# Mindanao State University
# General Santos City
# Introduction to R base commands
# Prepared by: Kathleen I. Pena
# Student
# Math Department
# March 20, 2023
# Processing of continuous data
# Using random number generators

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm()command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  2.2296841  1.1049094  3.9602813  4.2698936  2.1249888  1.8774173
##  [7]  1.7619420  3.6914363  0.8972161  1.4192792  2.2767342  3.3721199
## [13]  2.8348667  2.1718366  2.3441778  2.4237953  0.5837338  0.4645595
## [19] -0.6386079  2.1436816
data[1:300] # display the first 300 elements
##   [1]  2.2296841228  1.1049094212  3.9602812623  4.2698936156  2.1249887660
##   [6]  1.8774173489  1.7619419853  3.6914363152  0.8972160596  1.4192792027
##  [11]  2.2767342492  3.3721198732  2.8348666892  2.1718365952  2.3441777656
##  [16]  2.4237952841  0.5837337551  0.4645595175 -0.6386079139  2.1436816086
##  [21]  2.3668466140  1.0835631294  5.6243891041  4.8946230226 -0.6031665111
##  [26]  0.3056013197  2.6586925986  2.3256288505  2.9290246165  0.6478939407
##  [31]  0.7428539510  3.7450219264  2.8930284057  6.2956862825 -0.0009758503
##  [36]  2.6863401938  1.8683838314  0.3270077263  2.5510711336  4.1164754909
##  [41]  3.0854930511  0.6832912468  2.3579212132  0.2058461441  1.5697273266
##  [46]  3.2363039433  1.7219018542 -0.0344447107  3.4905615106  3.9570553190
##  [51]  2.7415711567  3.6690112887  3.0260060636  1.5355680944  2.8593551907
##  [56]  3.1456229262  6.7222687170  2.4027617099  4.4281433004  3.9121025548
##  [61]  1.6747855121  3.2535130693  0.3293790617  1.5282044456  0.0330420433
##  [66]  1.5386968371  2.1239076628  0.2560797096  0.8453794154  3.2607641518
##  [71]  3.2595801134  1.7897695995  1.2203987930  2.4326905467  3.7265381640
##  [76]  1.5149614859  1.1495079145 -0.3226731883  1.6706367954  0.5508943330
##  [81]  4.2653576956  3.8456504517 -0.6934667806  3.4829456187  3.0222308967
##  [86]  0.0112389805  3.3754523482  2.2531577166  3.5677435869  2.7663393969
##  [91]  2.0003562839  4.2873121719 -0.1961392893  0.4057293185  2.1399840328
##  [96]  2.1626040952  1.5663443577  4.1654685757  2.3728465033  4.7613581114
## [101]  2.2990449803  1.3330739180  2.7325205571  1.3579738394  2.6085653507
## [106]  2.0778879951  0.3336357911  1.5119856936  2.3990289615  5.8644697030
## [111]  1.1862738658 -1.4072425502  0.6809881813  4.1363483591 -0.7374403222
## [116]  2.7958822072  3.8656261740  0.5673135772  1.2771567021  1.1782132720
## [121]  2.8884871098  0.7165691770 -0.7310594623 -0.2138358345  1.7069013464
## [126]  5.0515241745  0.6444732306  0.4516367265  1.6273344068  1.6695318553
## [131]  3.4113128010  1.1787872283  2.4080871515  2.7006654622  1.7281166354
## [136]  0.8996407993  2.4460306538  2.7475318399  2.6458375689  3.3842014404
## [141]  5.9579947915  1.0118800283  3.1274810728  0.8271358219  0.7336033266
## [146] -0.0336861321  1.7022337835  0.9909843978  2.4671802245 -1.2243245490
## [151]  1.4175418774  0.2197672499  1.0869169821 -0.0670433966  3.5632508272
## [156]  3.9559221857  1.7045896065  1.4014695250  2.9658560487  2.4576057605
## [161]  2.7344749757  3.4487250921  2.3651199606  2.9527058848  1.3928273400
## [166]  3.5628522965  0.4623767436  4.2726923114  1.7112476488  2.9488322016
## [171] -0.7379376490  3.9010495056 -0.9293350023  0.3035894102  0.5650932864
## [176]  4.9514050244  4.4863231473  2.2208938273  0.4940212160  2.4266344538
## [181]  1.7430031310 -0.1968066959  1.7888048890  1.3599893607  1.1321227789
## [186]  0.9962462066  2.9918284329  3.2161748813  1.6038608676  1.3150143893
## [191]  2.7680412820  1.9903583867  2.9665966564  1.8566272577  2.9462290414
## [196]  3.1397872125 -0.8032141291  3.6276110185  2.6328981914 -1.1254275680
## [201]  1.1757860840  0.5985511903  3.1230334196  2.2820141225 -0.9299889879
## [206] -0.0897264640  4.3888416622  1.7028243288  2.8754077420  1.8048222618
## [211]  1.2678206331  4.9948082188  4.0031634197  3.1355948991  1.0325621520
## [216]  2.4739557723  4.4411807671  1.7462855400  2.3342918248  3.5269246292
## [221]  0.9334606550  3.2754286406  2.9659950431  3.0502517735  0.4342313046
## [226] -0.1726596258 -0.0242252629  2.4480196109  1.4554949309  0.4103248948
## [231]  0.7666611760  3.2603092982  3.5612465976  4.3276636467  2.8279861376
## [236]  3.0752117694  2.3803006419 -0.7486830160  2.5303383185  2.3249862798
## [241]  2.6878594474  1.7325185402  2.6476676365  1.4910628962  3.5692817430
## [246]  2.9001447265  2.6698266702 -1.0741440739  2.5748088983  2.1196925896
## [251] -0.8484608739  2.3013062994  0.0670319706  0.0718843416  4.2572130269
## [256]  0.1788857092  1.0602013306  2.7853776258  2.1629191207  0.2067633947
## [261]  1.5163326838  3.0422931820  2.4162122330  1.1425554129  3.6363161358
## [266]  3.7731157517  2.9251261471  0.5833767049  3.8330889092  2.7872759418
## [271] -2.4230746287  1.6929893457  2.0448309019  1.8594383338 -1.1917919172
## [276]  0.8437414900  1.5942616598  4.4873766087  4.7073591970  2.2016683444
## [281]  1.1001424073  1.1201842158  0.5939001638  0.9037699428  4.0075069754
## [286] -0.1702852210 -0.1791956881  0.9689944391  4.3090419205  3.3065073330
## [291]  1.9985182660  0.0518591037 -0.2519106756  1.6789416979  1.2097068111
## [296]  1.7882820153 -0.0850449718  4.1647757251  3.4588744314 -0.0925579001
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?
# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve. We define the range of the density curve 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve and the location of the mean value 
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.423074629 -2.329954034 -2.236833440 -2.143712845 -2.050592251
##   [6] -1.957471657 -1.864351062 -1.771230468 -1.678109873 -1.584989279
##  [11] -1.491868685 -1.398748090 -1.305627496 -1.212506901 -1.119386307
##  [16] -1.026265712 -0.933145118 -0.840024524 -0.746903929 -0.653783335
##  [21] -0.560662740 -0.467542146 -0.374421552 -0.281300957 -0.188180363
##  [26] -0.095059768 -0.001939174  0.091181421  0.184302015  0.277422609
##  [31]  0.370543204  0.463663798  0.556784393  0.649904987  0.743025581
##  [36]  0.836146176  0.929266770  1.022387365  1.115507959  1.208628554
##  [41]  1.301749148  1.394869742  1.487990337  1.581110931  1.674231526
##  [46]  1.767352120  1.860472714  1.953593309  2.046713903  2.139834498
##  [51]  2.232955092  2.326075687  2.419196281  2.512316875  2.605437470
##  [56]  2.698558064  2.791678659  2.884799253  2.977919847  3.071040442
##  [61]  3.164161036  3.257281631  3.350402225  3.443522820  3.536643414
##  [66]  3.629764008  3.722884603  3.816005197  3.909125792  4.002246386
##  [71]  4.095366980  4.188487575  4.281608169  4.374728764  4.467849358
##  [76]  4.560969953  4.654090547  4.747211141  4.840331736  4.933452330
##  [81]  5.026572925  5.119693519  5.212814113  5.305934708  5.399055302
##  [86]  5.492175897  5.585296491  5.678417086  5.771537680  5.864658274
##  [91]  5.957778869  6.050899463  6.144020058  6.237140652  6.330261246
##  [96]  6.423381841  6.516502435  6.609623030  6.702743624  6.795864219
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts 
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -2.423075  1.031582  2.000209  3.057468  6.795864
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  2.2296841228  1.1049094212  3.9602812623  4.2698936156  2.1249887660
##    [6]  1.8774173489  1.7619419853  3.6914363152  0.8972160596  1.4192792027
##   [11]  2.2767342492  3.3721198732  2.8348666892  2.1718365952  2.3441777656
##   [16]  2.4237952841  0.5837337551  0.4645595175 -0.6386079139  2.1436816086
##   [21]  2.3668466140  1.0835631294  5.6243891041  4.8946230226 -0.6031665111
##   [26]  0.3056013197  2.6586925986  2.3256288505  2.9290246165  0.6478939407
##   [31]  0.7428539510  3.7450219264  2.8930284057  6.2956862825 -0.0009758503
##   [36]  2.6863401938  1.8683838314  0.3270077263  2.5510711336  4.1164754909
##   [41]  3.0854930511  0.6832912468  2.3579212132  0.2058461441  1.5697273266
##   [46]  3.2363039433  1.7219018542 -0.0344447107  3.4905615106  3.9570553190
##   [51]  2.7415711567  3.6690112887  3.0260060636  1.5355680944  2.8593551907
##   [56]  3.1456229262  6.7222687170  2.4027617099  4.4281433004  3.9121025548
##   [61]  1.6747855121  3.2535130693  0.3293790617  1.5282044456  0.0330420433
##   [66]  1.5386968371  2.1239076628  0.2560797096  0.8453794154  3.2607641518
##   [71]  3.2595801134  1.7897695995  1.2203987930  2.4326905467  3.7265381640
##   [76]  1.5149614859  1.1495079145 -0.3226731883  1.6706367954  0.5508943330
##   [81]  4.2653576956  3.8456504517 -0.6934667806  3.4829456187  3.0222308967
##   [86]  0.0112389805  3.3754523482  2.2531577166  3.5677435869  2.7663393969
##   [91]  2.0003562839  4.2873121719 -0.1961392893  0.4057293185  2.1399840328
##   [96]  2.1626040952  1.5663443577  4.1654685757  2.3728465033  4.7613581114
##  [101]  2.2990449803  1.3330739180  2.7325205571  1.3579738394  2.6085653507
##  [106]  2.0778879951  0.3336357911  1.5119856936  2.3990289615  5.8644697030
##  [111]  1.1862738658 -1.4072425502  0.6809881813  4.1363483591 -0.7374403222
##  [116]  2.7958822072  3.8656261740  0.5673135772  1.2771567021  1.1782132720
##  [121]  2.8884871098  0.7165691770 -0.7310594623 -0.2138358345  1.7069013464
##  [126]  5.0515241745  0.6444732306  0.4516367265  1.6273344068  1.6695318553
##  [131]  3.4113128010  1.1787872283  2.4080871515  2.7006654622  1.7281166354
##  [136]  0.8996407993  2.4460306538  2.7475318399  2.6458375689  3.3842014404
##  [141]  5.9579947915  1.0118800283  3.1274810728  0.8271358219  0.7336033266
##  [146] -0.0336861321  1.7022337835  0.9909843978  2.4671802245 -1.2243245490
##  [151]  1.4175418774  0.2197672499  1.0869169821 -0.0670433966  3.5632508272
##  [156]  3.9559221857  1.7045896065  1.4014695250  2.9658560487  2.4576057605
##  [161]  2.7344749757  3.4487250921  2.3651199606  2.9527058848  1.3928273400
##  [166]  3.5628522965  0.4623767436  4.2726923114  1.7112476488  2.9488322016
##  [171] -0.7379376490  3.9010495056 -0.9293350023  0.3035894102  0.5650932864
##  [176]  4.9514050244  4.4863231473  2.2208938273  0.4940212160  2.4266344538
##  [181]  1.7430031310 -0.1968066959  1.7888048890  1.3599893607  1.1321227789
##  [186]  0.9962462066  2.9918284329  3.2161748813  1.6038608676  1.3150143893
##  [191]  2.7680412820  1.9903583867  2.9665966564  1.8566272577  2.9462290414
##  [196]  3.1397872125 -0.8032141291  3.6276110185  2.6328981914 -1.1254275680
##  [201]  1.1757860840  0.5985511903  3.1230334196  2.2820141225 -0.9299889879
##  [206] -0.0897264640  4.3888416622  1.7028243288  2.8754077420  1.8048222618
##  [211]  1.2678206331  4.9948082188  4.0031634197  3.1355948991  1.0325621520
##  [216]  2.4739557723  4.4411807671  1.7462855400  2.3342918248  3.5269246292
##  [221]  0.9334606550  3.2754286406  2.9659950431  3.0502517735  0.4342313046
##  [226] -0.1726596258 -0.0242252629  2.4480196109  1.4554949309  0.4103248948
##  [231]  0.7666611760  3.2603092982  3.5612465976  4.3276636467  2.8279861376
##  [236]  3.0752117694  2.3803006419 -0.7486830160  2.5303383185  2.3249862798
##  [241]  2.6878594474  1.7325185402  2.6476676365  1.4910628962  3.5692817430
##  [246]  2.9001447265  2.6698266702 -1.0741440739  2.5748088983  2.1196925896
##  [251] -0.8484608739  2.3013062994  0.0670319706  0.0718843416  4.2572130269
##  [256]  0.1788857092  1.0602013306  2.7853776258  2.1629191207  0.2067633947
##  [261]  1.5163326838  3.0422931820  2.4162122330  1.1425554129  3.6363161358
##  [266]  3.7731157517  2.9251261471  0.5833767049  3.8330889092  2.7872759418
##  [271] -2.4230746287  1.6929893457  2.0448309019  1.8594383338 -1.1917919172
##  [276]  0.8437414900  1.5942616598  4.4873766087  4.7073591970  2.2016683444
##  [281]  1.1001424073  1.1201842158  0.5939001638  0.9037699428  4.0075069754
##  [286] -0.1702852210 -0.1791956881  0.9689944391  4.3090419205  3.3065073330
##  [291]  1.9985182660  0.0518591037 -0.2519106756  1.6789416979  1.2097068111
##  [296]  1.7882820153 -0.0850449718  4.1647757251  3.4588744314 -0.0925579001
##  [301]  2.2317896274 -1.4393718207  4.1316113911 -1.1503901321  3.8086454355
##  [306]  1.6003036876  3.5373371489  4.0306998220  5.6702451917  4.1264653679
##  [311]  1.5825161971  1.8333590479 -0.5064863057  2.6587861666  2.1933919416
##  [316]  3.8893543091 -0.5670642296  1.9687294797  0.9597955651  3.1475360689
##  [321]  2.6002128262  1.2944827537  4.1395011107  3.0014270710  1.7387239382
##  [326] -0.4532702107  3.8889758394  2.0647442035  1.5210860594  0.3280151728
##  [331]  2.8574140984  1.4325130496  5.3272712050  2.1927974997  2.0189367031
##  [336]  1.8850496042  0.3455215713  2.7841614606  1.7643233514  3.1737710760
##  [341]  4.9339264409  1.4848861472  3.6890204705  3.5778699755  5.1502454448
##  [346]  3.3469389851  1.4106384793  1.7370036155  0.4450999568  3.8628266195
##  [351]  1.3668457022  1.9439657511  2.3578448853  1.1377794904  2.3583409052
##  [356]  0.1145991625  3.4679573809  0.6451881717  1.1184664873  3.2619533156
##  [361] -0.7486929709  1.4993205525  2.8155269722  1.9378962309 -0.2897545721
##  [366]  3.1485262713  2.4713904252  0.8768620994  4.2036961888  2.8086519387
##  [371] -0.3082504930  3.7905340893  0.0635077914  1.0425542562  0.7624986578
##  [376]  2.3978464321  2.0143118987  1.5780586488  2.2786677544  0.0259613307
##  [381]  3.8396571834  3.2678398386  0.7631920100  5.0757991994  2.5381442123
##  [386]  4.9848802447  0.5329001498 -2.0196147104  1.0485465793  0.8349453865
##  [391]  2.0754048940  1.9543781676  2.0831881079  1.8637972417  1.8094700965
##  [396] -1.5405600117  0.0099564546  1.5424852345  4.6738166782  3.9089208502
##  [401]  0.7373567056  2.7563897525  0.4427015626  0.7244080815  3.4853334971
##  [406]  2.2655658716  1.8627360716  3.3517196633  2.6280933880  1.6826745326
##  [411]  0.5808777315  2.0260307470  4.0516791147  1.5180322783  2.5043660446
##  [416]  2.2755202125  1.3792725409  0.2219927126  2.1078038596  1.1829390131
##  [421]  2.8071351716  2.5173285379  0.7893775776  1.6883593207  1.3262252380
##  [426]  3.2758478393  1.3236696171  2.0714945620  1.4039697316  3.8021336446
##  [431]  2.9925050274  2.8290965410  0.8754030052  1.1391160811  0.5795921558
##  [436]  2.0133663616  1.8748149016  3.2203025564  0.8749169737  2.0867709171
##  [441]  2.5704376854  0.7802799690  3.5319021852  4.3381264464  1.0219106826
##  [446]  5.4696431693 -0.3623021715  0.1773470264  4.7812701994  1.1845620500
##  [451]  3.1823442604  4.1857007165  3.7402606046  2.3048735531  2.1392960461
##  [456]  1.1080368573  0.4968726724 -0.1900850020  1.5195634200  4.1868148220
##  [461]  2.8916646647  1.6197612882 -0.4855458295  4.1224301232 -1.4950596193
##  [466]  2.9806637512  4.3475178117  1.1325142674  2.8393280346  4.8507239070
##  [471]  2.6926143321  0.2205810877  1.2858597910  1.0236049508  2.6636708326
##  [476]  1.9070362360 -0.8081152672  2.0941641622  2.2555407754  3.6295425717
##  [481]  2.4757547689  1.0779830949  4.0637097431  2.4783278973  3.0869555851
##  [486]  2.3857945295  4.7746525757  1.9950704293  1.3645991908  1.6633699674
##  [491]  4.5197828988 -0.9656402648  0.1649335877  3.1506744007  6.2170829529
##  [496]  0.5930827817  2.9858433317  3.1871909451  4.2168151272  0.8608168491
##  [501]  1.0518286976 -0.7313412349  0.0183623500  4.9775896197  3.5177539076
##  [506]  3.4909662360  1.4948704109  1.1156469149  2.9459221957  0.7020657510
##  [511]  3.3938588315  3.0686344725  1.6865073766  2.5513770597  3.5241067717
##  [516]  3.1081531301  3.7257534660  0.6029896934  1.1497152948  2.0395593563
##  [521]  3.2261941847  2.3963173714  4.0781251762  3.6822285610  3.0881737038
##  [526]  2.0753846633  1.8768899563 -1.4083447786  2.7734692588  0.5137769817
##  [531]  2.4086404766  6.7958642185  1.9840333777  1.2387295046  3.9907841735
##  [536]  2.2210738038  1.0468999313 -1.5935532918  2.4478514007  1.5468452872
##  [541]  3.2893890180  2.1050026456  2.7097032695  2.6164204998  1.6897075460
##  [546]  0.0496634939  3.9034851261  2.9708402245  0.7215490151  3.9937111217
##  [551]  4.2551986638  3.6609454506  1.6408070901  2.7506392713  1.0992673406
##  [556]  1.5331418614  4.4189992720  1.8907146682  2.4001685456 -0.1327159340
##  [561]  2.8784433429  1.6957414449 -0.3182859929  3.2367066267  2.3528626209
##  [566]  1.1895909220  4.1943037242  0.0247306939  3.1411177209  1.8757868011
##  [571]  1.3412963782  2.4867365596  1.8581294531  2.7215160187  0.0728573836
##  [576]  0.1029933931  0.6713134362 -0.1772778528  1.8088098440  0.3133342103
##  [581] -0.4461156513  1.4883157668  2.7606389415  1.6183218349  2.7024515211
##  [586]  2.2952861903  3.2000746526  2.0251810055  3.2018787263  3.8604836957
##  [591]  3.4862813904  1.1385617865  1.2613625300 -0.9199000429  2.3357546398
##  [596]  1.0971416460  4.2194415617  3.1636718426  4.3493200630  2.8887182462
##  [601]  0.9267637224  5.2411014774  0.3303361114  0.6456837984  2.4681297140
##  [606]  2.9389652878  2.5040449675  3.5327339664 -0.3416239094  3.3897693506
##  [611]  3.1741210187  3.8243925869  0.9134166252  3.1711423073  1.0823607260
##  [616]  1.3768720417 -0.4267334047  1.8282180753 -0.1595934835  3.0640584973
##  [621]  2.2970523109  1.3735749639  2.5326870573  0.3838782049  5.4546312407
##  [626]  0.8308686898  0.5140131981  2.2951193519  1.6413954028  5.1476119613
##  [631]  0.6769391644  4.4489488172  4.1858377946  5.2424016761  3.5248218917
##  [636]  1.6759824197  1.7460832142  0.0042136373  2.0000618315  1.9843537460
##  [641]  0.7064411731  2.4572064859  2.0247778083  3.4208626586  0.6754624575
##  [646]  0.3717181879  1.1347609617 -0.9131501378  1.0351195616  3.8821072079
##  [651]  1.5508965357 -0.1514472416  1.7126354301  1.3985663229  0.1895628835
##  [656]  0.8459472379  0.5149987828  2.3126257928 -0.3967053658  3.7814247763
##  [661]  4.0496927800  0.3151391551  3.6611560359  2.8206308419  2.4859021504
##  [666]  3.6271549529  2.1519618327  2.9738278302  1.5420149278 -0.1784294296
##  [671]  3.0214905211 -0.0930015100 -0.3357678002  6.0276141653  1.3384921165
##  [676]  0.4186491186 -0.9953619651 -1.3468841168 -0.2236983304  2.0215213057
##  [681]  3.7902739798  0.8820594389  2.7448726501  2.6926234244  1.7728914476
##  [686]  2.0199279187  2.0634678143  4.1662017125  1.8102509080  1.3245876915
##  [691]  3.3289659052  1.7368819613  4.5823335759  1.6863808964  1.3741174419
##  [696]  4.0203853506  2.2391175100  1.6666593900  3.1128390239  1.0875889144
##  [701]  2.8768439207 -0.4733724510  3.4731946777  3.1890454357  3.9949626959
##  [706]  1.9306316191  1.0238092399  3.7964920669  1.0286417842  4.0596066263
##  [711] -0.7095963870  2.7283819618  3.1930815042  1.2557784400  1.1935243428
##  [716]  3.6175109509  3.1941577417  0.4377262865  3.5390381688  2.1650408399
##  [721]  2.2525438036  3.5324886372  1.9255134822  1.1786250616  1.9951670444
##  [726]  1.3231378541 -0.8978182887  3.4242923173  2.6595562958  2.7898955968
##  [731]  1.4025868886  1.9172645170  1.4699154262  2.1722456810  2.1790147617
##  [736]  1.3142584928  2.7253305204  3.5432365631  1.7230819363  0.5079216971
##  [741]  3.0217487815  2.6754997412  2.5707217380  1.7274266505  3.3839463458
##  [746]  0.7754089460  2.0347760381  1.5136653833  2.5579897670 -0.6814978311
##  [751]  1.6288551101  2.8610714608  1.1837562132  3.7881668530  3.6332898614
##  [756]  3.3312976154  3.3842424578  0.0506066916  3.2698099423  1.1872869549
##  [761]  3.3402092300  1.8462030776  1.0542063143  0.6270310523  0.3570174467
##  [766]  1.9860056214  3.1605404818  3.6463715927  1.1823985132  1.6557774757
##  [771]  4.0389516068  1.1915350377  0.9298805218  2.2670530608  5.5053421948
##  [776]  4.0561249466  1.0076292341  2.1903360347  3.7656748075  2.9285239927
##  [781]  0.8792218126  3.1873214031  2.0361387530  0.2587487039  3.3815683234
##  [786]  2.8276493072  3.6458462456  1.9842513953  2.5549823390  3.5732085863
##  [791]  1.4198723272 -0.4768005398  2.6953815037  1.9235308086  1.2103254553
##  [796]  1.8312510400  1.5052511502  3.0078910356  3.6360666665 -0.2754462919
##  [801]  1.6818888912  5.9338890872 -0.1108470411  2.1013262676  4.2355055744
##  [806]  1.2093720348  2.8372425414  1.5409275857  2.2024913862  0.3025440622
##  [811]  2.8181465694  6.2741710687  1.0443230446  2.9631652040  2.2419430194
##  [816]  2.8208360732  0.8669925041  2.3916936426  1.8669669807  4.5880478083
##  [821]  0.8551230621  4.8310754324  0.6468055404 -0.1204805651  3.2346195563
##  [826]  3.2307814867  2.3308172643  0.1814721032  0.7604643037  1.3556441096
##  [831]  0.4871443121  1.0599018375  3.4450348312  1.3914015714  0.1037019063
##  [836] -0.1115636294 -0.0330945971  1.9956078074  2.9920898024  1.3410376265
##  [841]  2.8634279495 -0.2976156081  1.9411260305  0.9825607529  3.3124675755
##  [846]  2.6068723596  1.3453783227  2.8989169234  1.5760403551  0.9197974615
##  [851]  2.0294918342  2.4813115101  4.6215943199  2.0107106213  4.6587237289
##  [856]  0.6620919824  4.3850498884  3.2326453542  1.7362587640  0.5096438302
##  [861]  1.0923250166  2.4448588445  2.1351309639  1.8205498975  3.8152502755
##  [866] -1.9340493358  2.6787903472  2.0568862959  2.9972541331  3.9914470871
##  [871] -0.7350731115  0.5604214842  1.6773237359 -0.5006270865  2.6526177015
##  [876]  4.5825423977 -0.4590418263  1.2672175306  1.7204415215  0.4478439393
##  [881]  4.2844128581  1.3082174314  0.5392161804  2.4738152561  2.4721629047
##  [886]  1.0899467236  2.0883805404  1.5889676457  0.4583302351  2.5982632700
##  [891] -0.9770069709  1.1963201124  2.1779362327  4.3253194809  0.0426538602
##  [896]  0.6720466927  3.0489583300  1.8167987998  1.8605393767  1.2964458149
##  [901]  2.3616963018  1.8670303433  0.3220559884 -0.1782437696  2.5138206007
##  [906]  0.2634799210  1.3223920569  3.0044382607  1.4253568897  0.7866674241
##  [911]  1.6643027390  0.7653411251  1.9671228449  0.3875406432  3.1837581875
##  [916]  1.7364572278  1.6434768567  0.0577386783  2.2223107592  1.6462795474
##  [921]  1.6772960073  3.7349883897  1.1140190265  0.2939840683  0.9877493819
##  [926]  2.6606391322  4.7243659961  1.5210020386  1.6557410699  1.5647576729
##  [931]  2.7429592666  0.9640142265  3.7632082214  3.9975439037 -0.5673372426
##  [936]  2.4461776984  3.0236456061  2.2534994632 -0.0781527933  0.7488947763
##  [941]  2.1550084197  4.2777904571 -1.7527702233  3.3989700867  1.2707684486
##  [946]  3.0013431675  2.6928604444  1.2535613095  1.5691289550  1.9793128995
##  [951]  1.0341503602  4.6417543374  2.1883625980  1.0364712455  1.2966772252
##  [956] -0.9382002795  3.7007864999 -1.0014958572  2.0617112707  2.2554093756
##  [961]  1.9439778824  1.1700348768  0.0865136400  0.7757354728  2.5265012441
##  [966]  2.1456524209  0.9689409403  5.8818489726 -0.5301653126  0.1670521853
##  [971] -0.2320367050  2.6982355484  4.1381404550  2.4708149974  3.0485671080
##  [976]  1.8811608168  1.6126276599  1.9255955573  2.0056494165  1.9693503315
##  [981]  0.6531086172  0.0333014365  3.5926604710  1.7777405212  3.0552708144
##  [986]  3.3131289484  1.7018709928  0.5200366534  4.2768663429  3.5039536194
##  [991]  1.3296657869  2.4661423295  1.2662335731  4.8124858588  4.3458220957
##  [996]  1.3869261461  4.0227400254  2.5030564069  1.8917570319  0.4478081571
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -2.423   1.032   2.000   2.025   3.057   6.796
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve (define the range of the density curve) 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.4535588
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)

# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##     95% 
## 4.39035
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data

# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.4535588
# mark those values that is lower than -.42 as true
# and higher than -.42 as false

(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [25]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [205]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [877]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -0.6386079 -0.6031665 -0.6934668 -1.4072426 -0.7374403 -0.7310595
##  [7] -1.2243245 -0.7379376 -0.9293350 -0.8032141 -1.1254276 -0.9299890
## [13] -0.7486830 -1.0741441 -0.8484609 -2.4230746 -1.1917919 -1.4393718
## [19] -1.1503901 -0.5064863 -0.5670642 -0.7486930 -2.0196147 -1.5405600
## [25] -0.4855458 -1.4950596 -0.8081153 -0.9656403 -0.7313412 -1.4083448
## [31] -1.5935533 -0.9199000 -0.9131501 -0.9953620 -1.3468841 -0.4733725
## [37] -0.7095964 -0.8978183 -0.6814978 -0.4768005 -1.9340493 -0.7350731
## [43] -0.5006271 -0.4590418 -0.9770070 -0.5673372 -1.7527702 -0.9382003
## [49] -1.0014959 -0.5301653
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##     95% 
## 4.39035
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [217]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [385] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [493] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.624389 4.894623 6.295686 6.722269 4.428143 4.761358 5.864470 5.051524
##  [9] 5.957995 4.951405 4.486323 4.994808 4.441181 4.487377 4.707359 5.670245
## [17] 5.327271 4.933926 5.150245 5.075799 4.984880 4.673817 5.469643 4.781270
## [25] 4.850724 4.774653 4.519783 6.217083 4.977590 6.795864 4.418999 5.241101
## [33] 5.454631 5.147612 4.448949 5.242402 6.027614 4.582334 5.505342 5.933889
## [41] 6.274171 4.588048 4.831075 4.621594 4.658724 4.582542 4.724366 4.641754
## [49] 5.881849 4.812486