# Mindanao State University
# General Santos City
# Introduction to R base commands
# Submitted by: Davy D. Dongosa, 1-BSMATH
# Mat108

# Processing of continuous data
# Using random number generators

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  2.9049275  1.3876107  3.1480268 -2.0621630  1.2486144  3.7059548
##  [7]  0.2845072  0.3270488  3.6353144  3.8858037  2.5849810  0.2147757
## [13]  3.0207445  5.2269723  1.1556143  2.7407491  3.5784498  0.7043262
## [19]  0.8241489  3.3757809
data[1:300] # display the first 300 elements
##   [1]  2.90492750  1.38761070  3.14802675 -2.06216304  1.24861438  3.70595478
##   [7]  0.28450720  0.32704882  3.63531438  3.88580369  2.58498099  0.21477574
##  [13]  3.02074445  5.22697230  1.15561433  2.74074914  3.57844979  0.70432617
##  [19]  0.82414889  3.37578093  2.38686236  0.03533862  3.43927571  1.46542604
##  [25]  1.15386742  1.12931673  1.33164840  0.07414281  1.28269268  3.15187779
##  [31] -0.65222878  0.42902820  1.47101046  2.76330666  2.43930954  2.76584903
##  [37] -0.84022516  3.19496909  2.37162530  3.70211911  1.30510321 -0.17658143
##  [43]  2.09257874  2.03815983  1.56333025  2.28403730 -2.52739890  5.03132397
##  [49]  3.23190636  4.06728472  3.00010893  3.15459162  2.45611862  0.49158809
##  [55]  0.05779361  1.60518067  1.93180108 -0.50467321  1.98207189  2.94084761
##  [61]  1.53820754  0.72038660  3.84756873  2.08147957 -0.29269297  2.66010383
##  [67]  1.48890099  0.38160733  2.85204066  0.57173694  2.85893912  0.94401910
##  [73]  1.31075418  3.13742807  3.51691016 -1.02950968  3.96089465  3.00988385
##  [79]  2.69571890  2.33980427  1.38871126  0.58976420 -0.82904396  1.21987569
##  [85]  1.94908354  3.04488736  1.77188576  1.35183013 -0.22779957  1.61753873
##  [91]  1.02341321  2.56476894  2.67564919  3.34842126  0.50438041 -2.79678510
##  [97]  1.59743008  2.52032890  2.87716551  1.70967867  1.46698560  0.71546022
## [103]  5.28560083  1.69379584  1.79415164  1.69277101  0.28081507  3.07662258
## [109]  0.11992506  2.11584491  1.97894830  3.25924426  0.11047847  1.66923034
## [115] -0.58452822  2.29977937 -1.03029443 -1.59068993 -0.19183534  0.46981121
## [121] -1.08616495  3.51251510  0.24252374  4.76466855  4.08360604  2.54769369
## [127]  2.75440757  2.19042020  0.51168771  2.70963623  3.91721549  0.21718924
## [133]  1.26273400  0.13158227  4.80368173  2.18056710 -0.31515089  2.87849738
## [139] -0.07932925 -0.51301856  1.31901412  2.06806054  1.45823793  0.26181790
## [145]  1.67656141  1.98230518  3.63958580  2.64452416  3.96881561  6.35603732
## [151]  3.52091545 -0.79853720 -0.61037917  1.95734751  3.34074587  2.24003221
## [157]  0.68230765  2.56452317  1.20377458  2.26387776  1.63786386  0.64409324
## [163]  2.39781650  1.86756076  0.63311748  1.13473053  1.01882872  4.19312823
## [169]  4.05486807  1.63331996  1.09310130  0.28544357  4.05483512  3.13439113
## [175]  2.08339880  2.31073336  2.88533065  2.74052596  2.93816704  1.89066360
## [181]  2.07027582  1.00312458  3.40226873 -0.67670833  3.66601154  3.23487433
## [187]  3.78443355  3.15750723  0.92118665  0.78495508  2.11177446  3.02990064
## [193]  3.41584326  1.51567389  1.21911715  5.10860227  0.55579368  4.18555570
## [199]  4.33360599  2.89461463  3.77286401  0.06065157  0.59325995 -0.75324664
## [205]  2.44413932  2.93893615 -0.13874352  2.82718176  1.25542992  1.09338428
## [211]  3.17130537  3.92805992  2.57773812 -0.46960684  0.07553946  1.04737638
## [217]  4.01533392  2.50672472  1.30779143 -0.02876411 -1.04485983  0.24667797
## [223]  1.49685660 -0.79399712  0.57449767  1.77937469  1.98877927 -0.15819797
## [229]  0.22597971  3.97995274  4.68082653  3.56883130  1.12046205 -0.50550401
## [235]  2.52943122  3.13038452  1.63228143  4.22559604  3.55385541 -0.79014422
## [241]  4.21721524  1.91840292  1.75129646  6.16820466  2.96555433  0.83118223
## [247]  3.18462406  0.86181784  0.79336812  1.06334885  1.39549685  2.89758711
## [253]  2.16127739  5.29744883  4.04801864  0.79965173 -0.11273182  4.12703572
## [259]  0.76746795  0.59051404  0.41922332 -0.84828595  1.27473400  1.33412507
## [265]  0.94684255  3.48536299  0.47731662  0.21734928 -0.83895937  0.08996992
## [271]  3.28920177  2.29039930  1.13164639  1.01697570  2.86262613  0.91378388
## [277]  1.78862717  2.40429616 -1.58849618  0.02575380  2.29346090  0.82261505
## [283]  2.27238501  1.48062403  1.09630105  0.91914983  3.01201034  2.22648136
## [289]  0.47118922  1.55006475  4.24017132  3.39391623  2.06547890  2.10079730
## [295]  1.33960368  1.64162830  2.55652004  4.11624036  2.93201498  0.57230944
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?
# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value 
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.796785103 -2.700228105 -2.603671107 -2.507114110 -2.410557112
##   [6] -2.314000114 -2.217443116 -2.120886118 -2.024329120 -1.927772122
##  [11] -1.831215124 -1.734658126 -1.638101128 -1.541544130 -1.444987133
##  [16] -1.348430135 -1.251873137 -1.155316139 -1.058759141 -0.962202143
##  [21] -0.865645145 -0.769088147 -0.672531149 -0.575974151 -0.479417153
##  [26] -0.382860156 -0.286303158 -0.189746160 -0.093189162  0.003367836
##  [31]  0.099924834  0.196481832  0.293038830  0.389595828  0.486152826
##  [36]  0.582709824  0.679266822  0.775823819  0.872380817  0.968937815
##  [41]  1.065494813  1.162051811  1.258608809  1.355165807  1.451722805
##  [46]  1.548279803  1.644836801  1.741393799  1.837950796  1.934507794
##  [51]  2.031064792  2.127621790  2.224178788  2.320735786  2.417292784
##  [56]  2.513849782  2.610406780  2.706963778  2.803520776  2.900077773
##  [61]  2.996634771  3.093191769  3.189748767  3.286305765  3.382862763
##  [66]  3.479419761  3.575976759  3.672533757  3.769090755  3.865647753
##  [71]  3.962204751  4.058761748  4.155318746  4.251875744  4.348432742
##  [76]  4.444989740  4.541546738  4.638103736  4.734660734  4.831217732
##  [81]  4.927774730  5.024331728  5.120888725  5.217445723  5.314002721
##  [86]  5.410559719  5.507116717  5.603673715  5.700230713  5.796787711
##  [91]  5.893344709  5.989901707  6.086458705  6.183015702  6.279572700
##  [96]  6.376129698  6.472686696  6.569243694  6.665800692  6.762357690
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts 
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##         0%        25%        50%        75%       100% 
## -2.7967851  0.9206774  1.9658405  3.0010626  6.7623577
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  2.904927496  1.387610695  3.148026752 -2.062163037  1.248614385
##    [6]  3.705954782  0.284507195  0.327048823  3.635314379  3.885803692
##   [11]  2.584980985  0.214775742  3.020744455  5.226972303  1.155614335
##   [16]  2.740749142  3.578449790  0.704326173  0.824148885  3.375780928
##   [21]  2.386862358  0.035338621  3.439275714  1.465426039  1.153867423
##   [26]  1.129316726  1.331648399  0.074142814  1.282692680  3.151877790
##   [31] -0.652228777  0.429028205  1.471010459  2.763306658  2.439309536
##   [36]  2.765849031 -0.840225157  3.194969087  2.371625303  3.702119113
##   [41]  1.305103211 -0.176581429  2.092578740  2.038159828  1.563330254
##   [46]  2.284037301 -2.527398898  5.031323974  3.231906362  4.067284722
##   [51]  3.000108932  3.154591625  2.456118620  0.491588094  0.057793610
##   [56]  1.605180669  1.931801084 -0.504673206  1.982071887  2.940847615
##   [61]  1.538207542  0.720386603  3.847568725  2.081479569 -0.292692975
##   [66]  2.660103833  1.488900988  0.381607333  2.852040658  0.571736938
##   [71]  2.858939117  0.944019101  1.310754176  3.137428065  3.516910161
##   [76] -1.029509678  3.960894649  3.009883850  2.695718898  2.339804273
##   [81]  1.388711261  0.589764201 -0.829043960  1.219875688  1.949083539
##   [86]  3.044887359  1.771885761  1.351830128 -0.227799573  1.617538725
##   [91]  1.023413209  2.564768935  2.675649193  3.348421263  0.504380413
##   [96] -2.796785103  1.597430084  2.520328895  2.877165508  1.709678666
##  [101]  1.466985596  0.715460223  5.285600828  1.693795836  1.794151638
##  [106]  1.692771011  0.280815069  3.076622576  0.119925062  2.115844915
##  [111]  1.978948302  3.259244258  0.110478469  1.669230338 -0.584528224
##  [116]  2.299779366 -1.030294434 -1.590689932 -0.191835341  0.469811207
##  [121] -1.086164946  3.512515096  0.242523745  4.764668548  4.083606044
##  [126]  2.547693690  2.754407573  2.190420203  0.511687711  2.709636227
##  [131]  3.917215495  0.217189244  1.262734002  0.131582268  4.803681734
##  [136]  2.180567100 -0.315150887  2.878497381 -0.079329250 -0.513018564
##  [141]  1.319014120  2.068060543  1.458237932  0.261817897  1.676561413
##  [146]  1.982305182  3.639585801  2.644524157  3.968815606  6.356037318
##  [151]  3.520915449 -0.798537200 -0.610379168  1.957347507  3.340745874
##  [156]  2.240032211  0.682307648  2.564523166  1.203774584  2.263877763
##  [161]  1.637863858  0.644093244  2.397816496  1.867560763  0.633117479
##  [166]  1.134730533  1.018828724  4.193128233  4.054868071  1.633319955
##  [171]  1.093101295  0.285443567  4.054835122  3.134391134  2.083398802
##  [176]  2.310733357  2.885330649  2.740525962  2.938167043  1.890663596
##  [181]  2.070275818  1.003124580  3.402268729 -0.676708327  3.666011538
##  [186]  3.234874325  3.784433547  3.157507228  0.921186647  0.784955083
##  [191]  2.111774455  3.029900643  3.415843265  1.515673886  1.219117147
##  [196]  5.108602274  0.555793679  4.185555698  4.333605988  2.894614630
##  [201]  3.772864012  0.060651570  0.593259949 -0.753246639  2.444139322
##  [206]  2.938936152 -0.138743519  2.827181759  1.255429917  1.093384278
##  [211]  3.171305366  3.928059916  2.577738121 -0.469606836  0.075539455
##  [216]  1.047376380  4.015333921  2.506724721  1.307791434 -0.028764111
##  [221] -1.044859826  0.246677972  1.496856597 -0.793997121  0.574497669
##  [226]  1.779374686  1.988779265 -0.158197975  0.225979708  3.979952741
##  [231]  4.680826532  3.568831296  1.120462047 -0.505504013  2.529431222
##  [236]  3.130384517  1.632281430  4.225596039  3.553855406 -0.790144218
##  [241]  4.217215242  1.918402920  1.751296464  6.168204658  2.965554332
##  [246]  0.831182227  3.184624059  0.861817837  0.793368122  1.063348845
##  [251]  1.395496854  2.897587106  2.161277385  5.297448834  4.048018644
##  [256]  0.799651733 -0.112731823  4.127035717  0.767467950  0.590514044
##  [261]  0.419223320 -0.848285954  1.274734000  1.334125067  0.946842548
##  [266]  3.485362987  0.477316623  0.217349282 -0.838959371  0.089969922
##  [271]  3.289201770  2.290399299  1.131646388  1.016975704  2.862626133
##  [276]  0.913783875  1.788627167  2.404296161 -1.588496185  0.025753799
##  [281]  2.293460896  0.822615050  2.272385006  1.480624031  1.096301048
##  [286]  0.919149833  3.012010342  2.226481357  0.471189219  1.550064752
##  [291]  4.240171321  3.393916233  2.065478897  2.100797295  1.339603681
##  [296]  1.641628301  2.556520036  4.116240358  2.932014980  0.572309441
##  [301]  1.453198153  0.031018887  2.024986407  3.231005194  2.246496119
##  [306]  1.175206442  1.990447669  2.000038069  1.793257568  1.883576170
##  [311]  1.833476081 -1.235359754  1.082496891  2.930486647  0.618302046
##  [316]  1.137165651  4.718743951  0.267606352 -0.587671972  4.650111570
##  [321]  4.099342458  0.890369218  1.509946781  3.813396923 -1.151988700
##  [326]  0.718527827  3.011079968  4.246399332 -0.373592545  5.125005707
##  [331] -0.122560561  1.684036573  2.833355514  0.487402463  3.230039191
##  [336]  2.856932301  3.127034414  4.367457131  1.912318523  3.809422765
##  [341]  4.560282471  4.900217065  2.172296038  1.649810022  1.177234273
##  [346]  0.589149896  1.958821264  1.063695636  3.575368656  0.988137803
##  [351]  0.799778301  3.915825140  3.260058589  1.113582298 -1.311078346
##  [356]  5.303558299  5.000049476  2.048075763  0.617932674  1.681844490
##  [361]  1.034707614  5.841525467  1.716808155  2.173841079  1.533911111
##  [366]  3.607599560  2.171668534  3.069437141  1.902538368  2.075571783
##  [371]  1.524459314  2.106940143  0.211622975  0.128085308  2.151706242
##  [376]  5.152771217 -0.467030731  4.245587135  4.467864669  0.091960825
##  [381]  0.619486930  1.924093115  4.055018295  3.298310890  1.653326562
##  [386]  1.626558152 -0.386561189  1.024686520  1.677076791 -0.142711421
##  [391] -0.142957378  3.173788960  1.846537873  3.615886324  3.255744774
##  [396]  2.837314795  2.369168813  0.193430736  5.466645373  2.066762627
##  [401]  2.807257428  2.855879529  3.012829260 -0.384416147  2.670980196
##  [406]  1.945489893  2.566729363  1.088578436  1.818776170  3.305059868
##  [411]  2.215267049 -0.630951553  3.573207823  1.576586682  0.531676776
##  [416]  2.099417965 -1.168798348  1.612411546  0.223280498  3.209719546
##  [421]  3.583221376  2.163962542  0.645517924  1.120191935  5.315243630
##  [426]  1.350494201  2.484544676 -0.048787472  1.095700028  3.442563040
##  [431]  5.009858558  1.197863387  2.473654272  3.197035346  2.953786593
##  [436]  4.027163312  0.973880153  0.079332640  3.307946436  1.974345116
##  [441]  0.628486993  6.762357690  4.439794754  2.777675591  4.711861927
##  [446]  2.932559519  3.965146367  1.605946760  2.626758366  1.173741572
##  [451]  2.154893791  3.343794587  3.091351402 -2.519599776  3.344341461
##  [456]  0.453887633  3.581368389  1.269891441  1.738281215  2.228666057
##  [461]  2.082840477  2.140701190  2.292120651  2.733022760  1.478477894
##  [466]  0.987651451  3.396597781 -0.781594624  1.649275273  2.025960618
##  [471]  1.924073912  1.092298595  2.160160284  3.470741628  3.480416190
##  [476]  2.901964184  5.121637004  1.544126629  0.489517519  2.053815925
##  [481]  3.162981452  1.786803692  3.083351238  1.642494535  0.737778818
##  [486]  2.511384412  1.819934344  1.288948725  1.487570579  2.404244003
##  [491]  4.182491437 -0.988934565  0.808753239 -0.186043582  2.946580072
##  [496]  2.641692165  3.838660837  2.091819042  2.758701366  3.958747281
##  [501]  1.815547123  1.556498148  0.807896357 -2.369605515 -1.226911273
##  [506]  4.561742191  4.690921818  2.016405479  4.302656500  3.254557533
##  [511]  0.657855685  5.058509878  2.380652624  1.914972736  0.019906023
##  [516]  4.999151213  2.026340513  1.533555568  4.251880789  2.579408816
##  [521]  0.944073025  0.912188426  2.178373089  3.411120888  3.458696075
##  [526]  0.343755332  5.013160687  0.278982089  2.385013114  1.849940798
##  [531]  3.961398481  2.131219117  2.895525097  2.786881379  3.899444796
##  [536] -0.862942688  1.152705528  3.602304903  3.537701463  2.090958258
##  [541]  1.899376343  2.680957454  1.309648794  1.527735152  1.510052710
##  [546]  2.824179166  4.123376818  0.067763744  1.788329053 -0.159119334
##  [551]  1.167608384  1.546130386  2.954458230  3.181095663  2.285467401
##  [556] -0.809052529  1.472216822  3.817192295  0.233577790  3.178267729
##  [561]  2.496427780  2.339128588  4.900648871  2.646699913  3.667140749
##  [566]  3.271673725  1.330841940  2.574716012 -0.690418572  2.900285229
##  [571]  3.461988410  2.655763435  4.058080348  2.557104366  1.949369911
##  [576]  1.564372584  4.167604469  0.928620122  5.037533849  3.718526607
##  [581]  2.041223179  1.912670142  0.532000854  4.212988501  2.859283069
##  [586] -0.334111916 -0.588415040  3.051076803  0.853854708  0.140560898
##  [591]  0.758641166 -0.017033377  0.182724756  0.106319106  1.989079211
##  [596]  3.251070525  0.948701842  1.957036062  1.711061891  1.820617622
##  [601]  0.883524182  2.824284924  0.793110827  3.093518443  1.419875245
##  [606]  0.551283797  3.633411358  3.268720685  0.974175839  3.699363136
##  [611]  1.979772973  1.834889302  3.893015185  2.310383262  1.161364331
##  [616]  3.191857411 -0.571095686  1.991213500 -0.430692298  1.323722697
##  [621]  0.277105287  3.768094210  1.546683011  2.783698952  3.363707486
##  [626]  2.488103098  3.268834297  2.562741890  1.664291899  1.121697373
##  [631]  1.344226642  2.150001667  2.692028624  2.708237554  2.999178634
##  [636]  1.117580566  1.700010354  2.615059956  1.043297316  3.586522279
##  [641]  0.559776218  1.001417906  2.245651188  0.928893647 -0.663812045
##  [646]  1.720690508  2.313360695  2.652777727  0.366520524  2.073012534
##  [651]  2.818650287  2.682441895  2.581451332  1.063444689  0.695151306
##  [656]  4.059426609 -2.043685645  2.596631343  2.588039616  0.739457183
##  [661]  3.710749666  4.095987421  2.951401929  2.290339521  1.778362631
##  [666]  3.049621921  6.058756935  4.344044208  1.210484440  3.096315540
##  [671]  3.031771591  1.727603827  0.331598398  1.236105284  0.485115526
##  [676]  1.555518365  2.678115280  3.627007755  2.049911781  6.186023121
##  [681]  3.301985562  3.417317058  1.421946964  1.785033950 -1.165910679
##  [686] -1.685317585  1.400769474 -0.539049304  1.115189219  1.875915083
##  [691]  1.659367806  1.567716579  2.025260678  3.082014854  0.885634202
##  [696]  1.999342175  6.029969010  0.564958086  3.162676409  1.709686983
##  [701]  2.193585921  2.591820824  1.087417438  0.681057442  1.518574253
##  [706]  0.449968202  3.319055541  3.293047719  2.193169752  3.910673288
##  [711]  2.701871537  1.259172421  0.412412622  1.379043905  2.417831171
##  [716]  4.224734473  2.394856249  1.035521558  1.451391664  1.710861271
##  [721] -0.251711912  3.184138713  0.607127287  3.994304290  0.435265330
##  [726]  0.197691646  0.267093510  5.365034694  1.864056862  0.771446863
##  [731]  2.258197674  2.951627219  2.086999419  3.970615095  2.738781768
##  [736]  2.538895362  1.869497988  2.220937136 -0.424675033  2.943844247
##  [741]  2.896633244  2.927219745  2.499597213  2.914453244  1.676670196
##  [746]  3.450036171  0.851800480  3.683344152  0.454026789  1.661998105
##  [751] -0.831016280 -0.677492057 -1.075516212  2.433093791  2.903650562
##  [756]  1.323857886  2.809146394  3.136937223  1.596609136  2.317632497
##  [761]  3.168571468  0.954346784 -0.148983637  3.868934318  0.770566767
##  [766]  1.683826706  2.281640942  2.270344197  3.092902835  2.570866816
##  [771]  2.154298210  3.383216253  1.421299220  0.963133514  1.131719556
##  [776]  4.199361827  0.775051547  2.368402566  4.122059153  4.407582274
##  [781]  2.470290937  0.566437220  3.387714107  0.567811080  0.755146001
##  [786]  1.733508596  0.683420674  2.743739967  2.251442570  0.778481416
##  [791]  2.549211994  0.538413896  0.730533918  2.439355086  1.772288461
##  [796]  2.587030057  2.479025929  0.184281521  2.814331919  4.461030820
##  [801] -0.057364874  2.002015632  2.584928879  3.287199618  1.634431997
##  [806]  3.352480837  1.745534052  4.698658673  3.185119669  1.406837307
##  [811]  1.908054397  0.420546958  1.452751152  0.510137048  0.807239064
##  [816]  3.664483615  1.663607928  1.309761842  1.396805081  3.176792533
##  [821]  1.985784903  2.704144969  1.041324186  2.365651012  0.019654692
##  [826]  4.026911581  2.330424108  2.192779621  0.824368415  1.188860353
##  [831] -0.120183972  4.264283551  3.698230434  3.433619634  2.753427384
##  [836]  3.514190137 -1.625606079  4.043924078  1.836778801  4.859807813
##  [841]  0.932149789  1.682954820  1.868391333  1.803467088  1.178833434
##  [846]  0.390626195  3.712003159  0.543724409 -0.165634986  1.004848568
##  [851]  1.959544801  2.095925592  1.583452671  1.956609645  3.395602995
##  [856]  3.721642423 -0.206488704  1.363415556  1.972136127  1.267884628
##  [861]  4.526572055  2.595546285  0.925797290  0.220912921  4.512459057
##  [866]  2.495368614  0.674021219  0.705583908  0.007040286  2.936199608
##  [871] -0.216631345  1.179345809  2.220634339  4.302209406  1.418751516
##  [876]  2.304394710  1.081844554  1.333174946  2.907727856  2.390775492
##  [881]  1.592813726  0.290358234  2.789640816  3.187243515  1.177118232
##  [886]  4.962961706  1.085463117  1.865594710  2.618794675  2.885200846
##  [891]  0.622158597  2.424951115  2.752738264  3.376738479  2.236142409
##  [896] -2.255246462  2.006710257  0.193154258  5.089865429 -0.512879313
##  [901]  1.075443212  1.665859331  3.837646923  0.057779443  1.293992738
##  [906]  0.939137763  3.082751625  1.126302592  1.575622266  0.391678775
##  [911]  2.312964101  0.273993057  2.559197666  2.863033290  3.353904612
##  [916] -0.157438227 -0.177958598  6.508427565  2.127890686  5.977523764
##  [921] -0.280475550  3.007311675  2.551042742  3.341688332  3.517778905
##  [926]  0.169836963  3.003923559  1.602167123  1.750599352  1.294358393
##  [931]  1.484317920  2.852080029  2.000693640  1.370224982  1.206556258
##  [936]  0.126543009  2.887028085  0.831918201  2.315437954  0.340764350
##  [941]  0.344580184  2.938082211  3.434364771  1.232473864  2.764874315
##  [946]  3.059330824  2.495998496  1.996939823  0.369782350  2.097128097
##  [951]  2.130813221  0.035873851  2.313203913 -1.204721083  1.527249398
##  [956]  1.106694715  2.636850222  0.227529448  2.090004786 -0.029781083
##  [961]  3.039885876  2.713809810  3.238641834  2.190138677  1.673133444
##  [966] -0.833353139  0.251368852 -0.086000384  0.580192787 -0.097651715
##  [971]  2.654820507 -1.947054126  4.217289360  0.309209010  3.606490571
##  [976]  0.113299389  0.336824827  2.250463309  3.548493647  1.259245968
##  [981]  0.544918262  1.826181591  2.301358421  1.320629629  2.501701733
##  [986]  2.320671989 -1.460857703 -0.790636626  0.743792898  1.117947631
##  [991]  1.417623722  3.489751655  0.831792397  3.577422580  4.502578238
##  [996]  3.875680661  3.017801451  1.859202531 -0.081511404  4.549532521
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.7968  0.9207  1.9658  1.9494  3.0011  6.7624
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve) 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.5717673
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.369463
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.5717673
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [37]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
##  [121]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [325]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [505]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -2.0621630 -0.6522288 -0.8402252 -2.5273989 -1.0295097 -0.8290440
##  [7] -2.7967851 -0.5845282 -1.0302944 -1.5906899 -1.0861649 -0.7985372
## [13] -0.6103792 -0.6767083 -0.7532466 -1.0448598 -0.7939971 -0.7901442
## [19] -0.8482860 -0.8389594 -1.5884962 -1.2353598 -0.5876720 -1.1519887
## [25] -1.3110783 -0.6309516 -1.1687983 -2.5195998 -0.7815946 -0.9889346
## [31] -2.3696055 -1.2269113 -0.8629427 -0.8090525 -0.6904186 -0.5884150
## [37] -0.6638120 -2.0436856 -1.1659107 -1.6853176 -0.8310163 -0.6774921
## [43] -1.0755162 -1.6256061 -2.2552465 -1.2047211 -0.8333531 -1.9470541
## [49] -1.4608577 -0.7906366
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.369463
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [361] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [445]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [865]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [997] FALSE FALSE FALSE  TRUE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.226972 5.031324 5.285601 4.764669 4.803682 6.356037 5.108602 4.680827
##  [9] 6.168205 5.297449 4.718744 4.650112 5.125006 4.560282 4.900217 5.303558
## [17] 5.000049 5.841525 5.152771 4.467865 5.466645 5.315244 5.009859 6.762358
## [25] 4.439795 4.711862 5.121637 4.561742 4.690922 5.058510 4.999151 5.013161
## [33] 4.900649 5.037534 6.058757 6.186023 6.029969 5.365035 4.407582 4.461031
## [41] 4.698659 4.859808 4.526572 4.512459 4.962962 5.089865 6.508428 5.977524
## [49] 4.502578 4.549533