# Mindanao State University
# General Santos City
#Submitted by: Roland Fritz C. Adam
# Lab Exercise 1: How to create Lines in with different styles in R
# Step 1: Create Data
x <- 1:10 # Create example data
y <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9) # using the c() function to create an
array
## function (data = NA, dim = length(data), dimnames = NULL) 
## {
##     if (is.atomic(data) && !is.object(data)) 
##         return(.Internal(array(data, dim, dimnames)))
##     data <- as.vector(data)
##     if (is.object(data)) {
##         dim <- as.integer(dim)
##         if (!length(dim)) 
##             stop("'dim' cannot be of length 0")
##         vl <- prod(dim)
##         if (length(data) != vl) {
##             if (vl > .Machine$integer.max) 
##                 stop("'dim' specifies too large an array")
##             data <- rep_len(data, vl)
##         }
##         if (length(dim)) 
##             dim(data) <- dim
##         if (is.list(dimnames) && length(dimnames)) 
##             dimnames(data) <- dimnames
##         data
##     }
##     else .Internal(array(data, dim, dimnames))
## }
## <bytecode: 0x557583a2f640>
## <environment: namespace:base>
# Step 2: Plot the line graph using the base plot() command
plot(x, y, type = "l")

# Step 3: Add Main Title & Change Axis Labels
plot(x, y, type = "l",
     main = "Hello: This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values")

# Step 4: Add color to the line using the col command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     col = "red")

# Step 5: Modify Thickness of Line using lwd command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=7,
     col = "green")

# Step 6: Add points to line graph by changing the type command
plot(x, y, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# Lab Exercise 2: How to create Lines in with different styles in R
# Step1: Assign values for different lines. We enclose the entire
# line with parenthesis symbol to force R to display the results instantly
# set the same value for the x variable
(x <- 1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
# set different values for y variables
(y1 <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9))
##  [1] 3 1 5 2 3 8 4 7 6 9
(y2 <- c(5, 1, 4, 6, 2, 3, 7, 8, 2, 8))
##  [1] 5 1 4 6 2 3 7 8 2 8
(y3 <- c(3, 3, 3, 3, 4, 4, 5, 5, 7, 7))
##  [1] 3 3 3 3 4 4 5 5 7 7
# Plot first the pair x and y1.
plot(x, y1, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
# then Add the two lines (for x,y2) and (x,y3)
lines(x, y2, type = "b", col = "red",lwd=3)
lines(x, y3, type = "b", col = "green",lwd=3)
# Add legend to the plot
legend("topleft",
       legend = c("Line y1", "Line y2", "Line y3"),
       col = c("blue", "red", "green"),
       lty = 1)

# Step 2: Create Different Point Symbol for Each
# Line using the pch command
plot(x, y1, type = "b",pch = 16,
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
lines(x, y2, type = "b", col = "red",lwd=3, pch = 15)
lines(x, y3, type = "b", col = "green",lwd=3, pch = 8)
# Add legend
legend("topleft",
       legend = c("Line y1", "Line y2", "Line y3"),
       col = c("black", "red", "green"),
       lty = 1)

# Lab Exercise 3: Create Line graph without x values
Pupils <- c(3.55 ,3.54 ,3.53 ,3.61 ,3.65 ,3.63 ,3.61
            ,3.61 ,3.59 ,3.63 ,3.59 ,3.63 ,3.62 ,3.62
            ,3.59 ,3.63 ,3.62 ,3.65 ,3.65)
# get number of elements of Pupils
length(Pupils)
## [1] 19
# Display the elements of Pupils
Pupils
##  [1] 3.55 3.54 3.53 3.61 3.65 3.63 3.61 3.61 3.59 3.63 3.59 3.63 3.62 3.62 3.59
## [16] 3.63 3.62 3.65 3.65
# You can obtain the plot without x values
plot(Pupils, type = 'o')

# Lab Exercise 4: How to Create vertical, horizontal lines
# We will use buit-in cars dataset in R
# display the cars dataset
cars
##    speed dist
## 1      4    2
## 2      4   10
## 3      7    4
## 4      7   22
## 5      8   16
## 6      9   10
## 7     10   18
## 8     10   26
## 9     10   34
## 10    11   17
## 11    11   28
## 12    12   14
## 13    12   20
## 14    12   24
## 15    12   28
## 16    13   26
## 17    13   34
## 18    13   34
## 19    13   46
## 20    14   26
## 21    14   36
## 22    14   60
## 23    14   80
## 24    15   20
## 25    15   26
## 26    15   54
## 27    16   32
## 28    16   40
## 29    17   32
## 30    17   40
## 31    17   50
## 32    18   42
## 33    18   56
## 34    18   76
## 35    18   84
## 36    19   36
## 37    19   46
## 38    19   68
## 39    20   32
## 40    20   48
## 41    20   52
## 42    20   56
## 43    20   64
## 44    22   66
## 45    23   54
## 46    24   70
## 47    24   92
## 48    24   93
## 49    24  120
## 50    25   85
# get the number of rows and columns using dim() command
dim(cars)
## [1] 50  2
# display the variable names of the cars dataset
names(cars)
## [1] "speed" "dist"
# display only the first column of the dataset
cars$speed # using the column name
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
cars[,1] # using the column number
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
# Remarks: the following commands will give you the same result
plot(cars,) # using the comma after the name

plot(cars[,1],cars[,2]) # using the column index 1 and 2

attach(cars); plot(speed,dist) # using the attach command to load the variables

plot(cars$speed,cars$dist) # using the dollar notation

# combine all 4 plots using the par() command
par(mfrow = c(2,2)) # set a 2x2 plot output
plot(cars,) # using the comma after the name
plot(cars[,1],cars[,2]) # using the column index 1 and 2
attach(cars); plot(speed,dist) # using the attach command to load the variables
## The following objects are masked from cars (pos = 3):
## 
##     dist, speed
plot(cars$speed,cars$dist) # using the dollar notation

par(mfrow = c(1,1)) # reset to default plot setting
# Problem: Create vertical lines using the v command
plot(cars)
abline(v = 15, col = "darkgreen",lwd=3) # vertical line
abline(v = 10, col = "blue",lwd=3) # vertical line
# Problem: Create horizontal lines using the h command
abline(h = 80, col = "darkgreen",lwd=3) # vertical line
abline(h = 20, col = "blue",lwd=3) # vertical line

# Create more lines simultaneously, using a vector of values
plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2), # line thickness
       lty = c(2,2,2)) # dashed lines

plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2)) # line thickness and solid lines

# create horizontal lines
plot(cars)
abline(h = 60, col = "red",lty = 1, lwd = 3)
abline(h = 100, col = "red",lty = 2, lwd = 3)
abline(h = 20, col = "red",lty = 3, lwd = 3)

# Lab Exercise 5: How to Plot data by group
# We will use buit-in iris dataset in R
# this dataset is a collection of 4 species of flowers with different
# sepal length and width and also with different petal length and width
dim(iris) # iris dataset has 150 rows and 5 columns
## [1] 150   5
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"
# two different commands to get the frequency table
table(iris$Species) # refer to the dataset by variable name
## 
##     setosa versicolor  virginica 
##         50         50         50
table(iris[,5]) # refer to the dataset by column number
## 
##     setosa versicolor  virginica 
##         50         50         50
# get summary of all columns
summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 
#create scatterplot of sepal width vs. sepal length
plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=19)

plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=1)

# another way to retrieve columns of data
PL <- iris$Petal.Length
PW <- iris$Petal.Width
plot(PL, PW)

# add color by species
plot(PL, PW, col = iris$Species, main= "My Plot")
# draw a line along with the distribution of points
# using the abline and lm commands
abline(lm(PW ~ PL))
# add text annotation
text(5, 0.5, "Regression Line")
legend("topleft", # specify the location of the legend
       levels(iris$Species), # specify the levels of species
       pch = 1:3, # specify three symbols used for the three species
       col = 1:3 # specify three colors for the three species
)

# Lab Exercise 6: Generate advance scatter plot
pairs(iris, col = rainbow(3)[iris$Species]) # set colors by species

# How to filter data for each flower
(Versicolor <- subset(iris, Species == "versicolor"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
(Setosa <- subset(iris, Species == "setosa"))
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## 11          5.4         3.7          1.5         0.2  setosa
## 12          4.8         3.4          1.6         0.2  setosa
## 13          4.8         3.0          1.4         0.1  setosa
## 14          4.3         3.0          1.1         0.1  setosa
## 15          5.8         4.0          1.2         0.2  setosa
## 16          5.7         4.4          1.5         0.4  setosa
## 17          5.4         3.9          1.3         0.4  setosa
## 18          5.1         3.5          1.4         0.3  setosa
## 19          5.7         3.8          1.7         0.3  setosa
## 20          5.1         3.8          1.5         0.3  setosa
## 21          5.4         3.4          1.7         0.2  setosa
## 22          5.1         3.7          1.5         0.4  setosa
## 23          4.6         3.6          1.0         0.2  setosa
## 24          5.1         3.3          1.7         0.5  setosa
## 25          4.8         3.4          1.9         0.2  setosa
## 26          5.0         3.0          1.6         0.2  setosa
## 27          5.0         3.4          1.6         0.4  setosa
## 28          5.2         3.5          1.5         0.2  setosa
## 29          5.2         3.4          1.4         0.2  setosa
## 30          4.7         3.2          1.6         0.2  setosa
## 31          4.8         3.1          1.6         0.2  setosa
## 32          5.4         3.4          1.5         0.4  setosa
## 33          5.2         4.1          1.5         0.1  setosa
## 34          5.5         4.2          1.4         0.2  setosa
## 35          4.9         3.1          1.5         0.2  setosa
## 36          5.0         3.2          1.2         0.2  setosa
## 37          5.5         3.5          1.3         0.2  setosa
## 38          4.9         3.6          1.4         0.1  setosa
## 39          4.4         3.0          1.3         0.2  setosa
## 40          5.1         3.4          1.5         0.2  setosa
## 41          5.0         3.5          1.3         0.3  setosa
## 42          4.5         2.3          1.3         0.3  setosa
## 43          4.4         3.2          1.3         0.2  setosa
## 44          5.0         3.5          1.6         0.6  setosa
## 45          5.1         3.8          1.9         0.4  setosa
## 46          4.8         3.0          1.4         0.3  setosa
## 47          5.1         3.8          1.6         0.2  setosa
## 48          4.6         3.2          1.4         0.2  setosa
## 49          5.3         3.7          1.5         0.2  setosa
## 50          5.0         3.3          1.4         0.2  setosa
(Virginica <- subset(iris, Species == "virginica"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 101          6.3         3.3          6.0         2.5 virginica
## 102          5.8         2.7          5.1         1.9 virginica
## 103          7.1         3.0          5.9         2.1 virginica
## 104          6.3         2.9          5.6         1.8 virginica
## 105          6.5         3.0          5.8         2.2 virginica
## 106          7.6         3.0          6.6         2.1 virginica
## 107          4.9         2.5          4.5         1.7 virginica
## 108          7.3         2.9          6.3         1.8 virginica
## 109          6.7         2.5          5.8         1.8 virginica
## 110          7.2         3.6          6.1         2.5 virginica
## 111          6.5         3.2          5.1         2.0 virginica
## 112          6.4         2.7          5.3         1.9 virginica
## 113          6.8         3.0          5.5         2.1 virginica
## 114          5.7         2.5          5.0         2.0 virginica
## 115          5.8         2.8          5.1         2.4 virginica
## 116          6.4         3.2          5.3         2.3 virginica
## 117          6.5         3.0          5.5         1.8 virginica
## 118          7.7         3.8          6.7         2.2 virginica
## 119          7.7         2.6          6.9         2.3 virginica
## 120          6.0         2.2          5.0         1.5 virginica
## 121          6.9         3.2          5.7         2.3 virginica
## 122          5.6         2.8          4.9         2.0 virginica
## 123          7.7         2.8          6.7         2.0 virginica
## 124          6.3         2.7          4.9         1.8 virginica
## 125          6.7         3.3          5.7         2.1 virginica
## 126          7.2         3.2          6.0         1.8 virginica
## 127          6.2         2.8          4.8         1.8 virginica
## 128          6.1         3.0          4.9         1.8 virginica
## 129          6.4         2.8          5.6         2.1 virginica
## 130          7.2         3.0          5.8         1.6 virginica
## 131          7.4         2.8          6.1         1.9 virginica
## 132          7.9         3.8          6.4         2.0 virginica
## 133          6.4         2.8          5.6         2.2 virginica
## 134          6.3         2.8          5.1         1.5 virginica
## 135          6.1         2.6          5.6         1.4 virginica
## 136          7.7         3.0          6.1         2.3 virginica
## 137          6.3         3.4          5.6         2.4 virginica
## 138          6.4         3.1          5.5         1.8 virginica
## 139          6.0         3.0          4.8         1.8 virginica
## 140          6.9         3.1          5.4         2.1 virginica
## 141          6.7         3.1          5.6         2.4 virginica
## 142          6.9         3.1          5.1         2.3 virginica
## 143          5.8         2.7          5.1         1.9 virginica
## 144          6.8         3.2          5.9         2.3 virginica
## 145          6.7         3.3          5.7         2.5 virginica
## 146          6.7         3.0          5.2         2.3 virginica
## 147          6.3         2.5          5.0         1.9 virginica
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
# Draw boxplot for each type of flower
boxplot(Versicolor[,1:4], main="Versicolor, Rainbow Palette",ylim =
          c(0,8),las=2, col=rainbow(4))

boxplot(Setosa[,1:4], main="Setosa, Heat color Palette",ylim = c(0,8),las=2,
        col=heat.colors(4))

boxplot(Virginica[,1:4], main="Virginica, Topo colors Palette",ylim =
          c(0,8),las=2, col=topo.colors(4))

# Lab Exercise 7: How to load external datasets
# From a local directory
# the folder that contains the file should be specified completely
# using the forward slash symbol instead of the backward splash
folder <- "C:\\Users\\Administrator\\Documents\\MAT108.R"
filename <- "Cancer.csv"
(file <- paste0(folder,"/",filename))
## [1] "C:\\Users\\Administrator\\Documents\\MAT108.R/Cancer.csv"
library(readr)
cancer <- read_csv("Cancer.csv")
## Rows: 173 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): country, continent
## dbl (15): incomeperperson, alcconsumption, armedforcesrate, breastcancer, co...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dim(cancer)
## [1] 173  17
names(cancer)
##  [1] "country"            "incomeperperson"    "alcconsumption"    
##  [4] "armedforcesrate"    "breastcancer"       "co2emissions"      
##  [7] "femaleemployrate"   "hivrate"            "internetuserate"   
## [10] "lifeexpectancy"     "oilperperson"       "polityscore"       
## [13] "relectricperperson" "suicideper100th"    "employrate"        
## [16] "urbanrate"          "continent"
# compute mean value for every continent
(means <- round(tapply(cancer$breastcancer, cancer$continent, mean),
                digits=2))
##    AF    AS    EE LATAM NORAM    OC    WE 
## 24.02 24.51 49.44 36.70 71.73 45.80 74.80
# draw boxplot per continent
boxplot(cancer$breastcancer ~ cancer$continent, main= "Breast cancerbycontinent (brown dot = mean value)", xlab="continents", ylab="new
cases per 100,00 residents", col=rainbow(7))
# insert the mean value using brown dot
points(means, col="brown", pch=18)

# Lab Exercise 8: How to load external datasets and change data layout
folder <- "C:/home/student/Downloads"
filename <- "hsb2.csv"
(file <- paste0(folder,"/",filename))
## [1] "C:/home/student/Downloads/hsb2.csv"
library(readr)
hsb2 <- read_csv("hsb2.csv")
## New names:
## Rows: 200 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (12): ...1, id, female, race, ses, schtyp, prog, read, write, math, scie...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
# display only the top 6 rows
head(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1    70      0     4     1      1     1    57    52    41      47    57
## 2     2   121      1     4     2      1     3    68    59    53      63    61
## 3     3    86      0     4     3      1     1    44    33    54      58    31
## 4     4   141      0     4     3      1     3    63    44    47      53    56
## 5     5   172      0     4     2      1     2    47    52    57      53    61
## 6     6   113      0     4     2      1     2    44    52    51      63    61
# display only the last 6 rows
tail(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1   195   179      1     4     2      2     2    47    65    60      50    56
## 2   196    31      1     2     2      2     1    55    59    52      42    56
## 3   197   145      1     4     2      1     3    42    46    38      36    46
## 4   198   187      1     4     2      2     1    57    41    57      55    52
## 5   199   118      1     4     2      1     1    55    62    58      58    61
## 6   200   137      1     4     3      1     2    63    65    65      53    61
# delete redundant first column (run only once)
(hsb2<- hsb2 [-1])
## # A tibble: 200 × 11
##       id female  race   ses schtyp  prog  read write  math science socst
##    <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    70      0     4     1      1     1    57    52    41      47    57
##  2   121      1     4     2      1     3    68    59    53      63    61
##  3    86      0     4     3      1     1    44    33    54      58    31
##  4   141      0     4     3      1     3    63    44    47      53    56
##  5   172      0     4     2      1     2    47    52    57      53    61
##  6   113      0     4     2      1     2    44    52    51      63    61
##  7    50      0     3     2      1     1    50    59    42      53    61
##  8    11      0     1     2      1     2    34    46    45      39    36
##  9    84      0     4     2      1     1    63    57    54      58    51
## 10    48      0     3     2      1     2    57    55    52      50    51
## # … with 190 more rows
# Remarks
# hsb2 dataset consists of 200 selected random samples from senior
# high school students in the US.
# We want to compare the student performance across different subjects
# change data layout by grouping different subjects
# into one column using melt() command. Install first reshape2 package
# install.packages("reshape2")
library(reshape2)
(hsb2_long <- melt(hsb2, measure.vars =
                     c("read","write","math","science","socst")))
##       id female race ses schtyp prog variable value
## 1     70      0    4   1      1    1     read    57
## 2    121      1    4   2      1    3     read    68
## 3     86      0    4   3      1    1     read    44
## 4    141      0    4   3      1    3     read    63
## 5    172      0    4   2      1    2     read    47
## 6    113      0    4   2      1    2     read    44
## 7     50      0    3   2      1    1     read    50
## 8     11      0    1   2      1    2     read    34
## 9     84      0    4   2      1    1     read    63
## 10    48      0    3   2      1    2     read    57
## 11    75      0    4   2      1    3     read    60
## 12    60      0    4   2      1    2     read    57
## 13    95      0    4   3      1    2     read    73
## 14   104      0    4   3      1    2     read    54
## 15    38      0    3   1      1    2     read    45
## 16   115      0    4   1      1    1     read    42
## 17    76      0    4   3      1    2     read    47
## 18   195      0    4   2      2    1     read    57
## 19   114      0    4   3      1    2     read    68
## 20    85      0    4   2      1    1     read    55
## 21   167      0    4   2      1    1     read    63
## 22   143      0    4   2      1    3     read    63
## 23    41      0    3   2      1    2     read    50
## 24    20      0    1   3      1    2     read    60
## 25    12      0    1   2      1    3     read    37
## 26    53      0    3   2      1    3     read    34
## 27   154      0    4   3      1    2     read    65
## 28   178      0    4   2      2    3     read    47
## 29   196      0    4   3      2    2     read    44
## 30    29      0    2   1      1    1     read    52
## 31   126      0    4   2      1    1     read    42
## 32   103      0    4   3      1    2     read    76
## 33   192      0    4   3      2    2     read    65
## 34   150      0    4   2      1    3     read    42
## 35   199      0    4   3      2    2     read    52
## 36   144      0    4   3      1    1     read    60
## 37   200      0    4   2      2    2     read    68
## 38    80      0    4   3      1    2     read    65
## 39    16      0    1   1      1    3     read    47
## 40   153      0    4   2      1    3     read    39
## 41   176      0    4   2      2    2     read    47
## 42   177      0    4   2      2    2     read    55
## 43   168      0    4   2      1    2     read    52
## 44    40      0    3   1      1    1     read    42
## 45    62      0    4   3      1    1     read    65
## 46   169      0    4   1      1    1     read    55
## 47    49      0    3   3      1    3     read    50
## 48   136      0    4   2      1    2     read    65
## 49   189      0    4   2      2    2     read    47
## 50     7      0    1   2      1    2     read    57
## 51    27      0    2   2      1    2     read    53
## 52   128      0    4   3      1    2     read    39
## 53    21      0    1   2      1    1     read    44
## 54   183      0    4   2      2    2     read    63
## 55   132      0    4   2      1    2     read    73
## 56    15      0    1   3      1    3     read    39
## 57    67      0    4   1      1    3     read    37
## 58    22      0    1   2      1    3     read    42
## 59   185      0    4   2      2    2     read    63
## 60     9      0    1   2      1    3     read    48
## 61   181      0    4   2      2    2     read    50
## 62   170      0    4   3      1    2     read    47
## 63   134      0    4   1      1    1     read    44
## 64   108      0    4   2      1    1     read    34
## 65   197      0    4   3      2    2     read    50
## 66   140      0    4   2      1    3     read    44
## 67   171      0    4   2      1    2     read    60
## 68   107      0    4   1      1    3     read    47
## 69    81      0    4   1      1    2     read    63
## 70    18      0    1   2      1    3     read    50
## 71   155      0    4   2      1    1     read    44
## 72    97      0    4   3      1    2     read    60
## 73    68      0    4   2      1    2     read    73
## 74   157      0    4   2      1    1     read    68
## 75    56      0    4   2      1    3     read    55
## 76     5      0    1   1      1    2     read    47
## 77   159      0    4   3      1    2     read    55
## 78   123      0    4   3      1    1     read    68
## 79   164      0    4   2      1    3     read    31
## 80    14      0    1   3      1    2     read    47
## 81   127      0    4   3      1    2     read    63
## 82   165      0    4   1      1    3     read    36
## 83   174      0    4   2      2    2     read    68
## 84     3      0    1   1      1    2     read    63
## 85    58      0    4   2      1    3     read    55
## 86   146      0    4   3      1    2     read    55
## 87   102      0    4   3      1    2     read    52
## 88   117      0    4   3      1    3     read    34
## 89   133      0    4   2      1    3     read    50
## 90    94      0    4   3      1    2     read    55
## 91    24      0    2   2      1    2     read    52
## 92   149      0    4   1      1    1     read    63
## 93    82      1    4   3      1    2     read    68
## 94     8      1    1   1      1    2     read    39
## 95   129      1    4   1      1    1     read    44
## 96   173      1    4   1      1    1     read    50
## 97    57      1    4   2      1    2     read    71
## 98   100      1    4   3      1    2     read    63
## 99     1      1    1   1      1    3     read    34
## 100  194      1    4   3      2    2     read    63
## 101   88      1    4   3      1    2     read    68
## 102   99      1    4   3      1    1     read    47
## 103   47      1    3   1      1    2     read    47
## 104  120      1    4   3      1    2     read    63
## 105  166      1    4   2      1    2     read    52
## 106   65      1    4   2      1    2     read    55
## 107  101      1    4   3      1    2     read    60
## 108   89      1    4   1      1    3     read    35
## 109   54      1    3   1      2    1     read    47
## 110  180      1    4   3      2    2     read    71
## 111  162      1    4   2      1    3     read    57
## 112    4      1    1   1      1    2     read    44
## 113  131      1    4   3      1    2     read    65
## 114  125      1    4   1      1    2     read    68
## 115   34      1    1   3      2    2     read    73
## 116  106      1    4   2      1    3     read    36
## 117  130      1    4   3      1    1     read    43
## 118   93      1    4   3      1    2     read    73
## 119  163      1    4   1      1    2     read    52
## 120   37      1    3   1      1    3     read    41
## 121   35      1    1   1      2    1     read    60
## 122   87      1    4   2      1    1     read    50
## 123   73      1    4   2      1    2     read    50
## 124  151      1    4   2      1    3     read    47
## 125   44      1    3   1      1    3     read    47
## 126  152      1    4   3      1    2     read    55
## 127  105      1    4   2      1    2     read    50
## 128   28      1    2   2      1    1     read    39
## 129   91      1    4   3      1    3     read    50
## 130   45      1    3   1      1    3     read    34
## 131  116      1    4   2      1    2     read    57
## 132   33      1    2   1      1    2     read    57
## 133   66      1    4   2      1    3     read    68
## 134   72      1    4   2      1    3     read    42
## 135   77      1    4   1      1    2     read    61
## 136   61      1    4   3      1    2     read    76
## 137  190      1    4   2      2    2     read    47
## 138   42      1    3   2      1    3     read    46
## 139    2      1    1   2      1    3     read    39
## 140   55      1    3   2      2    2     read    52
## 141   19      1    1   1      1    1     read    28
## 142   90      1    4   3      1    2     read    42
## 143  142      1    4   2      1    3     read    47
## 144   17      1    1   2      1    2     read    47
## 145  122      1    4   2      1    2     read    52
## 146  191      1    4   3      2    2     read    47
## 147   83      1    4   2      1    3     read    50
## 148  182      1    4   2      2    2     read    44
## 149    6      1    1   1      1    2     read    47
## 150   46      1    3   1      1    2     read    45
## 151   43      1    3   1      1    2     read    47
## 152   96      1    4   3      1    2     read    65
## 153  138      1    4   2      1    3     read    43
## 154   10      1    1   2      1    1     read    47
## 155   71      1    4   2      1    1     read    57
## 156  139      1    4   2      1    2     read    68
## 157  110      1    4   2      1    3     read    52
## 158  148      1    4   2      1    3     read    42
## 159  109      1    4   2      1    1     read    42
## 160   39      1    3   3      1    2     read    66
## 161  147      1    4   1      1    2     read    47
## 162   74      1    4   2      1    2     read    57
## 163  198      1    4   3      2    2     read    47
## 164  161      1    4   1      1    2     read    57
## 165  112      1    4   2      1    2     read    52
## 166   69      1    4   1      1    3     read    44
## 167  156      1    4   2      1    2     read    50
## 168  111      1    4   1      1    1     read    39
## 169  186      1    4   2      2    2     read    57
## 170   98      1    4   1      1    3     read    57
## 171  119      1    4   1      1    1     read    42
## 172   13      1    1   2      1    3     read    47
## 173   51      1    3   3      1    1     read    42
## 174   26      1    2   3      1    2     read    60
## 175   36      1    3   1      1    1     read    44
## 176  135      1    4   1      1    2     read    63
## 177   59      1    4   2      1    2     read    65
## 178   78      1    4   2      1    2     read    39
## 179   64      1    4   3      1    3     read    50
## 180   63      1    4   1      1    1     read    52
## 181   79      1    4   2      1    2     read    60
## 182  193      1    4   2      2    2     read    44
## 183   92      1    4   3      1    1     read    52
## 184  160      1    4   2      1    2     read    55
## 185   32      1    2   3      1    3     read    50
## 186   23      1    2   1      1    2     read    65
## 187  158      1    4   2      1    1     read    52
## 188   25      1    2   2      1    1     read    47
## 189  188      1    4   3      2    2     read    63
## 190   52      1    3   1      1    2     read    50
## 191  124      1    4   1      1    3     read    42
## 192  175      1    4   3      2    1     read    36
## 193  184      1    4   2      2    3     read    50
## 194   30      1    2   3      1    2     read    41
## 195  179      1    4   2      2    2     read    47
## 196   31      1    2   2      2    1     read    55
## 197  145      1    4   2      1    3     read    42
## 198  187      1    4   2      2    1     read    57
## 199  118      1    4   2      1    1     read    55
## 200  137      1    4   3      1    2     read    63
## 201   70      0    4   1      1    1    write    52
## 202  121      1    4   2      1    3    write    59
## 203   86      0    4   3      1    1    write    33
## 204  141      0    4   3      1    3    write    44
## 205  172      0    4   2      1    2    write    52
## 206  113      0    4   2      1    2    write    52
## 207   50      0    3   2      1    1    write    59
## 208   11      0    1   2      1    2    write    46
## 209   84      0    4   2      1    1    write    57
## 210   48      0    3   2      1    2    write    55
## 211   75      0    4   2      1    3    write    46
## 212   60      0    4   2      1    2    write    65
## 213   95      0    4   3      1    2    write    60
## 214  104      0    4   3      1    2    write    63
## 215   38      0    3   1      1    2    write    57
## 216  115      0    4   1      1    1    write    49
## 217   76      0    4   3      1    2    write    52
## 218  195      0    4   2      2    1    write    57
## 219  114      0    4   3      1    2    write    65
## 220   85      0    4   2      1    1    write    39
## 221  167      0    4   2      1    1    write    49
## 222  143      0    4   2      1    3    write    63
## 223   41      0    3   2      1    2    write    40
## 224   20      0    1   3      1    2    write    52
## 225   12      0    1   2      1    3    write    44
## 226   53      0    3   2      1    3    write    37
## 227  154      0    4   3      1    2    write    65
## 228  178      0    4   2      2    3    write    57
## 229  196      0    4   3      2    2    write    38
## 230   29      0    2   1      1    1    write    44
## 231  126      0    4   2      1    1    write    31
## 232  103      0    4   3      1    2    write    52
## 233  192      0    4   3      2    2    write    67
## 234  150      0    4   2      1    3    write    41
## 235  199      0    4   3      2    2    write    59
## 236  144      0    4   3      1    1    write    65
## 237  200      0    4   2      2    2    write    54
## 238   80      0    4   3      1    2    write    62
## 239   16      0    1   1      1    3    write    31
## 240  153      0    4   2      1    3    write    31
## 241  176      0    4   2      2    2    write    47
## 242  177      0    4   2      2    2    write    59
## 243  168      0    4   2      1    2    write    54
## 244   40      0    3   1      1    1    write    41
## 245   62      0    4   3      1    1    write    65
## 246  169      0    4   1      1    1    write    59
## 247   49      0    3   3      1    3    write    40
## 248  136      0    4   2      1    2    write    59
## 249  189      0    4   2      2    2    write    59
## 250    7      0    1   2      1    2    write    54
## 251   27      0    2   2      1    2    write    61
## 252  128      0    4   3      1    2    write    33
## 253   21      0    1   2      1    1    write    44
## 254  183      0    4   2      2    2    write    59
## 255  132      0    4   2      1    2    write    62
## 256   15      0    1   3      1    3    write    39
## 257   67      0    4   1      1    3    write    37
## 258   22      0    1   2      1    3    write    39
## 259  185      0    4   2      2    2    write    57
## 260    9      0    1   2      1    3    write    49
## 261  181      0    4   2      2    2    write    46
## 262  170      0    4   3      1    2    write    62
## 263  134      0    4   1      1    1    write    44
## 264  108      0    4   2      1    1    write    33
## 265  197      0    4   3      2    2    write    42
## 266  140      0    4   2      1    3    write    41
## 267  171      0    4   2      1    2    write    54
## 268  107      0    4   1      1    3    write    39
## 269   81      0    4   1      1    2    write    43
## 270   18      0    1   2      1    3    write    33
## 271  155      0    4   2      1    1    write    44
## 272   97      0    4   3      1    2    write    54
## 273   68      0    4   2      1    2    write    67
## 274  157      0    4   2      1    1    write    59
## 275   56      0    4   2      1    3    write    45
## 276    5      0    1   1      1    2    write    40
## 277  159      0    4   3      1    2    write    61
## 278  123      0    4   3      1    1    write    59
## 279  164      0    4   2      1    3    write    36
## 280   14      0    1   3      1    2    write    41
## 281  127      0    4   3      1    2    write    59
## 282  165      0    4   1      1    3    write    49
## 283  174      0    4   2      2    2    write    59
## 284    3      0    1   1      1    2    write    65
## 285   58      0    4   2      1    3    write    41
## 286  146      0    4   3      1    2    write    62
## 287  102      0    4   3      1    2    write    41
## 288  117      0    4   3      1    3    write    49
## 289  133      0    4   2      1    3    write    31
## 290   94      0    4   3      1    2    write    49
## 291   24      0    2   2      1    2    write    62
## 292  149      0    4   1      1    1    write    49
## 293   82      1    4   3      1    2    write    62
## 294    8      1    1   1      1    2    write    44
## 295  129      1    4   1      1    1    write    44
## 296  173      1    4   1      1    1    write    62
## 297   57      1    4   2      1    2    write    65
## 298  100      1    4   3      1    2    write    65
## 299    1      1    1   1      1    3    write    44
## 300  194      1    4   3      2    2    write    63
## 301   88      1    4   3      1    2    write    60
## 302   99      1    4   3      1    1    write    59
## 303   47      1    3   1      1    2    write    46
## 304  120      1    4   3      1    2    write    52
## 305  166      1    4   2      1    2    write    59
## 306   65      1    4   2      1    2    write    54
## 307  101      1    4   3      1    2    write    62
## 308   89      1    4   1      1    3    write    35
## 309   54      1    3   1      2    1    write    54
## 310  180      1    4   3      2    2    write    65
## 311  162      1    4   2      1    3    write    52
## 312    4      1    1   1      1    2    write    50
## 313  131      1    4   3      1    2    write    59
## 314  125      1    4   1      1    2    write    65
## 315   34      1    1   3      2    2    write    61
## 316  106      1    4   2      1    3    write    44
## 317  130      1    4   3      1    1    write    54
## 318   93      1    4   3      1    2    write    67
## 319  163      1    4   1      1    2    write    57
## 320   37      1    3   1      1    3    write    47
## 321   35      1    1   1      2    1    write    54
## 322   87      1    4   2      1    1    write    52
## 323   73      1    4   2      1    2    write    52
## 324  151      1    4   2      1    3    write    46
## 325   44      1    3   1      1    3    write    62
## 326  152      1    4   3      1    2    write    57
## 327  105      1    4   2      1    2    write    41
## 328   28      1    2   2      1    1    write    53
## 329   91      1    4   3      1    3    write    49
## 330   45      1    3   1      1    3    write    35
## 331  116      1    4   2      1    2    write    59
## 332   33      1    2   1      1    2    write    65
## 333   66      1    4   2      1    3    write    62
## 334   72      1    4   2      1    3    write    54
## 335   77      1    4   1      1    2    write    59
## 336   61      1    4   3      1    2    write    63
## 337  190      1    4   2      2    2    write    59
## 338   42      1    3   2      1    3    write    52
## 339    2      1    1   2      1    3    write    41
## 340   55      1    3   2      2    2    write    49
## 341   19      1    1   1      1    1    write    46
## 342   90      1    4   3      1    2    write    54
## 343  142      1    4   2      1    3    write    42
## 344   17      1    1   2      1    2    write    57
## 345  122      1    4   2      1    2    write    59
## 346  191      1    4   3      2    2    write    52
## 347   83      1    4   2      1    3    write    62
## 348  182      1    4   2      2    2    write    52
## 349    6      1    1   1      1    2    write    41
## 350   46      1    3   1      1    2    write    55
## 351   43      1    3   1      1    2    write    37
## 352   96      1    4   3      1    2    write    54
## 353  138      1    4   2      1    3    write    57
## 354   10      1    1   2      1    1    write    54
## 355   71      1    4   2      1    1    write    62
## 356  139      1    4   2      1    2    write    59
## 357  110      1    4   2      1    3    write    55
## 358  148      1    4   2      1    3    write    57
## 359  109      1    4   2      1    1    write    39
## 360   39      1    3   3      1    2    write    67
## 361  147      1    4   1      1    2    write    62
## 362   74      1    4   2      1    2    write    50
## 363  198      1    4   3      2    2    write    61
## 364  161      1    4   1      1    2    write    62
## 365  112      1    4   2      1    2    write    59
## 366   69      1    4   1      1    3    write    44
## 367  156      1    4   2      1    2    write    59
## 368  111      1    4   1      1    1    write    54
## 369  186      1    4   2      2    2    write    62
## 370   98      1    4   1      1    3    write    60
## 371  119      1    4   1      1    1    write    57
## 372   13      1    1   2      1    3    write    46
## 373   51      1    3   3      1    1    write    36
## 374   26      1    2   3      1    2    write    59
## 375   36      1    3   1      1    1    write    49
## 376  135      1    4   1      1    2    write    60
## 377   59      1    4   2      1    2    write    67
## 378   78      1    4   2      1    2    write    54
## 379   64      1    4   3      1    3    write    52
## 380   63      1    4   1      1    1    write    65
## 381   79      1    4   2      1    2    write    62
## 382  193      1    4   2      2    2    write    49
## 383   92      1    4   3      1    1    write    67
## 384  160      1    4   2      1    2    write    65
## 385   32      1    2   3      1    3    write    67
## 386   23      1    2   1      1    2    write    65
## 387  158      1    4   2      1    1    write    54
## 388   25      1    2   2      1    1    write    44
## 389  188      1    4   3      2    2    write    62
## 390   52      1    3   1      1    2    write    46
## 391  124      1    4   1      1    3    write    54
## 392  175      1    4   3      2    1    write    57
## 393  184      1    4   2      2    3    write    52
## 394   30      1    2   3      1    2    write    59
## 395  179      1    4   2      2    2    write    65
## 396   31      1    2   2      2    1    write    59
## 397  145      1    4   2      1    3    write    46
## 398  187      1    4   2      2    1    write    41
## 399  118      1    4   2      1    1    write    62
## 400  137      1    4   3      1    2    write    65
## 401   70      0    4   1      1    1     math    41
## 402  121      1    4   2      1    3     math    53
## 403   86      0    4   3      1    1     math    54
## 404  141      0    4   3      1    3     math    47
## 405  172      0    4   2      1    2     math    57
## 406  113      0    4   2      1    2     math    51
## 407   50      0    3   2      1    1     math    42
## 408   11      0    1   2      1    2     math    45
## 409   84      0    4   2      1    1     math    54
## 410   48      0    3   2      1    2     math    52
## 411   75      0    4   2      1    3     math    51
## 412   60      0    4   2      1    2     math    51
## 413   95      0    4   3      1    2     math    71
## 414  104      0    4   3      1    2     math    57
## 415   38      0    3   1      1    2     math    50
## 416  115      0    4   1      1    1     math    43
## 417   76      0    4   3      1    2     math    51
## 418  195      0    4   2      2    1     math    60
## 419  114      0    4   3      1    2     math    62
## 420   85      0    4   2      1    1     math    57
## 421  167      0    4   2      1    1     math    35
## 422  143      0    4   2      1    3     math    75
## 423   41      0    3   2      1    2     math    45
## 424   20      0    1   3      1    2     math    57
## 425   12      0    1   2      1    3     math    45
## 426   53      0    3   2      1    3     math    46
## 427  154      0    4   3      1    2     math    66
## 428  178      0    4   2      2    3     math    57
## 429  196      0    4   3      2    2     math    49
## 430   29      0    2   1      1    1     math    49
## 431  126      0    4   2      1    1     math    57
## 432  103      0    4   3      1    2     math    64
## 433  192      0    4   3      2    2     math    63
## 434  150      0    4   2      1    3     math    57
## 435  199      0    4   3      2    2     math    50
## 436  144      0    4   3      1    1     math    58
## 437  200      0    4   2      2    2     math    75
## 438   80      0    4   3      1    2     math    68
## 439   16      0    1   1      1    3     math    44
## 440  153      0    4   2      1    3     math    40
## 441  176      0    4   2      2    2     math    41
## 442  177      0    4   2      2    2     math    62
## 443  168      0    4   2      1    2     math    57
## 444   40      0    3   1      1    1     math    43
## 445   62      0    4   3      1    1     math    48
## 446  169      0    4   1      1    1     math    63
## 447   49      0    3   3      1    3     math    39
## 448  136      0    4   2      1    2     math    70
## 449  189      0    4   2      2    2     math    63
## 450    7      0    1   2      1    2     math    59
## 451   27      0    2   2      1    2     math    61
## 452  128      0    4   3      1    2     math    38
## 453   21      0    1   2      1    1     math    61
## 454  183      0    4   2      2    2     math    49
## 455  132      0    4   2      1    2     math    73
## 456   15      0    1   3      1    3     math    44
## 457   67      0    4   1      1    3     math    42
## 458   22      0    1   2      1    3     math    39
## 459  185      0    4   2      2    2     math    55
## 460    9      0    1   2      1    3     math    52
## 461  181      0    4   2      2    2     math    45
## 462  170      0    4   3      1    2     math    61
## 463  134      0    4   1      1    1     math    39
## 464  108      0    4   2      1    1     math    41
## 465  197      0    4   3      2    2     math    50
## 466  140      0    4   2      1    3     math    40
## 467  171      0    4   2      1    2     math    60
## 468  107      0    4   1      1    3     math    47
## 469   81      0    4   1      1    2     math    59
## 470   18      0    1   2      1    3     math    49
## 471  155      0    4   2      1    1     math    46
## 472   97      0    4   3      1    2     math    58
## 473   68      0    4   2      1    2     math    71
## 474  157      0    4   2      1    1     math    58
## 475   56      0    4   2      1    3     math    46
## 476    5      0    1   1      1    2     math    43
## 477  159      0    4   3      1    2     math    54
## 478  123      0    4   3      1    1     math    56
## 479  164      0    4   2      1    3     math    46
## 480   14      0    1   3      1    2     math    54
## 481  127      0    4   3      1    2     math    57
## 482  165      0    4   1      1    3     math    54
## 483  174      0    4   2      2    2     math    71
## 484    3      0    1   1      1    2     math    48
## 485   58      0    4   2      1    3     math    40
## 486  146      0    4   3      1    2     math    64
## 487  102      0    4   3      1    2     math    51
## 488  117      0    4   3      1    3     math    39
## 489  133      0    4   2      1    3     math    40
## 490   94      0    4   3      1    2     math    61
## 491   24      0    2   2      1    2     math    66
## 492  149      0    4   1      1    1     math    49
## 493   82      1    4   3      1    2     math    65
## 494    8      1    1   1      1    2     math    52
## 495  129      1    4   1      1    1     math    46
## 496  173      1    4   1      1    1     math    61
## 497   57      1    4   2      1    2     math    72
## 498  100      1    4   3      1    2     math    71
## 499    1      1    1   1      1    3     math    40
## 500  194      1    4   3      2    2     math    69
## 501   88      1    4   3      1    2     math    64
## 502   99      1    4   3      1    1     math    56
## 503   47      1    3   1      1    2     math    49
## 504  120      1    4   3      1    2     math    54
## 505  166      1    4   2      1    2     math    53
## 506   65      1    4   2      1    2     math    66
## 507  101      1    4   3      1    2     math    67
## 508   89      1    4   1      1    3     math    40
## 509   54      1    3   1      2    1     math    46
## 510  180      1    4   3      2    2     math    69
## 511  162      1    4   2      1    3     math    40
## 512    4      1    1   1      1    2     math    41
## 513  131      1    4   3      1    2     math    57
## 514  125      1    4   1      1    2     math    58
## 515   34      1    1   3      2    2     math    57
## 516  106      1    4   2      1    3     math    37
## 517  130      1    4   3      1    1     math    55
## 518   93      1    4   3      1    2     math    62
## 519  163      1    4   1      1    2     math    64
## 520   37      1    3   1      1    3     math    40
## 521   35      1    1   1      2    1     math    50
## 522   87      1    4   2      1    1     math    46
## 523   73      1    4   2      1    2     math    53
## 524  151      1    4   2      1    3     math    52
## 525   44      1    3   1      1    3     math    45
## 526  152      1    4   3      1    2     math    56
## 527  105      1    4   2      1    2     math    45
## 528   28      1    2   2      1    1     math    54
## 529   91      1    4   3      1    3     math    56
## 530   45      1    3   1      1    3     math    41
## 531  116      1    4   2      1    2     math    54
## 532   33      1    2   1      1    2     math    72
## 533   66      1    4   2      1    3     math    56
## 534   72      1    4   2      1    3     math    47
## 535   77      1    4   1      1    2     math    49
## 536   61      1    4   3      1    2     math    60
## 537  190      1    4   2      2    2     math    54
## 538   42      1    3   2      1    3     math    55
## 539    2      1    1   2      1    3     math    33
## 540   55      1    3   2      2    2     math    49
## 541   19      1    1   1      1    1     math    43
## 542   90      1    4   3      1    2     math    50
## 543  142      1    4   2      1    3     math    52
## 544   17      1    1   2      1    2     math    48
## 545  122      1    4   2      1    2     math    58
## 546  191      1    4   3      2    2     math    43
## 547   83      1    4   2      1    3     math    41
## 548  182      1    4   2      2    2     math    43
## 549    6      1    1   1      1    2     math    46
## 550   46      1    3   1      1    2     math    44
## 551   43      1    3   1      1    2     math    43
## 552   96      1    4   3      1    2     math    61
## 553  138      1    4   2      1    3     math    40
## 554   10      1    1   2      1    1     math    49
## 555   71      1    4   2      1    1     math    56
## 556  139      1    4   2      1    2     math    61
## 557  110      1    4   2      1    3     math    50
## 558  148      1    4   2      1    3     math    51
## 559  109      1    4   2      1    1     math    42
## 560   39      1    3   3      1    2     math    67
## 561  147      1    4   1      1    2     math    53
## 562   74      1    4   2      1    2     math    50
## 563  198      1    4   3      2    2     math    51
## 564  161      1    4   1      1    2     math    72
## 565  112      1    4   2      1    2     math    48
## 566   69      1    4   1      1    3     math    40
## 567  156      1    4   2      1    2     math    53
## 568  111      1    4   1      1    1     math    39
## 569  186      1    4   2      2    2     math    63
## 570   98      1    4   1      1    3     math    51
## 571  119      1    4   1      1    1     math    45
## 572   13      1    1   2      1    3     math    39
## 573   51      1    3   3      1    1     math    42
## 574   26      1    2   3      1    2     math    62
## 575   36      1    3   1      1    1     math    44
## 576  135      1    4   1      1    2     math    65
## 577   59      1    4   2      1    2     math    63
## 578   78      1    4   2      1    2     math    54
## 579   64      1    4   3      1    3     math    45
## 580   63      1    4   1      1    1     math    60
## 581   79      1    4   2      1    2     math    49
## 582  193      1    4   2      2    2     math    48
## 583   92      1    4   3      1    1     math    57
## 584  160      1    4   2      1    2     math    55
## 585   32      1    2   3      1    3     math    66
## 586   23      1    2   1      1    2     math    64
## 587  158      1    4   2      1    1     math    55
## 588   25      1    2   2      1    1     math    42
## 589  188      1    4   3      2    2     math    56
## 590   52      1    3   1      1    2     math    53
## 591  124      1    4   1      1    3     math    41
## 592  175      1    4   3      2    1     math    42
## 593  184      1    4   2      2    3     math    53
## 594   30      1    2   3      1    2     math    42
## 595  179      1    4   2      2    2     math    60
## 596   31      1    2   2      2    1     math    52
## 597  145      1    4   2      1    3     math    38
## 598  187      1    4   2      2    1     math    57
## 599  118      1    4   2      1    1     math    58
## 600  137      1    4   3      1    2     math    65
## 601   70      0    4   1      1    1  science    47
## 602  121      1    4   2      1    3  science    63
## 603   86      0    4   3      1    1  science    58
## 604  141      0    4   3      1    3  science    53
## 605  172      0    4   2      1    2  science    53
## 606  113      0    4   2      1    2  science    63
## 607   50      0    3   2      1    1  science    53
## 608   11      0    1   2      1    2  science    39
## 609   84      0    4   2      1    1  science    58
## 610   48      0    3   2      1    2  science    50
## 611   75      0    4   2      1    3  science    53
## 612   60      0    4   2      1    2  science    63
## 613   95      0    4   3      1    2  science    61
## 614  104      0    4   3      1    2  science    55
## 615   38      0    3   1      1    2  science    31
## 616  115      0    4   1      1    1  science    50
## 617   76      0    4   3      1    2  science    50
## 618  195      0    4   2      2    1  science    58
## 619  114      0    4   3      1    2  science    55
## 620   85      0    4   2      1    1  science    53
## 621  167      0    4   2      1    1  science    66
## 622  143      0    4   2      1    3  science    72
## 623   41      0    3   2      1    2  science    55
## 624   20      0    1   3      1    2  science    61
## 625   12      0    1   2      1    3  science    39
## 626   53      0    3   2      1    3  science    39
## 627  154      0    4   3      1    2  science    61
## 628  178      0    4   2      2    3  science    58
## 629  196      0    4   3      2    2  science    39
## 630   29      0    2   1      1    1  science    55
## 631  126      0    4   2      1    1  science    47
## 632  103      0    4   3      1    2  science    64
## 633  192      0    4   3      2    2  science    66
## 634  150      0    4   2      1    3  science    72
## 635  199      0    4   3      2    2  science    61
## 636  144      0    4   3      1    1  science    61
## 637  200      0    4   2      2    2  science    66
## 638   80      0    4   3      1    2  science    66
## 639   16      0    1   1      1    3  science    36
## 640  153      0    4   2      1    3  science    39
## 641  176      0    4   2      2    2  science    42
## 642  177      0    4   2      2    2  science    58
## 643  168      0    4   2      1    2  science    55
## 644   40      0    3   1      1    1  science    50
## 645   62      0    4   3      1    1  science    63
## 646  169      0    4   1      1    1  science    69
## 647   49      0    3   3      1    3  science    49
## 648  136      0    4   2      1    2  science    63
## 649  189      0    4   2      2    2  science    53
## 650    7      0    1   2      1    2  science    47
## 651   27      0    2   2      1    2  science    57
## 652  128      0    4   3      1    2  science    47
## 653   21      0    1   2      1    1  science    50
## 654  183      0    4   2      2    2  science    55
## 655  132      0    4   2      1    2  science    69
## 656   15      0    1   3      1    3  science    26
## 657   67      0    4   1      1    3  science    33
## 658   22      0    1   2      1    3  science    56
## 659  185      0    4   2      2    2  science    58
## 660    9      0    1   2      1    3  science    44
## 661  181      0    4   2      2    2  science    58
## 662  170      0    4   3      1    2  science    69
## 663  134      0    4   1      1    1  science    34
## 664  108      0    4   2      1    1  science    36
## 665  197      0    4   3      2    2  science    36
## 666  140      0    4   2      1    3  science    50
## 667  171      0    4   2      1    2  science    55
## 668  107      0    4   1      1    3  science    42
## 669   81      0    4   1      1    2  science    65
## 670   18      0    1   2      1    3  science    44
## 671  155      0    4   2      1    1  science    39
## 672   97      0    4   3      1    2  science    58
## 673   68      0    4   2      1    2  science    63
## 674  157      0    4   2      1    1  science    74
## 675   56      0    4   2      1    3  science    58
## 676    5      0    1   1      1    2  science    45
## 677  159      0    4   3      1    2  science    49
## 678  123      0    4   3      1    1  science    63
## 679  164      0    4   2      1    3  science    39
## 680   14      0    1   3      1    2  science    42
## 681  127      0    4   3      1    2  science    55
## 682  165      0    4   1      1    3  science    61
## 683  174      0    4   2      2    2  science    66
## 684    3      0    1   1      1    2  science    63
## 685   58      0    4   2      1    3  science    44
## 686  146      0    4   3      1    2  science    63
## 687  102      0    4   3      1    2  science    53
## 688  117      0    4   3      1    3  science    42
## 689  133      0    4   2      1    3  science    34
## 690   94      0    4   3      1    2  science    61
## 691   24      0    2   2      1    2  science    47
## 692  149      0    4   1      1    1  science    66
## 693   82      1    4   3      1    2  science    69
## 694    8      1    1   1      1    2  science    44
## 695  129      1    4   1      1    1  science    47
## 696  173      1    4   1      1    1  science    63
## 697   57      1    4   2      1    2  science    66
## 698  100      1    4   3      1    2  science    69
## 699    1      1    1   1      1    3  science    39
## 700  194      1    4   3      2    2  science    61
## 701   88      1    4   3      1    2  science    69
## 702   99      1    4   3      1    1  science    66
## 703   47      1    3   1      1    2  science    33
## 704  120      1    4   3      1    2  science    50
## 705  166      1    4   2      1    2  science    61
## 706   65      1    4   2      1    2  science    42
## 707  101      1    4   3      1    2  science    50
## 708   89      1    4   1      1    3  science    51
## 709   54      1    3   1      2    1  science    50
## 710  180      1    4   3      2    2  science    58
## 711  162      1    4   2      1    3  science    61
## 712    4      1    1   1      1    2  science    39
## 713  131      1    4   3      1    2  science    46
## 714  125      1    4   1      1    2  science    59
## 715   34      1    1   3      2    2  science    55
## 716  106      1    4   2      1    3  science    42
## 717  130      1    4   3      1    1  science    55
## 718   93      1    4   3      1    2  science    58
## 719  163      1    4   1      1    2  science    58
## 720   37      1    3   1      1    3  science    39
## 721   35      1    1   1      2    1  science    50
## 722   87      1    4   2      1    1  science    50
## 723   73      1    4   2      1    2  science    39
## 724  151      1    4   2      1    3  science    48
## 725   44      1    3   1      1    3  science    34
## 726  152      1    4   3      1    2  science    58
## 727  105      1    4   2      1    2  science    44
## 728   28      1    2   2      1    1  science    50
## 729   91      1    4   3      1    3  science    47
## 730   45      1    3   1      1    3  science    29
## 731  116      1    4   2      1    2  science    50
## 732   33      1    2   1      1    2  science    54
## 733   66      1    4   2      1    3  science    50
## 734   72      1    4   2      1    3  science    47
## 735   77      1    4   1      1    2  science    44
## 736   61      1    4   3      1    2  science    67
## 737  190      1    4   2      2    2  science    58
## 738   42      1    3   2      1    3  science    44
## 739    2      1    1   2      1    3  science    42
## 740   55      1    3   2      2    2  science    44
## 741   19      1    1   1      1    1  science    44
## 742   90      1    4   3      1    2  science    50
## 743  142      1    4   2      1    3  science    39
## 744   17      1    1   2      1    2  science    44
## 745  122      1    4   2      1    2  science    53
## 746  191      1    4   3      2    2  science    48
## 747   83      1    4   2      1    3  science    55
## 748  182      1    4   2      2    2  science    44
## 749    6      1    1   1      1    2  science    40
## 750   46      1    3   1      1    2  science    34
## 751   43      1    3   1      1    2  science    42
## 752   96      1    4   3      1    2  science    58
## 753  138      1    4   2      1    3  science    50
## 754   10      1    1   2      1    1  science    53
## 755   71      1    4   2      1    1  science    58
## 756  139      1    4   2      1    2  science    55
## 757  110      1    4   2      1    3  science    54
## 758  148      1    4   2      1    3  science    47
## 759  109      1    4   2      1    1  science    42
## 760   39      1    3   3      1    2  science    61
## 761  147      1    4   1      1    2  science    53
## 762   74      1    4   2      1    2  science    51
## 763  198      1    4   3      2    2  science    63
## 764  161      1    4   1      1    2  science    61
## 765  112      1    4   2      1    2  science    55
## 766   69      1    4   1      1    3  science    40
## 767  156      1    4   2      1    2  science    61
## 768  111      1    4   1      1    1  science    47
## 769  186      1    4   2      2    2  science    55
## 770   98      1    4   1      1    3  science    53
## 771  119      1    4   1      1    1  science    50
## 772   13      1    1   2      1    3  science    47
## 773   51      1    3   3      1    1  science    31
## 774   26      1    2   3      1    2  science    61
## 775   36      1    3   1      1    1  science    35
## 776  135      1    4   1      1    2  science    54
## 777   59      1    4   2      1    2  science    55
## 778   78      1    4   2      1    2  science    53
## 779   64      1    4   3      1    3  science    58
## 780   63      1    4   1      1    1  science    56
## 781   79      1    4   2      1    2  science    50
## 782  193      1    4   2      2    2  science    39
## 783   92      1    4   3      1    1  science    63
## 784  160      1    4   2      1    2  science    50
## 785   32      1    2   3      1    3  science    66
## 786   23      1    2   1      1    2  science    58
## 787  158      1    4   2      1    1  science    53
## 788   25      1    2   2      1    1  science    42
## 789  188      1    4   3      2    2  science    55
## 790   52      1    3   1      1    2  science    53
## 791  124      1    4   1      1    3  science    42
## 792  175      1    4   3      2    1  science    50
## 793  184      1    4   2      2    3  science    55
## 794   30      1    2   3      1    2  science    34
## 795  179      1    4   2      2    2  science    50
## 796   31      1    2   2      2    1  science    42
## 797  145      1    4   2      1    3  science    36
## 798  187      1    4   2      2    1  science    55
## 799  118      1    4   2      1    1  science    58
## 800  137      1    4   3      1    2  science    53
## 801   70      0    4   1      1    1    socst    57
## 802  121      1    4   2      1    3    socst    61
## 803   86      0    4   3      1    1    socst    31
## 804  141      0    4   3      1    3    socst    56
## 805  172      0    4   2      1    2    socst    61
## 806  113      0    4   2      1    2    socst    61
## 807   50      0    3   2      1    1    socst    61
## 808   11      0    1   2      1    2    socst    36
## 809   84      0    4   2      1    1    socst    51
## 810   48      0    3   2      1    2    socst    51
## 811   75      0    4   2      1    3    socst    61
## 812   60      0    4   2      1    2    socst    61
## 813   95      0    4   3      1    2    socst    71
## 814  104      0    4   3      1    2    socst    46
## 815   38      0    3   1      1    2    socst    56
## 816  115      0    4   1      1    1    socst    56
## 817   76      0    4   3      1    2    socst    56
## 818  195      0    4   2      2    1    socst    56
## 819  114      0    4   3      1    2    socst    61
## 820   85      0    4   2      1    1    socst    46
## 821  167      0    4   2      1    1    socst    41
## 822  143      0    4   2      1    3    socst    66
## 823   41      0    3   2      1    2    socst    56
## 824   20      0    1   3      1    2    socst    61
## 825   12      0    1   2      1    3    socst    46
## 826   53      0    3   2      1    3    socst    31
## 827  154      0    4   3      1    2    socst    66
## 828  178      0    4   2      2    3    socst    46
## 829  196      0    4   3      2    2    socst    46
## 830   29      0    2   1      1    1    socst    41
## 831  126      0    4   2      1    1    socst    51
## 832  103      0    4   3      1    2    socst    61
## 833  192      0    4   3      2    2    socst    71
## 834  150      0    4   2      1    3    socst    31
## 835  199      0    4   3      2    2    socst    61
## 836  144      0    4   3      1    1    socst    66
## 837  200      0    4   2      2    2    socst    66
## 838   80      0    4   3      1    2    socst    66
## 839   16      0    1   1      1    3    socst    36
## 840  153      0    4   2      1    3    socst    51
## 841  176      0    4   2      2    2    socst    51
## 842  177      0    4   2      2    2    socst    51
## 843  168      0    4   2      1    2    socst    51
## 844   40      0    3   1      1    1    socst    41
## 845   62      0    4   3      1    1    socst    66
## 846  169      0    4   1      1    1    socst    46
## 847   49      0    3   3      1    3    socst    47
## 848  136      0    4   2      1    2    socst    51
## 849  189      0    4   2      2    2    socst    46
## 850    7      0    1   2      1    2    socst    51
## 851   27      0    2   2      1    2    socst    56
## 852  128      0    4   3      1    2    socst    41
## 853   21      0    1   2      1    1    socst    46
## 854  183      0    4   2      2    2    socst    71
## 855  132      0    4   2      1    2    socst    66
## 856   15      0    1   3      1    3    socst    42
## 857   67      0    4   1      1    3    socst    32
## 858   22      0    1   2      1    3    socst    46
## 859  185      0    4   2      2    2    socst    41
## 860    9      0    1   2      1    3    socst    51
## 861  181      0    4   2      2    2    socst    61
## 862  170      0    4   3      1    2    socst    66
## 863  134      0    4   1      1    1    socst    46
## 864  108      0    4   2      1    1    socst    36
## 865  197      0    4   3      2    2    socst    61
## 866  140      0    4   2      1    3    socst    26
## 867  171      0    4   2      1    2    socst    66
## 868  107      0    4   1      1    3    socst    26
## 869   81      0    4   1      1    2    socst    44
## 870   18      0    1   2      1    3    socst    36
## 871  155      0    4   2      1    1    socst    51
## 872   97      0    4   3      1    2    socst    61
## 873   68      0    4   2      1    2    socst    66
## 874  157      0    4   2      1    1    socst    66
## 875   56      0    4   2      1    3    socst    51
## 876    5      0    1   1      1    2    socst    31
## 877  159      0    4   3      1    2    socst    61
## 878  123      0    4   3      1    1    socst    66
## 879  164      0    4   2      1    3    socst    46
## 880   14      0    1   3      1    2    socst    56
## 881  127      0    4   3      1    2    socst    56
## 882  165      0    4   1      1    3    socst    36
## 883  174      0    4   2      2    2    socst    56
## 884    3      0    1   1      1    2    socst    56
## 885   58      0    4   2      1    3    socst    41
## 886  146      0    4   3      1    2    socst    66
## 887  102      0    4   3      1    2    socst    56
## 888  117      0    4   3      1    3    socst    56
## 889  133      0    4   2      1    3    socst    31
## 890   94      0    4   3      1    2    socst    56
## 891   24      0    2   2      1    2    socst    46
## 892  149      0    4   1      1    1    socst    46
## 893   82      1    4   3      1    2    socst    61
## 894    8      1    1   1      1    2    socst    48
## 895  129      1    4   1      1    1    socst    51
## 896  173      1    4   1      1    1    socst    51
## 897   57      1    4   2      1    2    socst    56
## 898  100      1    4   3      1    2    socst    71
## 899    1      1    1   1      1    3    socst    41
## 900  194      1    4   3      2    2    socst    61
## 901   88      1    4   3      1    2    socst    66
## 902   99      1    4   3      1    1    socst    61
## 903   47      1    3   1      1    2    socst    41
## 904  120      1    4   3      1    2    socst    51
## 905  166      1    4   2      1    2    socst    51
## 906   65      1    4   2      1    2    socst    56
## 907  101      1    4   3      1    2    socst    56
## 908   89      1    4   1      1    3    socst    33
## 909   54      1    3   1      2    1    socst    56
## 910  180      1    4   3      2    2    socst    71
## 911  162      1    4   2      1    3    socst    56
## 912    4      1    1   1      1    2    socst    51
## 913  131      1    4   3      1    2    socst    66
## 914  125      1    4   1      1    2    socst    56
## 915   34      1    1   3      2    2    socst    66
## 916  106      1    4   2      1    3    socst    41
## 917  130      1    4   3      1    1    socst    46
## 918   93      1    4   3      1    2    socst    66
## 919  163      1    4   1      1    2    socst    56
## 920   37      1    3   1      1    3    socst    51
## 921   35      1    1   1      2    1    socst    51
## 922   87      1    4   2      1    1    socst    56
## 923   73      1    4   2      1    2    socst    56
## 924  151      1    4   2      1    3    socst    46
## 925   44      1    3   1      1    3    socst    46
## 926  152      1    4   3      1    2    socst    61
## 927  105      1    4   2      1    2    socst    56
## 928   28      1    2   2      1    1    socst    41
## 929   91      1    4   3      1    3    socst    46
## 930   45      1    3   1      1    3    socst    26
## 931  116      1    4   2      1    2    socst    56
## 932   33      1    2   1      1    2    socst    56
## 933   66      1    4   2      1    3    socst    51
## 934   72      1    4   2      1    3    socst    46
## 935   77      1    4   1      1    2    socst    66
## 936   61      1    4   3      1    2    socst    66
## 937  190      1    4   2      2    2    socst    46
## 938   42      1    3   2      1    3    socst    56
## 939    2      1    1   2      1    3    socst    41
## 940   55      1    3   2      2    2    socst    61
## 941   19      1    1   1      1    1    socst    51
## 942   90      1    4   3      1    2    socst    52
## 943  142      1    4   2      1    3    socst    51
## 944   17      1    1   2      1    2    socst    41
## 945  122      1    4   2      1    2    socst    66
## 946  191      1    4   3      2    2    socst    61
## 947   83      1    4   2      1    3    socst    31
## 948  182      1    4   2      2    2    socst    51
## 949    6      1    1   1      1    2    socst    41
## 950   46      1    3   1      1    2    socst    41
## 951   43      1    3   1      1    2    socst    46
## 952   96      1    4   3      1    2    socst    56
## 953  138      1    4   2      1    3    socst    51
## 954   10      1    1   2      1    1    socst    61
## 955   71      1    4   2      1    1    socst    66
## 956  139      1    4   2      1    2    socst    71
## 957  110      1    4   2      1    3    socst    61
## 958  148      1    4   2      1    3    socst    61
## 959  109      1    4   2      1    1    socst    41
## 960   39      1    3   3      1    2    socst    66
## 961  147      1    4   1      1    2    socst    61
## 962   74      1    4   2      1    2    socst    58
## 963  198      1    4   3      2    2    socst    31
## 964  161      1    4   1      1    2    socst    61
## 965  112      1    4   2      1    2    socst    61
## 966   69      1    4   1      1    3    socst    31
## 967  156      1    4   2      1    2    socst    61
## 968  111      1    4   1      1    1    socst    36
## 969  186      1    4   2      2    2    socst    41
## 970   98      1    4   1      1    3    socst    37
## 971  119      1    4   1      1    1    socst    43
## 972   13      1    1   2      1    3    socst    61
## 973   51      1    3   3      1    1    socst    39
## 974   26      1    2   3      1    2    socst    51
## 975   36      1    3   1      1    1    socst    51
## 976  135      1    4   1      1    2    socst    66
## 977   59      1    4   2      1    2    socst    71
## 978   78      1    4   2      1    2    socst    41
## 979   64      1    4   3      1    3    socst    36
## 980   63      1    4   1      1    1    socst    51
## 981   79      1    4   2      1    2    socst    51
## 982  193      1    4   2      2    2    socst    51
## 983   92      1    4   3      1    1    socst    61
## 984  160      1    4   2      1    2    socst    61
## 985   32      1    2   3      1    3    socst    56
## 986   23      1    2   1      1    2    socst    71
## 987  158      1    4   2      1    1    socst    51
## 988   25      1    2   2      1    1    socst    36
## 989  188      1    4   3      2    2    socst    61
## 990   52      1    3   1      1    2    socst    66
## 991  124      1    4   1      1    3    socst    41
## 992  175      1    4   3      2    1    socst    41
## 993  184      1    4   2      2    3    socst    56
## 994   30      1    2   3      1    2    socst    51
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
#Remark: Pay extra attention to the last 2 columns
head(hsb2_long)
##    id female race ses schtyp prog variable value
## 1  70      0    4   1      1    1     read    57
## 2 121      1    4   2      1    3     read    68
## 3  86      0    4   3      1    1     read    44
## 4 141      0    4   3      1    3     read    63
## 5 172      0    4   2      1    2     read    47
## 6 113      0    4   2      1    2     read    44
tail(hsb2_long)
##       id female race ses schtyp prog variable value
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
# get the frequency
table(hsb2_long$variable)
## 
##    read   write    math science   socst 
##     200     200     200     200     200
# This means that the tables hsb2_long and hsb2_wide are the same
# tables displayed in two ways
# display data structure of the hsb2_long dataset
str(hsb2_long)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : num  0 1 0 0 0 0 0 0 0 0 ...
##  $ race    : num  4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : num  1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : num  1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
# the variables female, race, ses, schtyp, prog are stored as numbers
# for encoding purposes. However these variables are actually qualitative variables
# so we convert each from integer type to categorical type
# defining some variables to become factor variable
# we use another variable to preserve the file hsb2_long
data <- hsb2_long
data$ses = factor(data$ses, labels=c("low", "middle", "high"))
data$schtyp = factor(data$schtyp, labels=c("public", "private"))
data$prog = factor(data$prog, labels=c("general", "academic", "vocational"))
data$race = factor(data$race, labels=c("hispanic", "asian", "african-
amer","white"))
data$female = factor(data$female, labels=c("female", "male"))
# check data structure again. The former integer variables are now categorical variable
str(data)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : Factor w/ 2 levels "female","male": 1 2 1 1 1 1 1 1 1 1 ...
##  $ race    : Factor w/ 4 levels "hispanic","asian",..: 4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : Factor w/ 3 levels "low","middle",..: 1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : Factor w/ 3 levels "general","academic",..: 1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
# we compare student performance by using boxplots

library(gplots)
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
# compute the average value by group using tapply() command
means <- round(tapply(data$value, data$variable, mean), digits=2)
# create boxplot by group
boxplot(data$value ~ data$variable, main= "Student Performance by Subject
(brown dot = mean score)",
        xlab="Subject matter", ylab="Percentage Scores", col=rainbow(5))
# insert the average values
points(means, col="brown", pch=18)
# can also compute the median values
medians = round(tapply(data$value, data$variable, median), digits=2)
medians
##    read   write    math science   socst 
##      50      54      52      53      52
points(medians, col="red", pch=18)

# Lab Exercise 9: How to plot categorical variables
library(ggplot2)

# we load variable names to memory to avoid the dollar notation
attach(hsb2_long)
# create the plot object p
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~race)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

# Lab Exercise 10: Scatter Plots with marginal Distributions# Advance Scatter plots using libraries
# install.packages("ggExtra")
# install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ stringr   1.5.0
## ✔ forcats   1.0.0     ✔ tibble    3.2.0
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(ggExtra)
# set theme appearance of grid background
theme_set(theme_bw(1))
# create X and Y vector
(xAxis <- rnorm(1000)) # normal distribution with mean 0 and sd=1
##    [1]  0.6648893499  0.1425949744 -0.6097850027 -0.4479946025  0.1038701263
##    [6]  0.1949834213  2.2210867570  0.8934661506  0.5497949043 -1.5519172996
##   [11] -1.6489623263 -1.7908626445  0.8324284823  0.4645562274  0.3942514370
##   [16] -0.0857478482  1.6366654897 -0.0555474577 -1.8510986985 -1.6881907195
##   [21] -1.4850571604 -0.5934563989 -0.6576157529  1.8819452668 -0.1696504966
##   [26]  0.1908334017  0.7539273944  0.3483641850 -0.7505360524 -0.2838691299
##   [31] -0.6841569649  0.2443627996  0.4585161357  0.7405650191  0.3035392710
##   [36]  0.4792666266  0.5025791590 -0.8968920172  0.2476003112 -1.0977310148
##   [41] -0.0495063763  2.9917518147 -1.6571531215  1.4372383847 -0.5226136380
##   [46]  0.7346023347  0.5885803622 -0.7028729396  0.0229671179 -0.3689663440
##   [51]  0.2906497015  0.7714357096  0.1149725465 -0.6118037733  0.0743402007
##   [56] -0.3688042616  0.3063901939  0.3496666757  0.5987023317  0.6908598849
##   [61] -1.4321695727  0.7782637389  1.1590958817  0.3960993330  0.2881286593
##   [66]  0.6046127855 -0.4658113466 -0.9541577903  1.2786299209  1.8243840979
##   [71] -0.1297311333  0.2553533882 -0.4173477701  1.2508779043  0.9686922341
##   [76] -0.9715509101  0.6176050881 -0.2984659522 -0.6895717575  1.4628964821
##   [81] -0.9724311132 -0.2377497872  1.2029333303  1.2927256831 -0.0184685856
##   [86]  1.4903727698  1.0971249502  0.8224832329 -1.2411207532 -1.4474676503
##   [91] -1.4728752796  0.9365192139  0.8791523612  0.8707505082  0.0991374443
##   [96]  0.0191239777 -0.0303244111  0.4459533811  0.1115810673 -1.1640000397
##  [101] -0.3584604443 -0.2681756927 -0.5744052196 -1.0480983460  0.6729773712
##  [106] -1.3770839046  1.2752210608  2.1008729638 -1.0285740770 -1.5937301183
##  [111]  0.4670671822  1.1469484592 -0.1563618176  0.3030876799  1.3997512306
##  [116] -0.5894495442 -1.2111001806  1.2900413499  1.0178437336  0.6576149846
##  [121]  1.0334496763  0.0654639568  0.1931400574  1.2032798869 -0.3106075242
##  [126] -2.1729542052  0.2137026270  0.4519802147 -1.0378567532 -2.7389969842
##  [131]  0.4042552464  0.4754810335 -1.8936493291 -0.5155464476 -1.0179374492
##  [136]  1.4529678071  0.0156207043  0.1556638816 -0.4623760423 -0.8734502530
##  [141]  0.4437733838 -0.6117725356 -0.5096092541  0.3569357683 -0.2494129845
##  [146]  0.3561619640  1.5423985558 -0.2612839332 -0.1147744638  0.9146363216
##  [151]  0.9176877831  1.3992302487  0.6787467706  1.6828556132 -1.3182275669
##  [156]  1.1175539195  0.0409770282  0.1156510771 -0.1863561419  0.2121713604
##  [161] -0.0237347395  0.7556173235 -0.0781669277 -0.0663338389  0.6284689573
##  [166]  1.3330186731 -0.9052111233  0.7314217744  1.6061095605 -0.9919881930
##  [171]  0.3391731476 -1.9795214572  0.3358804074 -0.0424228502 -0.4992510657
##  [176]  1.4715150182  1.1201341980 -1.2518588549 -1.5159484175  0.8526025312
##  [181]  1.4639926063  0.0598577791  0.2815485204  0.6556959285  0.0108300842
##  [186]  0.7023689595  0.0241170882  1.8760471680 -1.7213246538  1.5076607757
##  [191]  0.4637702565  0.0884645417 -0.9217097001 -0.3737010385  1.4074451138
##  [196]  0.8964411487  0.4822319471  1.0022647929  0.1016552782  0.3843729757
##  [201] -1.5295763912  0.1742463923 -1.5697574733 -0.4099754080  0.0838274926
##  [206]  2.0837263036  0.4046104948  0.6401476923 -0.2305895061  0.9621803729
##  [211]  0.8875922246 -0.4295266604 -1.9888072940  0.2588205830 -1.3956623414
##  [216] -1.3966405930  1.0681594442  0.4709537748  0.2133468259  1.3033050799
##  [221] -0.8311146063 -0.6019360687  0.8760407423  0.1149546358 -1.2742850724
##  [226]  0.1256963265 -0.6404611416 -1.1445616547  1.0877225998 -1.1293910578
##  [231]  0.5614665214  0.5432494385 -1.0684462942 -0.3497118899  0.5444466846
##  [236] -0.3812851987 -0.8147563973 -0.4029791089 -0.6055311482 -0.6996157652
##  [241]  1.5693942821  0.2635519784  0.5512476641  0.9605309338 -0.8019756491
##  [246]  0.6530891332  0.4143287425  2.1763700655 -0.0676964669 -0.3895240780
##  [251]  0.7886223261 -0.6402408218  1.0568633802  0.2864111005 -0.0458681410
##  [256]  1.2319393006  1.1443198091 -1.1116132672 -0.5050918775 -1.1924504566
##  [261]  1.7372525598  2.5709166454  0.1391079692  1.2724169245 -0.3666587341
##  [266] -0.1908726522  1.6700941822 -0.7158070916  0.0409969078 -0.7666668648
##  [271]  0.9217442747 -1.2509755604 -0.1578075153 -0.1742785741  2.4639479117
##  [276] -1.0650952557 -0.5523525457  0.2129181151 -0.5490023833  0.3757220401
##  [281] -1.6561477350 -0.8466254880 -0.8387047435 -0.3897152552  0.2204317928
##  [286]  1.0377779274  0.1324104744  0.5213332574  0.6661806043  0.7784964193
##  [291] -0.4423386227 -1.3332015588 -1.5036569775 -0.6190954477  0.7717888129
##  [296] -0.2921388010 -1.1052256590  0.7257791566 -0.0139572079  1.4755086167
##  [301]  0.2459432297 -1.7961178491  0.0008695500  2.0229630242  0.1699466600
##  [306] -1.1083214220  0.6227166716 -0.7723486260  1.4925604048 -0.7623717875
##  [311]  0.3595851194 -0.6768563976  2.1710312265 -0.8060127063 -0.2093327341
##  [316] -0.0222088917  0.9499768428  2.0121563693  0.0965820812 -0.4663069876
##  [321]  0.4502742164  0.4077532843 -0.3553932773 -2.4881381130  0.3257397557
##  [326] -1.3620331160  0.2193474023  0.1456060638  0.2104952864  2.0012850108
##  [331]  1.4682670436 -1.1271609620  0.3956081937 -0.8087874841 -1.0191761932
##  [336] -1.6301057390  0.4429205162  1.1528953552 -1.8390157970  0.5041871950
##  [341]  0.8933541942  0.0084817093 -1.3703590434 -0.2786322117  0.7009839327
##  [346]  1.4793721211 -0.3786203522  2.2311575182 -1.1270081447 -1.2067705107
##  [351]  0.8368583206  0.6490829997 -0.3252379405 -1.8196033219 -0.6105184497
##  [356] -1.1328467987  0.8677627633  0.6549373376  0.6631979993 -0.2170791529
##  [361] -1.5621642464 -0.4681387284 -0.9259160322  0.6908057168  0.5324428644
##  [366] -0.7339052540  1.4836873705  1.5632137216  1.1039423740 -0.4301062703
##  [371] -0.4125407777 -0.2188687387 -0.6210636095 -0.2300838741  0.8197010781
##  [376] -1.6400828007  2.5619577514  1.4653628047 -0.8874813581 -0.1951500441
##  [381] -0.5034332947  0.3894078901 -1.8386144060 -0.6814015993  0.3642835491
##  [386]  0.9006033872 -1.0118646688 -0.1242881433  0.6397691502  0.9553354155
##  [391] -0.7105556200 -0.6932133763  0.6865203005  0.4482167842 -0.8301825530
##  [396] -0.0190666849  0.1688009367 -0.9182069785 -0.3642774219  0.2130913510
##  [401]  0.1358073016 -0.3529762414 -1.2851507611  0.0226005721 -0.6691497288
##  [406]  1.3379801117  1.7778107302  0.6929440138  2.4180439534  0.7114788764
##  [411]  1.1667047493 -0.5977446514 -0.9393527611 -0.4999755489 -1.3977054167
##  [416] -0.3225692394 -1.3805510910 -1.2888502001  0.6187459030  1.3421046292
##  [421] -0.1569045742 -0.3065727456  1.5126754376  0.0998314838 -1.5516506483
##  [426]  0.5686351238 -0.5603467801  0.3121618333 -1.0522458974 -0.1175242483
##  [431] -1.2414570136  0.8043303081  0.7246005816  1.3296907247 -0.9154637581
##  [436] -1.2421185812  0.6065207567  0.2863742323 -0.0614799957  0.1495888496
##  [441] -0.2976655925  1.1519641292  2.1501530743  1.1215703057  1.1681946999
##  [446]  1.0717425079  1.1294060793  2.0965559869  1.6177802268 -0.0230148285
##  [451]  0.4657571056  0.7278132510  0.5111825055  1.2644731232  0.8851587850
##  [456] -1.1784903618 -1.2169878911 -1.2717145729 -1.0854311794 -1.5937272919
##  [461]  1.8376864881  1.0774551466 -0.4106619412 -0.1303941516  1.2613497567
##  [466] -0.0273952224 -0.7375977303  0.2366314317 -0.9068819829 -2.0635724489
##  [471]  0.2714019201 -0.7577536269  1.3987089287 -0.1583863603  1.1022753376
##  [476]  0.8510139488  0.3122541036  1.2931536074 -0.6001357244  0.7192746495
##  [481]  1.0956520893  0.1892607557 -0.0366942920 -0.6405858811 -0.7004375584
##  [486]  0.3215100587  0.5007042659 -1.4309554471  0.8760865430  0.6618406072
##  [491] -0.5996213762 -0.0486156896  2.5025333535  1.3619843587 -1.4410738116
##  [496]  0.6772963000  0.1934795848  0.2980398111 -0.7341763394  1.3979112998
##  [501]  0.4042770773 -1.8506413042  0.2294801800  1.3359934722  1.3902670302
##  [506] -1.5298662971 -0.3654286351  1.2686595822 -0.2529187566  0.2848728815
##  [511]  1.0833698438  1.2955785686  1.1593090954  0.9554438368 -0.9416436369
##  [516] -0.8577009510 -1.3700083307 -0.5063068907  1.2901457791 -0.0195128257
##  [521]  0.4909767280 -2.5995352830 -1.1809997356  0.1629575227 -0.5190012061
##  [526]  0.2412919866  0.0868984277  2.0196842979 -0.1021846472  0.9188882958
##  [531] -2.5178238138  0.1390964407 -0.7840506043 -0.1142796281 -1.1511912571
##  [536]  0.6544844695 -1.7466744116  0.5874990128 -0.0815086315 -1.0593831684
##  [541]  1.2740413416  0.6112845826 -0.0614939812 -0.2629205536 -1.7788825512
##  [546] -0.0220891881  0.1784449046 -0.3200994727 -0.8445387039 -1.1582601700
##  [551]  0.2187845759 -0.8854236310 -0.1551179261  1.0644716282  0.6468565925
##  [556]  0.2690865088 -0.0420922594 -1.8568647765  1.3044201801 -0.1484706072
##  [561]  0.5217052725 -0.5236074191 -0.4514704243  0.8177651580 -2.1955671620
##  [566]  0.6142675610  0.5488406443  0.0875441762 -0.6631806222  0.9201616698
##  [571] -1.3341576414 -0.3381447698  1.4451525433  0.2887833019 -1.5292947686
##  [576] -0.5856326433  0.7829829135  0.3853259873  0.0597105682  0.5256592066
##  [581]  0.7329351149  0.7425080858  0.5387042857  0.8196188785 -0.2940430479
##  [586] -0.0967502860  0.6370733122 -0.6946254202 -0.2584930739 -1.7852746424
##  [591]  1.7587256661  2.0206768794  2.2505682200  1.6958618482  0.8676610034
##  [596]  0.9384550159 -1.9291679917 -0.1022513578 -0.0629946520  0.7444018990
##  [601] -0.2109460610 -0.5446051576 -0.6826602977  0.0546542457 -0.3816638401
##  [606] -0.6163724822  0.3094399743  0.7847321393 -0.1982618532  0.7279213639
##  [611] -1.0916000004  0.4038083240 -0.0402223091  0.2380980131  0.8128676714
##  [616] -0.1653130400 -1.2753067311  1.8296988298  0.6125042111  1.6195574010
##  [621]  0.5479991560  1.0129568898  0.3903419556  0.9574885976  0.1391521479
##  [626] -0.7507744102 -0.8168836025 -0.8816876682 -0.9198228148  1.8863566525
##  [631] -0.0382198447  0.8730698496 -1.6669003772  0.2411364939  0.1355427148
##  [636]  0.7452033456  0.5814303619  0.0161978627 -2.9895651727  0.1815873879
##  [641]  0.1866407379 -0.8981964456  1.1848770294  0.1887869973  1.1693182432
##  [646]  0.0034339342  0.4289096081 -1.3452239932  1.2095419653 -1.2845012121
##  [651] -0.9062313476 -1.5650065172  0.7750426587 -0.5491484167 -2.0395877442
##  [656] -1.5173781859  0.5087505989  0.7535229576 -0.1745995407  1.0763299732
##  [661] -0.2744736371 -0.7946493386  1.1354170030 -0.1317124636 -0.8532127922
##  [666] -0.5979157314  0.1995947839  0.6135571172 -0.2228998649  1.4591461132
##  [671]  0.9120105967  1.4005630132 -0.4018939579  0.4682566014 -0.3805426451
##  [676] -1.1621669438 -0.5443899482  0.5484421357 -0.1558856903  0.1674892267
##  [681]  0.1824778396 -0.2388240238 -2.2903684299 -0.4653842249 -2.5541052591
##  [686] -0.7901994295 -0.8804860595  0.4960325976 -0.8748324376  0.0609017743
##  [691]  0.6707523799  0.0444938274  0.6491962808  0.1982760267 -0.7433119945
##  [696] -0.4726693092 -1.2381104767  0.4068029403 -0.1160895960 -1.6254140883
##  [701]  1.7291522627 -0.0323955937 -0.1069542434  0.8810726773  1.0417311232
##  [706] -1.3374337581  1.2512426584 -1.1901619642 -1.0299279793  0.5757481883
##  [711]  0.0777718617  1.0933657512  0.4513003702  0.9971088998 -1.6761055655
##  [716] -0.4894400003 -0.6286058932 -0.0704395569 -0.8344044849  0.1674704952
##  [721] -2.4461678137  0.0063437927  0.6321357544 -0.4856027344 -0.1142957628
##  [726]  0.1063455202  0.0758423731  0.8732329563 -0.2495234083  0.6742408899
##  [731]  0.6018793440 -0.6206144307 -0.5711342663 -0.1716880439  0.3126344892
##  [736]  0.2442003797  0.7858132197 -0.1647085325 -0.1139848209  0.2904716538
##  [741]  0.0174290208  0.1925096525  0.3509686898  2.2096987780 -0.9523792592
##  [746] -0.7889943653 -0.6196207620  1.1259161138 -2.0684186102 -0.9897762185
##  [751]  0.4680183193  1.6824123832 -1.3676924527  0.1929016468 -1.6708976527
##  [756]  0.1319048762 -0.5464020833  0.9291683585 -0.7119499668 -0.2046532020
##  [761]  1.4462491055 -0.2335374918  1.3420254478 -0.7830916669  0.7182158322
##  [766] -0.4258629994 -0.6015614314  1.5663689070  1.1648374530 -0.7998682888
##  [771] -1.7246739653  0.6121706645  0.2750801509 -0.5366135479 -0.6129472678
##  [776]  0.5232466673  0.7163058896  0.7617284824  1.4279673052 -1.2376036013
##  [781] -0.4691783502 -1.2580298959 -0.7971099128  1.1711888798 -1.7753031347
##  [786] -0.2805140506  0.6758422525 -0.4841535317 -0.1597659599 -0.5541900110
##  [791]  0.0663820044 -1.3978208684  0.9801285346  1.0790624790  1.7731662985
##  [796]  0.4252030188  0.0002311626 -2.2727877689 -0.0316406137 -0.0704895844
##  [801]  0.3777340450 -0.5609573393 -1.0785203589  1.3631891563 -0.5652799496
##  [806]  0.4263444657  0.3859052857 -0.6541305508  0.3516097472  0.5914289715
##  [811]  0.1515369053  0.0716279285  0.9523859854 -0.0139630544  0.8442532817
##  [816] -0.9382775015 -0.6258939022  0.0305720726  1.6161987809 -2.6041258147
##  [821] -0.2303667164  0.0167464324 -0.7428094605 -2.0559127278  0.2642629261
##  [826] -0.4417555144  0.3308497051  1.4006935312  0.2634087341 -3.1001010939
##  [831] -0.1600340954  0.3224968360 -1.9797346545  0.6952330722 -2.1940966255
##  [836]  0.9915649931 -1.9183143077 -1.9236785506  0.2931374497  1.3246777849
##  [841]  0.2693774839 -0.8391685560  1.5607570613  0.3216175628 -0.3657060979
##  [846] -0.1912745796  0.2598966262 -0.9341918184  0.9277121091  0.7406477860
##  [851] -0.0506716844 -0.0366714024 -1.1861656902  0.4679080751  1.7152733761
##  [856]  1.5100728253  1.6888408048 -2.1938460461  1.9656662405  1.8153149682
##  [861] -1.8267623952  0.7210656445 -0.2825491969  0.0573803946  1.4440686468
##  [866] -0.9117814241 -0.0645962650 -0.3745494627  0.0645090115 -1.4528748046
##  [871] -0.5618488457  2.1145493607 -0.2986497274 -2.5117900344 -1.3245245152
##  [876] -0.1697452757 -0.1571494777 -1.6938614227  0.4817938402 -0.3267084349
##  [881] -1.4735441573 -0.0017428298 -0.1638184877  0.2440872254 -0.1978737346
##  [886]  1.2313909530  0.1394545108  0.9554461968 -0.5973045152  0.6015576902
##  [891]  0.3158453817 -0.7016700252  0.5645990284 -1.3461325192 -0.6765984853
##  [896]  0.2301010312 -0.4666426126  0.1734639229 -0.5560670489 -1.0872797538
##  [901]  0.6012918380 -1.9391356057  2.0840499850  0.4019817076  1.2123026223
##  [906] -0.6552553084  1.0344581174 -0.0493781271 -0.1563516714 -0.7404552495
##  [911]  0.2948036013 -0.4963082589  0.0145574138  1.0231933410 -0.8848121429
##  [916]  0.9504572153  0.4521270434 -0.4515904879 -0.7724584673 -0.3433723759
##  [921]  0.5689150201  1.0467692061  0.5662310134 -0.6097537355  0.2998165241
##  [926]  1.2251850460  0.4673856523  0.0287484318  0.2549328673  0.2101653409
##  [931] -0.3768375310 -0.3932682222 -0.1656235495 -1.6857184268  1.7479346495
##  [936]  0.3648381007  0.7011182662  0.3427865854 -0.0931421109  0.0870059581
##  [941] -0.5623778348 -0.1764335980  0.1914037051 -0.0562478440 -0.2529714945
##  [946]  0.4915247388  0.6061583107  1.1652037575 -0.8385439315 -1.5576709618
##  [951] -2.0046145573 -0.6770862720 -2.2849486032 -0.2712422824  0.1483728671
##  [956]  0.7223291524  0.4373768289  1.2006918799 -0.5290604292 -0.0452444414
##  [961] -0.1263953994  0.8607999905  2.5257654098 -2.2456299644 -0.4173315245
##  [966] -0.0692077803 -0.0794555102  1.3651913140 -0.9699635845  0.1043085014
##  [971] -0.7542150921 -1.3566109168  1.5440882967 -0.0556951245  0.2587367042
##  [976] -1.5073723639  0.3490798431 -0.4012519975 -1.1295931920  0.9653611722
##  [981] -1.4617739336 -0.3192242576 -0.2200964643 -0.1086651174 -0.2957829436
##  [986] -0.7546362949 -0.2712218888 -0.3342016026  0.5066071875 -0.7410342389
##  [991] -2.1264734465 -0.0432725155  0.6434993796 -0.8995395184 -0.3513906569
##  [996] -0.4948546938 -0.6543419833 -0.1847511774 -0.8971128591  0.6001090845
yAxis <- rnorm(1000) + xAxis + 10 
yAxis
##    [1] 10.345382 10.991549  7.113603  8.758842  9.922003  7.910039 12.823151
##    [8] 11.019196 10.948736  9.099431  8.054706  5.196158 11.290232  9.624425
##   [15]  9.814793  9.571054 11.192175  9.479928 10.622662  8.475371  7.135398
##   [22]  9.502756  8.848730 12.044551  8.438593  9.418253 10.929341 10.218786
##   [29]  8.830767 11.119107  9.318963  8.791979 10.710025 11.435187 10.318606
##   [36]  7.165713  9.083699  9.960657  9.973772  8.232280 10.455889 13.055045
##   [43] 10.123002 10.534186  9.403370 10.592058 10.882617  9.583051 10.094124
##   [50] 10.669661 11.627259  9.692349 10.548553 10.370327 10.085402  9.855896
##   [57] 11.204737 10.421919 11.472319 11.288301  7.455514 10.857363 10.633385
##   [64]  9.492649 10.792458 10.291696  8.708621  9.020014 11.269972 11.122693
##   [71]  8.740815  8.589727 10.527478  9.757308 10.456063  7.630734 10.343195
##   [78]  9.409981 10.866775 10.631961  7.869148  8.869121 12.392474 12.056546
##   [85]  9.655623 11.878959 11.920230  9.088146  8.580275  8.930984  8.884215
##   [92] 12.535664 10.808998 10.619171 10.416533  9.209911 11.280304  9.868686
##   [99]  9.913107  6.713357 10.537710 11.082962  9.382522 10.087835  9.594989
##  [106]  7.259303 11.499982 11.442209  7.613775  9.296615  9.209185 11.212915
##  [113]  9.289988 10.699340 10.367144  9.675120  7.145616 11.691285 11.260135
##  [120]  9.321303  9.532345 10.649315 11.240842 11.011403  8.194432  7.512244
##  [127] 10.692242  8.600844  8.526048  6.134601  9.001001 10.136478  6.719937
##  [134]  9.385502  8.752713 10.814082 10.958306 10.504529 10.676486 11.106514
##  [141] 11.933570 10.073447 10.137378 10.632785  8.736710 10.763758 10.953498
##  [148] 10.735757 10.471043 10.366408 12.297880 11.135703  7.416839 10.487239
##  [155]  8.013763 10.476812 10.310059 10.311356  8.261195  8.263326 11.334814
##  [162] 12.519047 11.147241 10.303974 11.205077 11.117468  8.536467  9.595443
##  [169]  8.441267  9.894806  9.868233  7.695852 10.727128 11.258785  9.361975
##  [176] 11.505569 11.481012  7.922277  8.467514 10.031536  9.185685  9.020615
##  [183] 12.170446 10.733393  9.185466 12.456689  9.872760 12.580453  8.511068
##  [190] 11.640079  9.503166 10.493385  8.348740  8.880586 10.852106 11.714491
##  [197] 10.189988 11.777189 10.048882  9.197428 11.102384  9.879761  6.462651
##  [204]  8.887924 10.327002 11.653929 10.837927 11.052325 10.545473 10.899917
##  [211] 10.102566 10.656274  7.578942 11.072406  8.072561  9.778902 10.298954
##  [218]  9.995101 10.933719 10.827360  7.331102  9.756615 11.171206  8.251393
##  [225] 10.227909 11.019829 10.197546  8.909166 10.793604  9.887910 10.594192
##  [232] 10.781096  7.509914  9.041392 11.402295 10.101359  8.029709 10.088903
##  [239] 10.102005 11.643404 10.546387  9.560403 12.038010  9.929319  9.988323
##  [246] 11.913372 10.641987 10.821386  9.605405 10.608734  9.328015  8.586200
##  [253] 10.821867 11.499149 11.350562 11.051659 13.459353  9.496805 10.083160
##  [260]  9.259240 10.097891 12.971844  9.032554 11.677847  9.353242 11.335528
##  [267] 10.560317  8.760875  9.660301 10.411797 10.274065  8.464397 10.083462
##  [274]  8.340191 11.606952  9.817553  8.219101 11.966706  9.281999 14.388796
##  [281]  7.954189  9.830495  8.478764 10.453561  9.948160 10.328099 10.188442
##  [288]  9.287155  9.743844 11.486728 10.628404  9.014790  9.970114 10.889111
##  [295] 11.398258  9.317425  8.469999 11.979180  8.851626 12.964401 10.735186
##  [302]  8.644026  9.361855 11.735747  9.585871  8.245849 11.108927  7.956584
##  [309] 11.480460  9.363161 10.065317  9.637358 13.187886  8.887749 10.000692
##  [316]  8.020580 11.334403 12.282947  8.588021  8.829482  9.358123 10.363116
##  [323] 10.896697  8.754580  9.870221  9.239600 11.057557  9.845912 10.215259
##  [330]  9.228843 10.696238  9.851285 11.419685  8.762807  7.755629  9.444577
##  [337] 10.215875 11.856578  8.739710 11.413565 10.762690 11.932090  9.680826
##  [344]  8.344056 11.763204 10.541991 10.967007 11.859964  8.990826 10.880690
##  [351] 11.422497  8.634471 11.505381  8.206756  9.582154  8.939322  9.925703
##  [358] 11.098327 10.573163  9.369464 10.278720 10.057269 10.325856 10.274820
##  [365] 11.254521  7.871841  8.779082 12.055401 11.080669  9.278628 11.063887
##  [372]  7.291397  9.640868 10.443409  8.996183  7.681740 11.421162 14.230162
##  [379]  9.594289  9.227122  8.387636  9.584541  9.194747 10.336520 10.042781
##  [386] 10.973469 10.024763  9.963670 11.690917  9.687274  9.967111 11.236945
##  [393] 10.883641  9.281550  9.152911 11.217492  9.036036  8.096012  9.853283
##  [400]  9.964276 10.236979  8.581134  9.201050 11.451714 11.010429 11.283925
##  [407] 12.323820 10.594231 13.159197  9.592293 11.256788  8.764523  9.313223
##  [414]  7.962487  7.557899  9.483668  6.761344 10.348418 11.206457 10.466278
##  [421] 10.350421  9.614425 13.600001 10.456596  7.696414 10.800423  7.972471
##  [428]  9.701894  9.579200  8.530145  9.325962 10.814107 11.223764 11.032261
##  [435]  6.747306 10.869063 10.901802 11.714550  7.496370 10.087138  9.803332
##  [442]  9.786890 10.237732 12.659980 11.111614 12.105374 10.868604 11.464928
##  [449]  9.801949  9.063096 10.032117 10.503111 11.436742 11.416309 10.176419
##  [456]  8.471196  8.806400 10.136520  7.843670  9.659654 10.492194 11.356041
##  [463]  9.008321  9.387742 12.879300 10.354726 10.091152 10.201590  8.468318
##  [470]  7.865161  9.699032 10.124066  9.715272 10.815250 11.932178 10.648771
##  [477]  9.214830 12.421978 10.215505 11.025615 12.163722 10.948908  9.701441
##  [484]  7.546375 10.206086 10.977314 11.088265  8.184591 11.766473 10.013579
##  [491]  8.658799  9.628254 13.056667 13.858110  8.578776  9.901709  9.467942
##  [498]  9.045431  7.978757 11.796312  8.965319  8.526997  9.670220 11.764647
##  [505] 10.801550  8.086620  8.903256 11.851233 11.150812 10.573532 11.760899
##  [512] 12.291467 11.619000  9.502111  9.546802  9.819147  8.531661  8.734297
##  [519] 13.458026  8.274898 10.386693  7.728814  9.856164 10.366086  9.035621
##  [526]  9.270386 10.078091 10.252372 10.475016  9.928079  7.983977 11.461552
##  [533] 10.192782  8.982649  8.909397 10.485333  8.377580 10.549011  9.431331
##  [540]  9.040752 11.595115 11.859177 10.080131 11.035040  9.017391 10.593497
##  [547] 10.766281  9.922871  8.181967  8.356849  9.690012  8.828404  9.167723
##  [554] 10.954836 12.984413  9.084093  8.920495  8.303905 11.225418 10.836063
##  [561] 10.946952 10.155144  8.958221 11.111254  8.099370 11.564460 10.955574
##  [568]  8.937826  9.182142 11.061466  9.285254  9.339855 11.427941 10.621187
##  [575]  8.646278  9.636312 12.343355 10.257580  8.244182  9.972719 10.893100
##  [582] 11.845846  7.502498 11.364358  9.273549 10.334713 10.137773  9.456664
##  [589] 10.155790  8.085608 11.579064 11.469027 12.444030 11.943547 10.553502
##  [596]  9.813485  7.795279 10.906092  9.215645 12.552941  9.987109 10.757613
##  [603]  9.758136 10.434533 10.741468  8.348730  8.926676 11.890936 10.335611
##  [610] 10.131506  9.718113 10.795433 11.820794 11.411177 11.262319  9.896693
##  [617] 10.106756 10.591771 11.225887 11.843390  9.827616 10.507305 10.365436
##  [624] 11.230791  8.199514  9.767298 10.232548  7.821455  8.412523 12.039916
##  [631] 10.205491 12.085181  9.455761 11.588603  9.451608 11.172804 10.582050
##  [638] 10.423376  7.021761 10.991778 10.550470  8.676794  9.690195  9.927681
##  [645] 10.736299 11.037907  9.343260  8.449958 11.236751  9.918634  9.814576
##  [652]  7.898390 12.110289 10.770123  7.950817  6.025177 11.341326 11.227527
##  [659] 11.591837 11.489366  9.868010  9.975491 12.457654 10.726951  8.987377
##  [666]  9.656669 10.932126 10.463815  9.115948 10.845432  9.269170 11.710150
##  [673] 10.327226 11.197442  8.239497  9.554747  9.533494  9.127942  7.598718
##  [680] 10.161479 11.806122  9.896866  8.081487  8.997004  7.891209  8.041542
##  [687]  8.538128  9.273795  8.426295 10.438261  9.723971 10.739286  9.966289
##  [694] 10.708917  9.476256 10.368541  9.883813 12.084161 11.633119  8.518521
##  [701] 12.029303 11.137037 11.335706  9.158663 11.155862  8.913532 11.004822
##  [708]  5.288823  8.622612  9.012525  9.276659 10.597105 10.009602 11.136263
##  [715]  8.161188  8.250960  8.892059  9.756281  8.443332 10.316877  6.972580
##  [722]  9.667041 10.074546  9.461949  9.300794  8.713794 10.265906 11.048223
##  [729]  9.920728 12.789041 10.485710  9.271931  8.301082  8.695551  9.977809
##  [736] 10.944046  9.899699  9.944009 10.714303 10.580386  9.969440 11.060991
##  [743] 12.073481 14.096668  9.530204  8.099533  9.835901 11.746744  9.129236
##  [750]  7.420553 10.783172 11.900421  9.312903  9.911901  6.252965 10.395649
##  [757]  9.086056 10.436574 10.272619  9.380168 10.573807  8.763795 11.583798
##  [764]  9.841138 12.897027 10.230566  9.863732  9.749767 12.291155  9.435981
##  [771]  7.735847  9.329448  9.823244 10.862968  8.859952 11.198536 10.826742
##  [778]  9.298661 13.009439  8.797805  8.990990  9.802446 10.626647 10.295494
##  [785]  7.202452  9.842137 10.102973  6.648965 10.393615  9.163456 12.646388
##  [792]  8.401017 10.384346 11.312302 12.530046 10.701757 10.377753  8.041406
##  [799] 11.274179  8.082906  9.472167 10.423787  9.712724 10.380710  8.118304
##  [806]  9.948939 10.134730  9.477488 10.826955  8.001958  9.306149 11.458928
##  [813] 10.857098 10.215738 11.306813  8.595244 10.035622 10.376834 12.915691
##  [820]  7.038659  9.604150  9.433144  8.389563  7.800856  9.977314  9.507476
##  [827]  9.654107 11.209924 10.413655  8.856391 10.131741 10.137189  9.533962
##  [834] 12.468823  6.464525 11.126009  7.898102  8.001282  7.552951 10.983872
##  [841]  9.999615 10.012600 12.781634 10.428875  9.979935 10.683912  7.556508
##  [848]  8.277412 10.847330 10.181023 11.073363 10.122075  8.416430 10.243070
##  [855] 12.251143 11.394940 11.692751  5.579363 12.528779 11.543966  7.594553
##  [862] 11.697643  8.876538  9.892503 12.892797  8.784623  9.780577  9.810764
##  [869]  9.580515  7.321641  7.791199 10.038161  9.945795  6.682191  8.412511
##  [876]  8.840673 10.159830  9.242261 11.260254 11.091308  9.901109  8.626555
##  [883]  9.605631  8.788259  8.999570  9.569291  9.355312  9.921542 11.641591
##  [890] 11.352046 10.861438 11.014649 10.123134  9.711245  9.902821  9.397631
##  [897]  8.744136  9.356034  9.666529  7.821095 11.162349  8.810094 12.624417
##  [904] 10.609011 10.114931  6.432085 10.850391  8.998887  8.444220  9.661949
##  [911] 11.004746  9.289029  8.124507  9.525105 10.154956 11.485685 12.157230
##  [918]  9.525829 10.349470  8.525555 10.901094  9.179634  9.758738 10.073697
##  [925]  9.654057 11.700561 11.259702 10.949491 11.351142 11.284636  9.476844
##  [932] 10.161947  9.310682  9.939617 10.943729  9.716865 11.293805 10.053952
##  [939] 10.225475  9.465795  8.200138  9.436734 11.822850 10.920422  8.381545
##  [946] 11.271099 11.522153  9.495087  7.522580  8.278749  8.676740  9.378034
##  [953]  5.760154  9.311849 10.227899 12.046126 10.169983 11.886568  9.378313
##  [960] 10.628530  9.134384 12.382433 12.745557  7.769090 11.152007  8.054814
##  [967]  9.945275 10.757302 10.384944 11.372867  9.747740 10.186810 13.670094
##  [974]  8.816586 10.093037  9.041354  8.116257  9.653625  8.414037 11.311746
##  [981]  9.976714  8.914089  9.650568 10.446444  8.202551  9.593645  9.416969
##  [988]  8.299729 10.716683  8.150360  8.157643  9.440337  9.383930  8.954136
##  [995] 10.896999 11.089421  9.502371 11.091316  9.138657 11.689018
# create groups for different values of X
(group <- rep(1,1000)) # a vector consisting of 1000 elementsgroup[xAxis > -1.5] <- 2
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1
group[xAxis > -.5] <- 3
group[xAxis > .5] <- 4
group[xAxis > 1.5] <- 5
group
##    [1] 4 3 1 3 3 3 5 4 4 1 1 1 4 3 3 3 5 3 1 1 1 1 1 5 3 3 4 3 1 3 1 3 3 4 3 3 4
##   [38] 1 3 1 3 5 1 4 1 4 4 1 3 3 3 4 3 1 3 3 3 3 4 4 1 4 4 3 3 4 3 1 4 5 3 3 3 4
##   [75] 4 1 4 3 1 4 1 3 4 4 3 4 4 4 1 1 1 4 4 4 3 3 3 3 3 1 3 3 1 1 4 1 4 5 1 1 3
##  [112] 4 3 3 4 1 1 4 4 4 4 3 3 4 3 1 3 3 1 1 3 3 1 1 1 4 3 3 3 1 3 1 1 3 3 3 5 3
##  [149] 3 4 4 4 4 5 1 4 3 3 3 3 3 4 3 3 4 4 1 4 5 1 3 1 3 3 3 4 4 1 1 4 4 3 3 4 3
##  [186] 4 3 5 1 5 3 3 1 3 4 4 3 4 3 3 1 3 1 3 3 5 3 4 3 4 4 3 1 3 1 1 4 3 3 4 1 1
##  [223] 4 3 1 3 1 1 4 1 4 4 1 3 4 3 1 3 1 1 5 3 4 4 1 4 3 5 3 3 4 1 4 3 3 4 4 1 1
##  [260] 1 5 5 3 4 3 3 5 1 3 1 4 1 3 3 5 1 1 3 1 3 1 1 1 3 3 4 3 4 4 4 3 1 1 1 4 3
##  [297] 1 4 3 4 3 1 3 5 3 1 4 1 4 1 3 1 5 1 3 3 4 5 3 3 3 3 3 1 3 1 3 3 3 5 4 1 3
##  [334] 1 1 1 3 4 1 4 4 3 1 3 4 4 3 5 1 1 4 4 3 1 1 1 4 4 4 3 1 3 1 4 4 1 4 5 4 3
##  [371] 3 3 1 3 4 1 5 4 1 3 1 3 1 1 3 4 1 3 4 4 1 1 4 3 1 3 3 1 3 3 3 3 1 3 1 4 5
##  [408] 4 5 4 4 1 1 3 1 3 1 1 4 4 3 3 5 3 1 4 1 3 1 3 1 4 4 4 1 1 4 3 3 3 3 4 5 4
##  [445] 4 4 4 5 5 3 3 4 4 4 4 1 1 1 1 1 5 4 3 3 4 3 1 3 1 1 3 1 4 3 4 4 3 4 1 4 4
##  [482] 3 3 1 1 3 4 1 4 4 1 3 5 4 1 4 3 3 1 4 3 1 3 4 4 1 3 4 3 3 4 4 4 4 1 1 1 1
##  [519] 4 3 3 1 1 3 1 3 3 5 3 4 1 3 1 3 1 4 1 4 3 1 4 4 3 3 1 3 3 3 1 1 3 1 3 4 4
##  [556] 3 3 1 4 3 4 1 3 4 1 4 4 3 1 4 1 3 4 3 1 1 4 3 3 4 4 4 4 4 3 3 4 1 3 1 5 5
##  [593] 5 5 4 4 1 3 3 4 3 1 1 3 3 1 3 4 3 4 1 3 3 3 4 3 1 5 4 5 4 4 3 4 3 1 1 1 1
##  [630] 5 3 4 1 3 3 4 4 3 1 3 3 1 4 3 4 3 3 1 4 1 1 1 4 1 1 1 4 4 3 4 3 1 4 3 1 1
##  [667] 3 4 3 4 4 4 3 3 3 1 1 4 3 3 3 3 1 3 1 1 1 3 1 3 4 3 4 3 1 3 1 3 3 1 5 3 3
##  [704] 4 4 1 4 1 1 4 3 4 3 4 1 3 1 3 1 3 1 3 4 3 3 3 3 4 3 4 4 1 1 3 3 3 4 3 3 3
##  [741] 3 3 3 5 1 1 1 4 1 1 3 5 1 3 1 3 1 4 1 3 4 3 4 1 4 3 1 5 4 1 1 4 3 1 1 4 4
##  [778] 4 4 1 3 1 1 4 1 3 4 3 3 1 3 1 4 4 5 3 3 1 3 3 3 1 1 4 1 3 3 1 3 4 3 3 4 3
##  [815] 4 1 1 3 5 1 3 3 1 1 3 3 3 4 3 1 3 3 1 4 1 4 1 1 3 4 3 1 5 3 3 3 3 1 4 4 3
##  [852] 3 1 3 5 5 5 1 5 5 1 4 3 3 4 1 3 3 3 1 1 5 3 1 1 3 3 1 3 3 1 3 3 3 3 4 3 4
##  [889] 1 4 3 1 4 1 1 3 3 3 1 1 4 1 5 3 4 1 4 3 3 1 3 3 3 4 1 4 3 3 1 3 4 4 4 1 3
##  [926] 4 3 3 3 3 3 3 3 1 5 3 4 3 3 3 1 3 3 3 3 3 4 4 1 1 1 1 1 3 3 4 3 4 1 3 3 4
##  [963] 5 1 3 3 3 4 1 3 1 1 5 3 3 1 3 3 1 4 1 3 3 3 3 1 3 3 4 1 1 3 4 1 3 3 1 3 1
## [1000] 4
# create sample data frame by joining variables
sample_data <- data.frame(xAxis,yAxis,group)
sample_data
##              xAxis     yAxis group
## 1     0.6648893499 10.345382     4
## 2     0.1425949744 10.991549     3
## 3    -0.6097850027  7.113603     1
## 4    -0.4479946025  8.758842     3
## 5     0.1038701263  9.922003     3
## 6     0.1949834213  7.910039     3
## 7     2.2210867570 12.823151     5
## 8     0.8934661506 11.019196     4
## 9     0.5497949043 10.948736     4
## 10   -1.5519172996  9.099431     1
## 11   -1.6489623263  8.054706     1
## 12   -1.7908626445  5.196158     1
## 13    0.8324284823 11.290232     4
## 14    0.4645562274  9.624425     3
## 15    0.3942514370  9.814793     3
## 16   -0.0857478482  9.571054     3
## 17    1.6366654897 11.192175     5
## 18   -0.0555474577  9.479928     3
## 19   -1.8510986985 10.622662     1
## 20   -1.6881907195  8.475371     1
## 21   -1.4850571604  7.135398     1
## 22   -0.5934563989  9.502756     1
## 23   -0.6576157529  8.848730     1
## 24    1.8819452668 12.044551     5
## 25   -0.1696504966  8.438593     3
## 26    0.1908334017  9.418253     3
## 27    0.7539273944 10.929341     4
## 28    0.3483641850 10.218786     3
## 29   -0.7505360524  8.830767     1
## 30   -0.2838691299 11.119107     3
## 31   -0.6841569649  9.318963     1
## 32    0.2443627996  8.791979     3
## 33    0.4585161357 10.710025     3
## 34    0.7405650191 11.435187     4
## 35    0.3035392710 10.318606     3
## 36    0.4792666266  7.165713     3
## 37    0.5025791590  9.083699     4
## 38   -0.8968920172  9.960657     1
## 39    0.2476003112  9.973772     3
## 40   -1.0977310148  8.232280     1
## 41   -0.0495063763 10.455889     3
## 42    2.9917518147 13.055045     5
## 43   -1.6571531215 10.123002     1
## 44    1.4372383847 10.534186     4
## 45   -0.5226136380  9.403370     1
## 46    0.7346023347 10.592058     4
## 47    0.5885803622 10.882617     4
## 48   -0.7028729396  9.583051     1
## 49    0.0229671179 10.094124     3
## 50   -0.3689663440 10.669661     3
## 51    0.2906497015 11.627259     3
## 52    0.7714357096  9.692349     4
## 53    0.1149725465 10.548553     3
## 54   -0.6118037733 10.370327     1
## 55    0.0743402007 10.085402     3
## 56   -0.3688042616  9.855896     3
## 57    0.3063901939 11.204737     3
## 58    0.3496666757 10.421919     3
## 59    0.5987023317 11.472319     4
## 60    0.6908598849 11.288301     4
## 61   -1.4321695727  7.455514     1
## 62    0.7782637389 10.857363     4
## 63    1.1590958817 10.633385     4
## 64    0.3960993330  9.492649     3
## 65    0.2881286593 10.792458     3
## 66    0.6046127855 10.291696     4
## 67   -0.4658113466  8.708621     3
## 68   -0.9541577903  9.020014     1
## 69    1.2786299209 11.269972     4
## 70    1.8243840979 11.122693     5
## 71   -0.1297311333  8.740815     3
## 72    0.2553533882  8.589727     3
## 73   -0.4173477701 10.527478     3
## 74    1.2508779043  9.757308     4
## 75    0.9686922341 10.456063     4
## 76   -0.9715509101  7.630734     1
## 77    0.6176050881 10.343195     4
## 78   -0.2984659522  9.409981     3
## 79   -0.6895717575 10.866775     1
## 80    1.4628964821 10.631961     4
## 81   -0.9724311132  7.869148     1
## 82   -0.2377497872  8.869121     3
## 83    1.2029333303 12.392474     4
## 84    1.2927256831 12.056546     4
## 85   -0.0184685856  9.655623     3
## 86    1.4903727698 11.878959     4
## 87    1.0971249502 11.920230     4
## 88    0.8224832329  9.088146     4
## 89   -1.2411207532  8.580275     1
## 90   -1.4474676503  8.930984     1
## 91   -1.4728752796  8.884215     1
## 92    0.9365192139 12.535664     4
## 93    0.8791523612 10.808998     4
## 94    0.8707505082 10.619171     4
## 95    0.0991374443 10.416533     3
## 96    0.0191239777  9.209911     3
## 97   -0.0303244111 11.280304     3
## 98    0.4459533811  9.868686     3
## 99    0.1115810673  9.913107     3
## 100  -1.1640000397  6.713357     1
## 101  -0.3584604443 10.537710     3
## 102  -0.2681756927 11.082962     3
## 103  -0.5744052196  9.382522     1
## 104  -1.0480983460 10.087835     1
## 105   0.6729773712  9.594989     4
## 106  -1.3770839046  7.259303     1
## 107   1.2752210608 11.499982     4
## 108   2.1008729638 11.442209     5
## 109  -1.0285740770  7.613775     1
## 110  -1.5937301183  9.296615     1
## 111   0.4670671822  9.209185     3
## 112   1.1469484592 11.212915     4
## 113  -0.1563618176  9.289988     3
## 114   0.3030876799 10.699340     3
## 115   1.3997512306 10.367144     4
## 116  -0.5894495442  9.675120     1
## 117  -1.2111001806  7.145616     1
## 118   1.2900413499 11.691285     4
## 119   1.0178437336 11.260135     4
## 120   0.6576149846  9.321303     4
## 121   1.0334496763  9.532345     4
## 122   0.0654639568 10.649315     3
## 123   0.1931400574 11.240842     3
## 124   1.2032798869 11.011403     4
## 125  -0.3106075242  8.194432     3
## 126  -2.1729542052  7.512244     1
## 127   0.2137026270 10.692242     3
## 128   0.4519802147  8.600844     3
## 129  -1.0378567532  8.526048     1
## 130  -2.7389969842  6.134601     1
## 131   0.4042552464  9.001001     3
## 132   0.4754810335 10.136478     3
## 133  -1.8936493291  6.719937     1
## 134  -0.5155464476  9.385502     1
## 135  -1.0179374492  8.752713     1
## 136   1.4529678071 10.814082     4
## 137   0.0156207043 10.958306     3
## 138   0.1556638816 10.504529     3
## 139  -0.4623760423 10.676486     3
## 140  -0.8734502530 11.106514     1
## 141   0.4437733838 11.933570     3
## 142  -0.6117725356 10.073447     1
## 143  -0.5096092541 10.137378     1
## 144   0.3569357683 10.632785     3
## 145  -0.2494129845  8.736710     3
## 146   0.3561619640 10.763758     3
## 147   1.5423985558 10.953498     5
## 148  -0.2612839332 10.735757     3
## 149  -0.1147744638 10.471043     3
## 150   0.9146363216 10.366408     4
## 151   0.9176877831 12.297880     4
## 152   1.3992302487 11.135703     4
## 153   0.6787467706  7.416839     4
## 154   1.6828556132 10.487239     5
## 155  -1.3182275669  8.013763     1
## 156   1.1175539195 10.476812     4
## 157   0.0409770282 10.310059     3
## 158   0.1156510771 10.311356     3
## 159  -0.1863561419  8.261195     3
## 160   0.2121713604  8.263326     3
## 161  -0.0237347395 11.334814     3
## 162   0.7556173235 12.519047     4
## 163  -0.0781669277 11.147241     3
## 164  -0.0663338389 10.303974     3
## 165   0.6284689573 11.205077     4
## 166   1.3330186731 11.117468     4
## 167  -0.9052111233  8.536467     1
## 168   0.7314217744  9.595443     4
## 169   1.6061095605  8.441267     5
## 170  -0.9919881930  9.894806     1
## 171   0.3391731476  9.868233     3
## 172  -1.9795214572  7.695852     1
## 173   0.3358804074 10.727128     3
## 174  -0.0424228502 11.258785     3
## 175  -0.4992510657  9.361975     3
## 176   1.4715150182 11.505569     4
## 177   1.1201341980 11.481012     4
## 178  -1.2518588549  7.922277     1
## 179  -1.5159484175  8.467514     1
## 180   0.8526025312 10.031536     4
## 181   1.4639926063  9.185685     4
## 182   0.0598577791  9.020615     3
## 183   0.2815485204 12.170446     3
## 184   0.6556959285 10.733393     4
## 185   0.0108300842  9.185466     3
## 186   0.7023689595 12.456689     4
## 187   0.0241170882  9.872760     3
## 188   1.8760471680 12.580453     5
## 189  -1.7213246538  8.511068     1
## 190   1.5076607757 11.640079     5
## 191   0.4637702565  9.503166     3
## 192   0.0884645417 10.493385     3
## 193  -0.9217097001  8.348740     1
## 194  -0.3737010385  8.880586     3
## 195   1.4074451138 10.852106     4
## 196   0.8964411487 11.714491     4
## 197   0.4822319471 10.189988     3
## 198   1.0022647929 11.777189     4
## 199   0.1016552782 10.048882     3
## 200   0.3843729757  9.197428     3
## 201  -1.5295763912 11.102384     1
## 202   0.1742463923  9.879761     3
## 203  -1.5697574733  6.462651     1
## 204  -0.4099754080  8.887924     3
## 205   0.0838274926 10.327002     3
## 206   2.0837263036 11.653929     5
## 207   0.4046104948 10.837927     3
## 208   0.6401476923 11.052325     4
## 209  -0.2305895061 10.545473     3
## 210   0.9621803729 10.899917     4
## 211   0.8875922246 10.102566     4
## 212  -0.4295266604 10.656274     3
## 213  -1.9888072940  7.578942     1
## 214   0.2588205830 11.072406     3
## 215  -1.3956623414  8.072561     1
## 216  -1.3966405930  9.778902     1
## 217   1.0681594442 10.298954     4
## 218   0.4709537748  9.995101     3
## 219   0.2133468259 10.933719     3
## 220   1.3033050799 10.827360     4
## 221  -0.8311146063  7.331102     1
## 222  -0.6019360687  9.756615     1
## 223   0.8760407423 11.171206     4
## 224   0.1149546358  8.251393     3
## 225  -1.2742850724 10.227909     1
## 226   0.1256963265 11.019829     3
## 227  -0.6404611416 10.197546     1
## 228  -1.1445616547  8.909166     1
## 229   1.0877225998 10.793604     4
## 230  -1.1293910578  9.887910     1
## 231   0.5614665214 10.594192     4
## 232   0.5432494385 10.781096     4
## 233  -1.0684462942  7.509914     1
## 234  -0.3497118899  9.041392     3
## 235   0.5444466846 11.402295     4
## 236  -0.3812851987 10.101359     3
## 237  -0.8147563973  8.029709     1
## 238  -0.4029791089 10.088903     3
## 239  -0.6055311482 10.102005     1
## 240  -0.6996157652 11.643404     1
## 241   1.5693942821 10.546387     5
## 242   0.2635519784  9.560403     3
## 243   0.5512476641 12.038010     4
## 244   0.9605309338  9.929319     4
## 245  -0.8019756491  9.988323     1
## 246   0.6530891332 11.913372     4
## 247   0.4143287425 10.641987     3
## 248   2.1763700655 10.821386     5
## 249  -0.0676964669  9.605405     3
## 250  -0.3895240780 10.608734     3
## 251   0.7886223261  9.328015     4
## 252  -0.6402408218  8.586200     1
## 253   1.0568633802 10.821867     4
## 254   0.2864111005 11.499149     3
## 255  -0.0458681410 11.350562     3
## 256   1.2319393006 11.051659     4
## 257   1.1443198091 13.459353     4
## 258  -1.1116132672  9.496805     1
## 259  -0.5050918775 10.083160     1
## 260  -1.1924504566  9.259240     1
## 261   1.7372525598 10.097891     5
## 262   2.5709166454 12.971844     5
## 263   0.1391079692  9.032554     3
## 264   1.2724169245 11.677847     4
## 265  -0.3666587341  9.353242     3
## 266  -0.1908726522 11.335528     3
## 267   1.6700941822 10.560317     5
## 268  -0.7158070916  8.760875     1
## 269   0.0409969078  9.660301     3
## 270  -0.7666668648 10.411797     1
## 271   0.9217442747 10.274065     4
## 272  -1.2509755604  8.464397     1
## 273  -0.1578075153 10.083462     3
## 274  -0.1742785741  8.340191     3
## 275   2.4639479117 11.606952     5
## 276  -1.0650952557  9.817553     1
## 277  -0.5523525457  8.219101     1
## 278   0.2129181151 11.966706     3
## 279  -0.5490023833  9.281999     1
## 280   0.3757220401 14.388796     3
## 281  -1.6561477350  7.954189     1
## 282  -0.8466254880  9.830495     1
## 283  -0.8387047435  8.478764     1
## 284  -0.3897152552 10.453561     3
## 285   0.2204317928  9.948160     3
## 286   1.0377779274 10.328099     4
## 287   0.1324104744 10.188442     3
## 288   0.5213332574  9.287155     4
## 289   0.6661806043  9.743844     4
## 290   0.7784964193 11.486728     4
## 291  -0.4423386227 10.628404     3
## 292  -1.3332015588  9.014790     1
## 293  -1.5036569775  9.970114     1
## 294  -0.6190954477 10.889111     1
## 295   0.7717888129 11.398258     4
## 296  -0.2921388010  9.317425     3
## 297  -1.1052256590  8.469999     1
## 298   0.7257791566 11.979180     4
## 299  -0.0139572079  8.851626     3
## 300   1.4755086167 12.964401     4
## 301   0.2459432297 10.735186     3
## 302  -1.7961178491  8.644026     1
## 303   0.0008695500  9.361855     3
## 304   2.0229630242 11.735747     5
## 305   0.1699466600  9.585871     3
## 306  -1.1083214220  8.245849     1
## 307   0.6227166716 11.108927     4
## 308  -0.7723486260  7.956584     1
## 309   1.4925604048 11.480460     4
## 310  -0.7623717875  9.363161     1
## 311   0.3595851194 10.065317     3
## 312  -0.6768563976  9.637358     1
## 313   2.1710312265 13.187886     5
## 314  -0.8060127063  8.887749     1
## 315  -0.2093327341 10.000692     3
## 316  -0.0222088917  8.020580     3
## 317   0.9499768428 11.334403     4
## 318   2.0121563693 12.282947     5
## 319   0.0965820812  8.588021     3
## 320  -0.4663069876  8.829482     3
## 321   0.4502742164  9.358123     3
## 322   0.4077532843 10.363116     3
## 323  -0.3553932773 10.896697     3
## 324  -2.4881381130  8.754580     1
## 325   0.3257397557  9.870221     3
## 326  -1.3620331160  9.239600     1
## 327   0.2193474023 11.057557     3
## 328   0.1456060638  9.845912     3
## 329   0.2104952864 10.215259     3
## 330   2.0012850108  9.228843     5
## 331   1.4682670436 10.696238     4
## 332  -1.1271609620  9.851285     1
## 333   0.3956081937 11.419685     3
## 334  -0.8087874841  8.762807     1
## 335  -1.0191761932  7.755629     1
## 336  -1.6301057390  9.444577     1
## 337   0.4429205162 10.215875     3
## 338   1.1528953552 11.856578     4
## 339  -1.8390157970  8.739710     1
## 340   0.5041871950 11.413565     4
## 341   0.8933541942 10.762690     4
## 342   0.0084817093 11.932090     3
## 343  -1.3703590434  9.680826     1
## 344  -0.2786322117  8.344056     3
## 345   0.7009839327 11.763204     4
## 346   1.4793721211 10.541991     4
## 347  -0.3786203522 10.967007     3
## 348   2.2311575182 11.859964     5
## 349  -1.1270081447  8.990826     1
## 350  -1.2067705107 10.880690     1
## 351   0.8368583206 11.422497     4
## 352   0.6490829997  8.634471     4
## 353  -0.3252379405 11.505381     3
## 354  -1.8196033219  8.206756     1
## 355  -0.6105184497  9.582154     1
## 356  -1.1328467987  8.939322     1
## 357   0.8677627633  9.925703     4
## 358   0.6549373376 11.098327     4
## 359   0.6631979993 10.573163     4
## 360  -0.2170791529  9.369464     3
## 361  -1.5621642464 10.278720     1
## 362  -0.4681387284 10.057269     3
## 363  -0.9259160322 10.325856     1
## 364   0.6908057168 10.274820     4
## 365   0.5324428644 11.254521     4
## 366  -0.7339052540  7.871841     1
## 367   1.4836873705  8.779082     4
## 368   1.5632137216 12.055401     5
## 369   1.1039423740 11.080669     4
## 370  -0.4301062703  9.278628     3
## 371  -0.4125407777 11.063887     3
## 372  -0.2188687387  7.291397     3
## 373  -0.6210636095  9.640868     1
## 374  -0.2300838741 10.443409     3
## 375   0.8197010781  8.996183     4
## 376  -1.6400828007  7.681740     1
## 377   2.5619577514 11.421162     5
## 378   1.4653628047 14.230162     4
## 379  -0.8874813581  9.594289     1
## 380  -0.1951500441  9.227122     3
## 381  -0.5034332947  8.387636     1
## 382   0.3894078901  9.584541     3
## 383  -1.8386144060  9.194747     1
## 384  -0.6814015993 10.336520     1
## 385   0.3642835491 10.042781     3
## 386   0.9006033872 10.973469     4
## 387  -1.0118646688 10.024763     1
## 388  -0.1242881433  9.963670     3
## 389   0.6397691502 11.690917     4
## 390   0.9553354155  9.687274     4
## 391  -0.7105556200  9.967111     1
## 392  -0.6932133763 11.236945     1
## 393   0.6865203005 10.883641     4
## 394   0.4482167842  9.281550     3
## 395  -0.8301825530  9.152911     1
## 396  -0.0190666849 11.217492     3
## 397   0.1688009367  9.036036     3
## 398  -0.9182069785  8.096012     1
## 399  -0.3642774219  9.853283     3
## 400   0.2130913510  9.964276     3
## 401   0.1358073016 10.236979     3
## 402  -0.3529762414  8.581134     3
## 403  -1.2851507611  9.201050     1
## 404   0.0226005721 11.451714     3
## 405  -0.6691497288 11.010429     1
## 406   1.3379801117 11.283925     4
## 407   1.7778107302 12.323820     5
## 408   0.6929440138 10.594231     4
## 409   2.4180439534 13.159197     5
## 410   0.7114788764  9.592293     4
## 411   1.1667047493 11.256788     4
## 412  -0.5977446514  8.764523     1
## 413  -0.9393527611  9.313223     1
## 414  -0.4999755489  7.962487     3
## 415  -1.3977054167  7.557899     1
## 416  -0.3225692394  9.483668     3
## 417  -1.3805510910  6.761344     1
## 418  -1.2888502001 10.348418     1
## 419   0.6187459030 11.206457     4
## 420   1.3421046292 10.466278     4
## 421  -0.1569045742 10.350421     3
## 422  -0.3065727456  9.614425     3
## 423   1.5126754376 13.600001     5
## 424   0.0998314838 10.456596     3
## 425  -1.5516506483  7.696414     1
## 426   0.5686351238 10.800423     4
## 427  -0.5603467801  7.972471     1
## 428   0.3121618333  9.701894     3
## 429  -1.0522458974  9.579200     1
## 430  -0.1175242483  8.530145     3
## 431  -1.2414570136  9.325962     1
## 432   0.8043303081 10.814107     4
## 433   0.7246005816 11.223764     4
## 434   1.3296907247 11.032261     4
## 435  -0.9154637581  6.747306     1
## 436  -1.2421185812 10.869063     1
## 437   0.6065207567 10.901802     4
## 438   0.2863742323 11.714550     3
## 439  -0.0614799957  7.496370     3
## 440   0.1495888496 10.087138     3
## 441  -0.2976655925  9.803332     3
## 442   1.1519641292  9.786890     4
## 443   2.1501530743 10.237732     5
## 444   1.1215703057 12.659980     4
## 445   1.1681946999 11.111614     4
## 446   1.0717425079 12.105374     4
## 447   1.1294060793 10.868604     4
## 448   2.0965559869 11.464928     5
## 449   1.6177802268  9.801949     5
## 450  -0.0230148285  9.063096     3
## 451   0.4657571056 10.032117     3
## 452   0.7278132510 10.503111     4
## 453   0.5111825055 11.436742     4
## 454   1.2644731232 11.416309     4
## 455   0.8851587850 10.176419     4
## 456  -1.1784903618  8.471196     1
## 457  -1.2169878911  8.806400     1
## 458  -1.2717145729 10.136520     1
## 459  -1.0854311794  7.843670     1
## 460  -1.5937272919  9.659654     1
## 461   1.8376864881 10.492194     5
## 462   1.0774551466 11.356041     4
## 463  -0.4106619412  9.008321     3
## 464  -0.1303941516  9.387742     3
## 465   1.2613497567 12.879300     4
## 466  -0.0273952224 10.354726     3
## 467  -0.7375977303 10.091152     1
## 468   0.2366314317 10.201590     3
## 469  -0.9068819829  8.468318     1
## 470  -2.0635724489  7.865161     1
## 471   0.2714019201  9.699032     3
## 472  -0.7577536269 10.124066     1
## 473   1.3987089287  9.715272     4
## 474  -0.1583863603 10.815250     3
## 475   1.1022753376 11.932178     4
## 476   0.8510139488 10.648771     4
## 477   0.3122541036  9.214830     3
## 478   1.2931536074 12.421978     4
## 479  -0.6001357244 10.215505     1
## 480   0.7192746495 11.025615     4
## 481   1.0956520893 12.163722     4
## 482   0.1892607557 10.948908     3
## 483  -0.0366942920  9.701441     3
## 484  -0.6405858811  7.546375     1
## 485  -0.7004375584 10.206086     1
## 486   0.3215100587 10.977314     3
## 487   0.5007042659 11.088265     4
## 488  -1.4309554471  8.184591     1
## 489   0.8760865430 11.766473     4
## 490   0.6618406072 10.013579     4
## 491  -0.5996213762  8.658799     1
## 492  -0.0486156896  9.628254     3
## 493   2.5025333535 13.056667     5
## 494   1.3619843587 13.858110     4
## 495  -1.4410738116  8.578776     1
## 496   0.6772963000  9.901709     4
## 497   0.1934795848  9.467942     3
## 498   0.2980398111  9.045431     3
## 499  -0.7341763394  7.978757     1
## 500   1.3979112998 11.796312     4
## 501   0.4042770773  8.965319     3
## 502  -1.8506413042  8.526997     1
## 503   0.2294801800  9.670220     3
## 504   1.3359934722 11.764647     4
## 505   1.3902670302 10.801550     4
## 506  -1.5298662971  8.086620     1
## 507  -0.3654286351  8.903256     3
## 508   1.2686595822 11.851233     4
## 509  -0.2529187566 11.150812     3
## 510   0.2848728815 10.573532     3
## 511   1.0833698438 11.760899     4
## 512   1.2955785686 12.291467     4
## 513   1.1593090954 11.619000     4
## 514   0.9554438368  9.502111     4
## 515  -0.9416436369  9.546802     1
## 516  -0.8577009510  9.819147     1
## 517  -1.3700083307  8.531661     1
## 518  -0.5063068907  8.734297     1
## 519   1.2901457791 13.458026     4
## 520  -0.0195128257  8.274898     3
## 521   0.4909767280 10.386693     3
## 522  -2.5995352830  7.728814     1
## 523  -1.1809997356  9.856164     1
## 524   0.1629575227 10.366086     3
## 525  -0.5190012061  9.035621     1
## 526   0.2412919866  9.270386     3
## 527   0.0868984277 10.078091     3
## 528   2.0196842979 10.252372     5
## 529  -0.1021846472 10.475016     3
## 530   0.9188882958  9.928079     4
## 531  -2.5178238138  7.983977     1
## 532   0.1390964407 11.461552     3
## 533  -0.7840506043 10.192782     1
## 534  -0.1142796281  8.982649     3
## 535  -1.1511912571  8.909397     1
## 536   0.6544844695 10.485333     4
## 537  -1.7466744116  8.377580     1
## 538   0.5874990128 10.549011     4
## 539  -0.0815086315  9.431331     3
## 540  -1.0593831684  9.040752     1
## 541   1.2740413416 11.595115     4
## 542   0.6112845826 11.859177     4
## 543  -0.0614939812 10.080131     3
## 544  -0.2629205536 11.035040     3
## 545  -1.7788825512  9.017391     1
## 546  -0.0220891881 10.593497     3
## 547   0.1784449046 10.766281     3
## 548  -0.3200994727  9.922871     3
## 549  -0.8445387039  8.181967     1
## 550  -1.1582601700  8.356849     1
## 551   0.2187845759  9.690012     3
## 552  -0.8854236310  8.828404     1
## 553  -0.1551179261  9.167723     3
## 554   1.0644716282 10.954836     4
## 555   0.6468565925 12.984413     4
## 556   0.2690865088  9.084093     3
## 557  -0.0420922594  8.920495     3
## 558  -1.8568647765  8.303905     1
## 559   1.3044201801 11.225418     4
## 560  -0.1484706072 10.836063     3
## 561   0.5217052725 10.946952     4
## 562  -0.5236074191 10.155144     1
## 563  -0.4514704243  8.958221     3
## 564   0.8177651580 11.111254     4
## 565  -2.1955671620  8.099370     1
## 566   0.6142675610 11.564460     4
## 567   0.5488406443 10.955574     4
## 568   0.0875441762  8.937826     3
## 569  -0.6631806222  9.182142     1
## 570   0.9201616698 11.061466     4
## 571  -1.3341576414  9.285254     1
## 572  -0.3381447698  9.339855     3
## 573   1.4451525433 11.427941     4
## 574   0.2887833019 10.621187     3
## 575  -1.5292947686  8.646278     1
## 576  -0.5856326433  9.636312     1
## 577   0.7829829135 12.343355     4
## 578   0.3853259873 10.257580     3
## 579   0.0597105682  8.244182     3
## 580   0.5256592066  9.972719     4
## 581   0.7329351149 10.893100     4
## 582   0.7425080858 11.845846     4
## 583   0.5387042857  7.502498     4
## 584   0.8196188785 11.364358     4
## 585  -0.2940430479  9.273549     3
## 586  -0.0967502860 10.334713     3
## 587   0.6370733122 10.137773     4
## 588  -0.6946254202  9.456664     1
## 589  -0.2584930739 10.155790     3
## 590  -1.7852746424  8.085608     1
## 591   1.7587256661 11.579064     5
## 592   2.0206768794 11.469027     5
## 593   2.2505682200 12.444030     5
## 594   1.6958618482 11.943547     5
## 595   0.8676610034 10.553502     4
## 596   0.9384550159  9.813485     4
## 597  -1.9291679917  7.795279     1
## 598  -0.1022513578 10.906092     3
## 599  -0.0629946520  9.215645     3
## 600   0.7444018990 12.552941     4
## 601  -0.2109460610  9.987109     3
## 602  -0.5446051576 10.757613     1
## 603  -0.6826602977  9.758136     1
## 604   0.0546542457 10.434533     3
## 605  -0.3816638401 10.741468     3
## 606  -0.6163724822  8.348730     1
## 607   0.3094399743  8.926676     3
## 608   0.7847321393 11.890936     4
## 609  -0.1982618532 10.335611     3
## 610   0.7279213639 10.131506     4
## 611  -1.0916000004  9.718113     1
## 612   0.4038083240 10.795433     3
## 613  -0.0402223091 11.820794     3
## 614   0.2380980131 11.411177     3
## 615   0.8128676714 11.262319     4
## 616  -0.1653130400  9.896693     3
## 617  -1.2753067311 10.106756     1
## 618   1.8296988298 10.591771     5
## 619   0.6125042111 11.225887     4
## 620   1.6195574010 11.843390     5
## 621   0.5479991560  9.827616     4
## 622   1.0129568898 10.507305     4
## 623   0.3903419556 10.365436     3
## 624   0.9574885976 11.230791     4
## 625   0.1391521479  8.199514     3
## 626  -0.7507744102  9.767298     1
## 627  -0.8168836025 10.232548     1
## 628  -0.8816876682  7.821455     1
## 629  -0.9198228148  8.412523     1
## 630   1.8863566525 12.039916     5
## 631  -0.0382198447 10.205491     3
## 632   0.8730698496 12.085181     4
## 633  -1.6669003772  9.455761     1
## 634   0.2411364939 11.588603     3
## 635   0.1355427148  9.451608     3
## 636   0.7452033456 11.172804     4
## 637   0.5814303619 10.582050     4
## 638   0.0161978627 10.423376     3
## 639  -2.9895651727  7.021761     1
## 640   0.1815873879 10.991778     3
## 641   0.1866407379 10.550470     3
## 642  -0.8981964456  8.676794     1
## 643   1.1848770294  9.690195     4
## 644   0.1887869973  9.927681     3
## 645   1.1693182432 10.736299     4
## 646   0.0034339342 11.037907     3
## 647   0.4289096081  9.343260     3
## 648  -1.3452239932  8.449958     1
## 649   1.2095419653 11.236751     4
## 650  -1.2845012121  9.918634     1
## 651  -0.9062313476  9.814576     1
## 652  -1.5650065172  7.898390     1
## 653   0.7750426587 12.110289     4
## 654  -0.5491484167 10.770123     1
## 655  -2.0395877442  7.950817     1
## 656  -1.5173781859  6.025177     1
## 657   0.5087505989 11.341326     4
## 658   0.7535229576 11.227527     4
## 659  -0.1745995407 11.591837     3
## 660   1.0763299732 11.489366     4
## 661  -0.2744736371  9.868010     3
## 662  -0.7946493386  9.975491     1
## 663   1.1354170030 12.457654     4
## 664  -0.1317124636 10.726951     3
## 665  -0.8532127922  8.987377     1
## 666  -0.5979157314  9.656669     1
## 667   0.1995947839 10.932126     3
## 668   0.6135571172 10.463815     4
## 669  -0.2228998649  9.115948     3
## 670   1.4591461132 10.845432     4
## 671   0.9120105967  9.269170     4
## 672   1.4005630132 11.710150     4
## 673  -0.4018939579 10.327226     3
## 674   0.4682566014 11.197442     3
## 675  -0.3805426451  8.239497     3
## 676  -1.1621669438  9.554747     1
## 677  -0.5443899482  9.533494     1
## 678   0.5484421357  9.127942     4
## 679  -0.1558856903  7.598718     3
## 680   0.1674892267 10.161479     3
## 681   0.1824778396 11.806122     3
## 682  -0.2388240238  9.896866     3
## 683  -2.2903684299  8.081487     1
## 684  -0.4653842249  8.997004     3
## 685  -2.5541052591  7.891209     1
## 686  -0.7901994295  8.041542     1
## 687  -0.8804860595  8.538128     1
## 688   0.4960325976  9.273795     3
## 689  -0.8748324376  8.426295     1
## 690   0.0609017743 10.438261     3
## 691   0.6707523799  9.723971     4
## 692   0.0444938274 10.739286     3
## 693   0.6491962808  9.966289     4
## 694   0.1982760267 10.708917     3
## 695  -0.7433119945  9.476256     1
## 696  -0.4726693092 10.368541     3
## 697  -1.2381104767  9.883813     1
## 698   0.4068029403 12.084161     3
## 699  -0.1160895960 11.633119     3
## 700  -1.6254140883  8.518521     1
## 701   1.7291522627 12.029303     5
## 702  -0.0323955937 11.137037     3
## 703  -0.1069542434 11.335706     3
## 704   0.8810726773  9.158663     4
## 705   1.0417311232 11.155862     4
## 706  -1.3374337581  8.913532     1
## 707   1.2512426584 11.004822     4
## 708  -1.1901619642  5.288823     1
## 709  -1.0299279793  8.622612     1
## 710   0.5757481883  9.012525     4
## 711   0.0777718617  9.276659     3
## 712   1.0933657512 10.597105     4
## 713   0.4513003702 10.009602     3
## 714   0.9971088998 11.136263     4
## 715  -1.6761055655  8.161188     1
## 716  -0.4894400003  8.250960     3
## 717  -0.6286058932  8.892059     1
## 718  -0.0704395569  9.756281     3
## 719  -0.8344044849  8.443332     1
## 720   0.1674704952 10.316877     3
## 721  -2.4461678137  6.972580     1
## 722   0.0063437927  9.667041     3
## 723   0.6321357544 10.074546     4
## 724  -0.4856027344  9.461949     3
## 725  -0.1142957628  9.300794     3
## 726   0.1063455202  8.713794     3
## 727   0.0758423731 10.265906     3
## 728   0.8732329563 11.048223     4
## 729  -0.2495234083  9.920728     3
## 730   0.6742408899 12.789041     4
## 731   0.6018793440 10.485710     4
## 732  -0.6206144307  9.271931     1
## 733  -0.5711342663  8.301082     1
## 734  -0.1716880439  8.695551     3
## 735   0.3126344892  9.977809     3
## 736   0.2442003797 10.944046     3
## 737   0.7858132197  9.899699     4
## 738  -0.1647085325  9.944009     3
## 739  -0.1139848209 10.714303     3
## 740   0.2904716538 10.580386     3
## 741   0.0174290208  9.969440     3
## 742   0.1925096525 11.060991     3
## 743   0.3509686898 12.073481     3
## 744   2.2096987780 14.096668     5
## 745  -0.9523792592  9.530204     1
## 746  -0.7889943653  8.099533     1
## 747  -0.6196207620  9.835901     1
## 748   1.1259161138 11.746744     4
## 749  -2.0684186102  9.129236     1
## 750  -0.9897762185  7.420553     1
## 751   0.4680183193 10.783172     3
## 752   1.6824123832 11.900421     5
## 753  -1.3676924527  9.312903     1
## 754   0.1929016468  9.911901     3
## 755  -1.6708976527  6.252965     1
## 756   0.1319048762 10.395649     3
## 757  -0.5464020833  9.086056     1
## 758   0.9291683585 10.436574     4
## 759  -0.7119499668 10.272619     1
## 760  -0.2046532020  9.380168     3
## 761   1.4462491055 10.573807     4
## 762  -0.2335374918  8.763795     3
## 763   1.3420254478 11.583798     4
## 764  -0.7830916669  9.841138     1
## 765   0.7182158322 12.897027     4
## 766  -0.4258629994 10.230566     3
## 767  -0.6015614314  9.863732     1
## 768   1.5663689070  9.749767     5
## 769   1.1648374530 12.291155     4
## 770  -0.7998682888  9.435981     1
## 771  -1.7246739653  7.735847     1
## 772   0.6121706645  9.329448     4
## 773   0.2750801509  9.823244     3
## 774  -0.5366135479 10.862968     1
## 775  -0.6129472678  8.859952     1
## 776   0.5232466673 11.198536     4
## 777   0.7163058896 10.826742     4
## 778   0.7617284824  9.298661     4
## 779   1.4279673052 13.009439     4
## 780  -1.2376036013  8.797805     1
## 781  -0.4691783502  8.990990     3
## 782  -1.2580298959  9.802446     1
## 783  -0.7971099128 10.626647     1
## 784   1.1711888798 10.295494     4
## 785  -1.7753031347  7.202452     1
## 786  -0.2805140506  9.842137     3
## 787   0.6758422525 10.102973     4
## 788  -0.4841535317  6.648965     3
## 789  -0.1597659599 10.393615     3
## 790  -0.5541900110  9.163456     1
## 791   0.0663820044 12.646388     3
## 792  -1.3978208684  8.401017     1
## 793   0.9801285346 10.384346     4
## 794   1.0790624790 11.312302     4
## 795   1.7731662985 12.530046     5
## 796   0.4252030188 10.701757     3
## 797   0.0002311626 10.377753     3
## 798  -2.2727877689  8.041406     1
## 799  -0.0316406137 11.274179     3
## 800  -0.0704895844  8.082906     3
## 801   0.3777340450  9.472167     3
## 802  -0.5609573393 10.423787     1
## 803  -1.0785203589  9.712724     1
## 804   1.3631891563 10.380710     4
## 805  -0.5652799496  8.118304     1
## 806   0.4263444657  9.948939     3
## 807   0.3859052857 10.134730     3
## 808  -0.6541305508  9.477488     1
## 809   0.3516097472 10.826955     3
## 810   0.5914289715  8.001958     4
## 811   0.1515369053  9.306149     3
## 812   0.0716279285 11.458928     3
## 813   0.9523859854 10.857098     4
## 814  -0.0139630544 10.215738     3
## 815   0.8442532817 11.306813     4
## 816  -0.9382775015  8.595244     1
## 817  -0.6258939022 10.035622     1
## 818   0.0305720726 10.376834     3
## 819   1.6161987809 12.915691     5
## 820  -2.6041258147  7.038659     1
## 821  -0.2303667164  9.604150     3
## 822   0.0167464324  9.433144     3
## 823  -0.7428094605  8.389563     1
## 824  -2.0559127278  7.800856     1
## 825   0.2642629261  9.977314     3
## 826  -0.4417555144  9.507476     3
## 827   0.3308497051  9.654107     3
## 828   1.4006935312 11.209924     4
## 829   0.2634087341 10.413655     3
## 830  -3.1001010939  8.856391     1
## 831  -0.1600340954 10.131741     3
## 832   0.3224968360 10.137189     3
## 833  -1.9797346545  9.533962     1
## 834   0.6952330722 12.468823     4
## 835  -2.1940966255  6.464525     1
## 836   0.9915649931 11.126009     4
## 837  -1.9183143077  7.898102     1
## 838  -1.9236785506  8.001282     1
## 839   0.2931374497  7.552951     3
## 840   1.3246777849 10.983872     4
## 841   0.2693774839  9.999615     3
## 842  -0.8391685560 10.012600     1
## 843   1.5607570613 12.781634     5
## 844   0.3216175628 10.428875     3
## 845  -0.3657060979  9.979935     3
## 846  -0.1912745796 10.683912     3
## 847   0.2598966262  7.556508     3
## 848  -0.9341918184  8.277412     1
## 849   0.9277121091 10.847330     4
## 850   0.7406477860 10.181023     4
## 851  -0.0506716844 11.073363     3
## 852  -0.0366714024 10.122075     3
## 853  -1.1861656902  8.416430     1
## 854   0.4679080751 10.243070     3
## 855   1.7152733761 12.251143     5
## 856   1.5100728253 11.394940     5
## 857   1.6888408048 11.692751     5
## 858  -2.1938460461  5.579363     1
## 859   1.9656662405 12.528779     5
## 860   1.8153149682 11.543966     5
## 861  -1.8267623952  7.594553     1
## 862   0.7210656445 11.697643     4
## 863  -0.2825491969  8.876538     3
## 864   0.0573803946  9.892503     3
## 865   1.4440686468 12.892797     4
## 866  -0.9117814241  8.784623     1
## 867  -0.0645962650  9.780577     3
## 868  -0.3745494627  9.810764     3
## 869   0.0645090115  9.580515     3
## 870  -1.4528748046  7.321641     1
## 871  -0.5618488457  7.791199     1
## 872   2.1145493607 10.038161     5
## 873  -0.2986497274  9.945795     3
## 874  -2.5117900344  6.682191     1
## 875  -1.3245245152  8.412511     1
## 876  -0.1697452757  8.840673     3
## 877  -0.1571494777 10.159830     3
## 878  -1.6938614227  9.242261     1
## 879   0.4817938402 11.260254     3
## 880  -0.3267084349 11.091308     3
## 881  -1.4735441573  9.901109     1
## 882  -0.0017428298  8.626555     3
## 883  -0.1638184877  9.605631     3
## 884   0.2440872254  8.788259     3
## 885  -0.1978737346  8.999570     3
## 886   1.2313909530  9.569291     4
## 887   0.1394545108  9.355312     3
## 888   0.9554461968  9.921542     4
## 889  -0.5973045152 11.641591     1
## 890   0.6015576902 11.352046     4
## 891   0.3158453817 10.861438     3
## 892  -0.7016700252 11.014649     1
## 893   0.5645990284 10.123134     4
## 894  -1.3461325192  9.711245     1
## 895  -0.6765984853  9.902821     1
## 896   0.2301010312  9.397631     3
## 897  -0.4666426126  8.744136     3
## 898   0.1734639229  9.356034     3
## 899  -0.5560670489  9.666529     1
## 900  -1.0872797538  7.821095     1
## 901   0.6012918380 11.162349     4
## 902  -1.9391356057  8.810094     1
## 903   2.0840499850 12.624417     5
## 904   0.4019817076 10.609011     3
## 905   1.2123026223 10.114931     4
## 906  -0.6552553084  6.432085     1
## 907   1.0344581174 10.850391     4
## 908  -0.0493781271  8.998887     3
## 909  -0.1563516714  8.444220     3
## 910  -0.7404552495  9.661949     1
## 911   0.2948036013 11.004746     3
## 912  -0.4963082589  9.289029     3
## 913   0.0145574138  8.124507     3
## 914   1.0231933410  9.525105     4
## 915  -0.8848121429 10.154956     1
## 916   0.9504572153 11.485685     4
## 917   0.4521270434 12.157230     3
## 918  -0.4515904879  9.525829     3
## 919  -0.7724584673 10.349470     1
## 920  -0.3433723759  8.525555     3
## 921   0.5689150201 10.901094     4
## 922   1.0467692061  9.179634     4
## 923   0.5662310134  9.758738     4
## 924  -0.6097537355 10.073697     1
## 925   0.2998165241  9.654057     3
## 926   1.2251850460 11.700561     4
## 927   0.4673856523 11.259702     3
## 928   0.0287484318 10.949491     3
## 929   0.2549328673 11.351142     3
## 930   0.2101653409 11.284636     3
## 931  -0.3768375310  9.476844     3
## 932  -0.3932682222 10.161947     3
## 933  -0.1656235495  9.310682     3
## 934  -1.6857184268  9.939617     1
## 935   1.7479346495 10.943729     5
## 936   0.3648381007  9.716865     3
## 937   0.7011182662 11.293805     4
## 938   0.3427865854 10.053952     3
## 939  -0.0931421109 10.225475     3
## 940   0.0870059581  9.465795     3
## 941  -0.5623778348  8.200138     1
## 942  -0.1764335980  9.436734     3
## 943   0.1914037051 11.822850     3
## 944  -0.0562478440 10.920422     3
## 945  -0.2529714945  8.381545     3
## 946   0.4915247388 11.271099     3
## 947   0.6061583107 11.522153     4
## 948   1.1652037575  9.495087     4
## 949  -0.8385439315  7.522580     1
## 950  -1.5576709618  8.278749     1
## 951  -2.0046145573  8.676740     1
## 952  -0.6770862720  9.378034     1
## 953  -2.2849486032  5.760154     1
## 954  -0.2712422824  9.311849     3
## 955   0.1483728671 10.227899     3
## 956   0.7223291524 12.046126     4
## 957   0.4373768289 10.169983     3
## 958   1.2006918799 11.886568     4
## 959  -0.5290604292  9.378313     1
## 960  -0.0452444414 10.628530     3
## 961  -0.1263953994  9.134384     3
## 962   0.8607999905 12.382433     4
## 963   2.5257654098 12.745557     5
## 964  -2.2456299644  7.769090     1
## 965  -0.4173315245 11.152007     3
## 966  -0.0692077803  8.054814     3
## 967  -0.0794555102  9.945275     3
## 968   1.3651913140 10.757302     4
## 969  -0.9699635845 10.384944     1
## 970   0.1043085014 11.372867     3
## 971  -0.7542150921  9.747740     1
## 972  -1.3566109168 10.186810     1
## 973   1.5440882967 13.670094     5
## 974  -0.0556951245  8.816586     3
## 975   0.2587367042 10.093037     3
## 976  -1.5073723639  9.041354     1
## 977   0.3490798431  8.116257     3
## 978  -0.4012519975  9.653625     3
## 979  -1.1295931920  8.414037     1
## 980   0.9653611722 11.311746     4
## 981  -1.4617739336  9.976714     1
## 982  -0.3192242576  8.914089     3
## 983  -0.2200964643  9.650568     3
## 984  -0.1086651174 10.446444     3
## 985  -0.2957829436  8.202551     3
## 986  -0.7546362949  9.593645     1
## 987  -0.2712218888  9.416969     3
## 988  -0.3342016026  8.299729     3
## 989   0.5066071875 10.716683     4
## 990  -0.7410342389  8.150360     1
## 991  -2.1264734465  8.157643     1
## 992  -0.0432725155  9.440337     3
## 993   0.6434993796  9.383930     4
## 994  -0.8995395184  8.954136     1
## 995  -0.3513906569 10.896999     3
## 996  -0.4948546938 11.089421     3
## 997  -0.6543419833  9.502371     1
## 998  -0.1847511774 11.091316     3
## 999  -0.8971128591  9.138657     1
## 1000  0.6001090845 11.689018     4
# creates plot object using ggplot
plot <- ggplot(sample_data, aes(x = xAxis, y= yAxis, col = as.factor(group)))+ geom_point()+theme(legend.position = "none") # Display plot
plot
# Insert marginal diStribution using marginal function
ggMarginal(plot,type= 'histogram',groupColour=TRUE,groupFill=TRUE)