200701  1.545234131  2.627762914 -1.005531485
##  [611]  2.675528345  0.942385619  2.236110796  1.666614613  2.466047144
##  [616] -0.075316639  1.222873683  2.891571440  2.675414137  3.624419512
##  [621]  1.646911785  2.658578779 -0.031688641  0.735050494  0.451091386
##  [626]  2.451128923  0.949997149  3.514244854  1.863204944  3.836204974
##  [631] -0.603021480 -0.319337024  1.257422422  2.394351043  0.766818194
##  [636]  1.052838544  0.515610056  3.746165928  1.617630643  2.651236998
##  [641]  1.134091136  5.020876670  3.071165818  2.492117405  1.817997713
##  [646]  0.574436500  0.911932446  5.210762114  0.596416402  2.332503344
##  [651]  0.190461556  0.949514332 -2.770135288  1.819223138  3.102507774
##  [656]  2.035814623  0.971425828  1.086469368  2.465583617  3.502209592
##  [661]  3.111489920  0.997750018  0.808803748  1.734104825  4.070072017
##  [666]  1.172146903  3.981510493  0.640949390  4.214419136  0.953116807
##  [671]  3.623449570  2.028355115 -0.710511579 -0.938922115  2.358686369
##  [676]  1.901396131  1.854185094 -1.533894307  0.283680000  2.688017375
##  [681]  0.687639989 -0.277678155  2.343456428  0.157321335  3.313735230
##  [686] -0.001917727  3.104180695 -1.367541495  2.117766945  2.491595483
##  [691]  3.680403659  3.016596668  1.502181854  0.672837105  2.434811529
##  [696] -0.769261133  1.620867105  2.573075480  1.812328080  2.949681366
##  [701]  1.137050707  0.834973784  1.024347582  2.579634797  3.784555886
##  [706]  4.814488856  2.532590948 -1.616980266  3.317233668  0.158837240
##  [711]  3.309842897  0.483705893 -0.311526133 -0.160252647  0.579607843
##  [716]  2.524513868  1.763920835  3.547768474  2.629925806  1.446274683
##  [721]  3.139622787 -1.076106312  4.209918891  1.971537779  3.883913854
##  [726]  3.290520667 -1.279874790  2.811665112  0.878562834 -0.758010997
##  [731]  4.922818682  1.548811158  0.494741434  2.180618966  2.864407536
##  [736]  0.731104652  2.724412443  0.254555588  0.884565159  1.549724337
##  [741]  1.736007887  4.449264483  2.472529017  1.848016504  4.388478713
##  [746]  3.127112122  0.583950410  2.172654230  3.458216292  1.438083433
##  [751]  4.162619109  3.014258907  4.010867467  1.921455123  1.579531263
##  [756]  2.452007478  3.430592621  4.058468777  4.044830485  3.753169527
##  [761]  1.338781785  5.294234803  3.998838443  4.701717786  2.621254734
##  [766] -0.556415556  1.616064095  2.213889366  1.595847208  4.916869844
##  [771]  1.433936301  3.507015065  0.525193398  0.943896794  4.729544317
##  [776]  2.621739869  2.191350081  2.548088521  5.663356067  3.321834371
##  [781]  3.852457886  1.466556031  4.348955377  2.085881452  1.753753959
##  [786]  1.821295814  1.081896849  3.061800861 -0.536425837  2.095775083
##  [791]  0.445717207  2.586493260  0.964714438  3.861183008  0.744046046
##  [796]  1.720898812  0.910057380  4.059577619  1.236213694  3.783689667
##  [801]  3.689437687  1.189495131  3.357646302  3.492574443 -0.503454645
##  [806]  1.407870753  3.343108270  2.986354097  3.354839962  0.345949115
##  [811]  0.331047807  2.122137315  4.523316682 -0.701958913  4.137776039
##  [816]  3.639109781  3.088262728  1.214752689  2.999429967  0.799842070
##  [821]  2.981307972  2.212414048 -1.843412861  1.986753854  1.963792069
##  [826]  0.537522800  3.431876325  4.073115785  3.562710086  1.311904743
##  [831]  0.607830476  2.313241123  2.420648651  1.758383243  2.170864172
##  [836]  4.566958367  1.923662787  3.859770508  1.089309542  3.283251142
##  [841]  3.777681162 -0.042870618  0.228009452  2.983255926  3.376326400
##  [846]  2.918136510 -0.271718132  1.819263474  3.307831732  2.155793387
##  [851]  4.777552606  1.094635281 -0.213748082 -0.075303888  3.617827967
##  [856]  5.189498755  1.874028703  1.709349330 -1.339822423  2.471665915
##  [861]  1.723266216  2.144190837 -0.402399458  4.278697142  0.117220935
##  [866]  2.948487184  3.207420630  2.517850022  2.284099311  2.950868117
##  [871]  0.321583885  2.453889330  3.283546374  2.139452847  3.920844279
##  [876]  2.597185557  1.243518522  3.700372388  0.472013158  2.566415927
##  [881]  1.979615293  3.203406812  1.142641745 -0.728362693  5.160650976
##  [886]  4.296301492  2.331556495  1.479219374  3.999919988  1.587084675
##  [891]  3.584323715  1.792678198  2.782970876  2.571085555  4.776146009
##  [896] -0.913720143 -0.013607980  1.384850709  3.478512342 -0.577342708
##  [901]  3.175825349  1.647118310  0.252997322  1.242159984  2.515658829
##  [906]  3.194430692  2.880583464  2.076392752  2.548392495  0.314345880
##  [911]  2.499442465  2.438108674 -0.447928654  3.020947989  2.264994095
##  [916]  3.185023015  3.527484012 -0.204099460  2.730253717  0.241468427
##  [921]  2.452241248  1.425350978  1.652593004  3.127966958  1.604610741
##  [926]  4.881506774  0.193686055  1.735364638  0.277461297  1.725632266
##  [931]  0.328657728  1.978512011  2.170329949  1.474591967  2.348535919
##  [936]  2.829876749  0.733224212  4.885930368  0.417359737 -0.343943002
##  [941]  3.347158588  2.378416211 -0.349784716  2.412862549  2.168250581
##  [946] -3.032103915  3.171089363  3.685878294  2.876424832  3.933584123
##  [951]  5.142913027 -0.487878019  4.157600676  1.922997351  4.703886760
##  [956]  2.637116083  0.150006877  0.994843708 -0.647925626 -0.355732656
##  [961]  2.310294921  1.490850755  3.785227191  1.148375541  0.959298381
##  [966]  2.596610196  0.236544118  4.759620964  2.047609185  1.770965072
##  [971]  2.263903064 -0.479213348  3.110442212  3.860047987  0.690683803
##  [976]  4.785014664  2.983873647  1.001276602  0.351728563  4.868495400
##  [981]  0.723121894  2.697136340  1.700250041  1.427060090  2.964862526
##  [986]  3.516249716  0.744672394  1.520555126  1.922225671  2.273491312
##  [991]  2.338850542  0.824869100  3.188331658  0.616821194  2.161412908
##  [996]  2.533024941 -0.191815314  1.986450673 -0.016335122  2.175432632
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05) 
##         5% 
## -0.4966525
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
16
## [1] 16
quantile(data,prob = 0.95) 
##      95% 
## 4.568232
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3) 

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05)) 
##         5% 
## -0.4966525
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [109] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [325] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them 
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE] 
##  [1] -0.9381265 -1.3193800 -1.3340655 -1.3303856 -0.7269352 -0.7570430
##  [7] -1.5709604 -0.8047770 -1.4657679 -0.9386518 -0.5529127 -0.7480291
## [13] -1.9313236 -0.5878312 -1.5691482 -2.2068460 -0.8620735 -0.8064199
## [19] -0.6128780 -0.7800738 -0.5598909 -0.8342044 -0.6859688 -1.0173983
## [25] -1.2485029 -0.8543886 -1.1176997 -1.0055315 -0.6030215 -2.7701353
## [31] -0.7105116 -0.9389221 -1.5338943 -1.3675415 -0.7692611 -1.6169803
## [37] -1.0761063 -1.2798748 -0.7580110 -0.5564156 -0.5364258 -0.5034546
## [43] -0.7019589 -1.8434129 -1.3398224 -0.7283627 -0.9137201 -0.5773427
## [49] -3.0321039 -0.6479256
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.568232
(Top5Percent <- (data >= Cutoff)) 
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [61] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [133] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [325] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [769] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [853] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values 
## [1] 50
data[Top5Percent==TRUE] 
##  [1] 5.644668 4.651189 4.797398 5.000960 4.592422 5.092896 5.480223 4.746265
##  [9] 4.595423 5.291737 4.677939 4.706791 4.603652 4.997859 5.377325 6.171820
## [17] 5.312240 5.607259 4.647026 4.609057 4.865330 4.604677 4.976641 4.996529
## [25] 5.190278 5.056489 4.839720 5.067614 5.064179 5.102465 5.020877 5.210762
## [33] 4.814489 4.922819 5.294235 4.701718 4.916870 4.729544 5.663356 4.777553
## [41] 5.189499 5.160651 4.776146 4.881507 4.885930 5.142913 4.703887 4.759621
## [49] 4.785015 4.868495