# Mindanao State University
# General Santos City
# Introduction to R base commands
# Prepared by: Kathleen I. Pena
# Student
# Math Department
# March 20, 2023
# Lab Exercise 1: How to create Lines in with different styles in R

# Step 1: Create Data
x <- 1:10 # Create example data
y <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9) # using the c() function to create an
array
## function (data = NA, dim = length(data), dimnames = NULL) 
## {
##     if (is.atomic(data) && !is.object(data)) 
##         return(.Internal(array(data, dim, dimnames)))
##     data <- as.vector(data)
##     if (is.object(data)) {
##         dim <- as.integer(dim)
##         if (!length(dim)) 
##             stop("'dim' cannot be of length 0")
##         vl <- prod(dim)
##         if (length(data) != vl) {
##             if (vl > .Machine$integer.max) 
##                 stop("'dim' specifies too large an array")
##             data <- rep_len(data, vl)
##         }
##         if (length(dim)) 
##             dim(data) <- dim
##         if (is.list(dimnames) && length(dimnames)) 
##             dimnames(data) <- dimnames
##         data
##     }
##     else .Internal(array(data, dim, dimnames))
## }
## <bytecode: 0x00000202deae5240>
## <environment: namespace:base>
# Step 2: Plot the line graph using the base plot() command
plot(x, y, type = "l")

# Step 3: Add Main Title & Change Axis Labels
plot(x, y, type = "l", 
     main = "Hello: This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values")

# Step 4: Add color to the line using the col command
plot(x, y, type = "l", 
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     col = "red")

# Step 5: Modify Thickness of Line using lwd command
plot(x, y, type = "l", 
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=7,
     col = "green")

# Step 6: Add points to line graph by changing the type command 
plot(x, y, type = "b", 
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# Lab Exercise 2: How to create Lines in with different styles in R

# Step1: Assign values for different lines. We enclose the entire 
# line with parenthesis symbol to force R to display the results instantly

# set the same value for the x variable
(x <- 1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
# set different values for y variables
(y1 <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9))
##  [1] 3 1 5 2 3 8 4 7 6 9
(y2 <- c(5, 1, 4, 6, 2, 3, 7, 8, 2, 8)) 
##  [1] 5 1 4 6 2 3 7 8 2 8
(y3 <- c(3, 3, 3, 3, 4, 4, 5, 5, 7, 7))
##  [1] 3 3 3 3 4 4 5 5 7 7
# Plot first the pair x and y1. 
plot(x, y1, type = "b", 
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# then Add the two lines (for x,y2) and (x,y3)
lines(x, y2, type = "b", col = "red",lwd=3) 
lines(x, y3, type = "b", col = "green",lwd=3) 

# Add legend to the plot
legend("topleft", 
       legend = c("Line y1", "Line y2", "Line y3"),
       col = c("black", "red", "green"),
       lty = 1)

# Step 2: Create Different Point Symbol for Each 
# Line using the pch command

plot(x, y1, type = "b",pch = 16, 
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
lines(x, y2, type = "b", col = "red",lwd=3, pch = 15) 
lines(x, y3, type = "b", col = "green",lwd=3, pch = 8) 

# Add legend
legend("topleft", 
       legend = c("Line y1", "Line y2", "Line y3"),
       col = c("black", "red", "green"),
       lty = 1)

# Lab Exercise 3: Create Line graph without x values 

Pupils <- c(3.55 ,3.54 ,3.53 ,3.61 ,3.65 ,3.63 ,3.61
            ,3.61 ,3.59 ,3.63 ,3.59 ,3.63 ,3.62 ,3.62
            ,3.59 ,3.63 ,3.62 ,3.65 ,3.65)

# get number of elements of Pupils
length(Pupils)
## [1] 19
# Display the elements of Pupils
Pupils
##  [1] 3.55 3.54 3.53 3.61 3.65 3.63 3.61 3.61 3.59 3.63 3.59 3.63 3.62 3.62 3.59
## [16] 3.63 3.62 3.65 3.65
# You can obtain the plot without x values
plot(Pupils, type = 'o')

# Lab Exercise 4: How to Create vertical, horizontal lines
# We will use buit-in cars dataset in R

# display the cars dataset
cars 
##    speed dist
## 1      4    2
## 2      4   10
## 3      7    4
## 4      7   22
## 5      8   16
## 6      9   10
## 7     10   18
## 8     10   26
## 9     10   34
## 10    11   17
## 11    11   28
## 12    12   14
## 13    12   20
## 14    12   24
## 15    12   28
## 16    13   26
## 17    13   34
## 18    13   34
## 19    13   46
## 20    14   26
## 21    14   36
## 22    14   60
## 23    14   80
## 24    15   20
## 25    15   26
## 26    15   54
## 27    16   32
## 28    16   40
## 29    17   32
## 30    17   40
## 31    17   50
## 32    18   42
## 33    18   56
## 34    18   76
## 35    18   84
## 36    19   36
## 37    19   46
## 38    19   68
## 39    20   32
## 40    20   48
## 41    20   52
## 42    20   56
## 43    20   64
## 44    22   66
## 45    23   54
## 46    24   70
## 47    24   92
## 48    24   93
## 49    24  120
## 50    25   85
# get the number of rows and columns using dim() command
dim(cars)
## [1] 50  2
# display the variable names of the cars dataset
names(cars)
## [1] "speed" "dist"
# display only the first column of the dataset
cars$speed # using the column name
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
cars[,1] # using the column number
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
# Remarks: the following commands will give you the same result
plot(cars,) # using the comma after the name

plot(cars[,1],cars[,2]) # using the column index 1 and 2 

attach(cars); plot(speed,dist) # using the attach command to load the variables

plot(cars$speed,cars$dist) # using the dollar notation

# combine all 4 plots using the par() command 
par(mfrow = c(2,2)) # set a 2x2 plot output 
plot(cars,) # using the comma after the name
plot(cars[,1],cars[,2]) # using the column index 1 and 2 
attach(cars); plot(speed,dist) # using the attach command to load the variables
## The following objects are masked from cars (pos = 3):
## 
##     dist, speed
plot(cars$speed,cars$dist) # using the dollar notation

par(mfrow = c(1,1)) # reset to default plot setting

# Problem: Create vertical lines using the v command
plot(cars) 
abline(v = 15, col = "darkgreen",lwd=3) # vertical line
abline(v = 10, col = "blue",lwd=3) # vertical line

# Problem: Create horizontal lines using the h command
abline(h = 80, col = "darkgreen",lwd=3) # vertical line
abline(h = 20, col = "blue",lwd=3) # vertical line

# Create more lines simultaneously, using a vector of values 
plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2), # line thickness
       lty = c(2,2,2)) # dashed lines

plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2)) # line thickness and solid lines

# create horizontal lines
plot(cars)
abline(h = 60, col = "red",lty = 1, lwd = 3)
abline(h = 100, col = "red",lty = 2, lwd = 3)
abline(h = 20, col = "red",lty = 3, lwd = 3)

# Lab Exercise 5: How to Plot data by group
# We will use buit-in iris dataset in R
# this dataset is a collection of 4 species of flowers with different
# sepal length and width and also with different petal length and width

dim(iris) # iris dataset has 150 rows and 5 columns 
## [1] 150   5
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"
# two different commands to get the frequency table 
table(iris$Species) # refer to the dataset by variable name
## 
##     setosa versicolor  virginica 
##         50         50         50
table(iris[,5]) # refer to the dataset by column number
## 
##     setosa versicolor  virginica 
##         50         50         50
# get summary of all columns
summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 
#create scatterplot of sepal width vs. sepal length
plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=19)

plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=1)

# another way to retrieve columns of data
PL <- iris$Petal.Length
PW <- iris$Petal.Width
plot(PL, PW)

# add color by species
plot(PL, PW, col = iris$Species, main= "My Plot")

# draw a line along with the distribution of points
# using the abline and lm commands
abline(lm(PW ~ PL))

# add text annotation
text(5, 0.5, "Regression Line") 
legend("topleft", # specify the location of the legend
       levels(iris$Species), # specify the levels of species
       pch = 1:3, # specify three symbols used for the three species
       col = 1:3 # specify three colors for the three species
)

# Lab Exercise 6: Generate advance scatter plot

pairs(iris, col = rainbow(3)[iris$Species]) # set colors by species

# How to filter data for each flower
(Versicolor <- subset(iris, Species == "versicolor"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
(Setosa <- subset(iris, Species == "setosa"))
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## 11          5.4         3.7          1.5         0.2  setosa
## 12          4.8         3.4          1.6         0.2  setosa
## 13          4.8         3.0          1.4         0.1  setosa
## 14          4.3         3.0          1.1         0.1  setosa
## 15          5.8         4.0          1.2         0.2  setosa
## 16          5.7         4.4          1.5         0.4  setosa
## 17          5.4         3.9          1.3         0.4  setosa
## 18          5.1         3.5          1.4         0.3  setosa
## 19          5.7         3.8          1.7         0.3  setosa
## 20          5.1         3.8          1.5         0.3  setosa
## 21          5.4         3.4          1.7         0.2  setosa
## 22          5.1         3.7          1.5         0.4  setosa
## 23          4.6         3.6          1.0         0.2  setosa
## 24          5.1         3.3          1.7         0.5  setosa
## 25          4.8         3.4          1.9         0.2  setosa
## 26          5.0         3.0          1.6         0.2  setosa
## 27          5.0         3.4          1.6         0.4  setosa
## 28          5.2         3.5          1.5         0.2  setosa
## 29          5.2         3.4          1.4         0.2  setosa
## 30          4.7         3.2          1.6         0.2  setosa
## 31          4.8         3.1          1.6         0.2  setosa
## 32          5.4         3.4          1.5         0.4  setosa
## 33          5.2         4.1          1.5         0.1  setosa
## 34          5.5         4.2          1.4         0.2  setosa
## 35          4.9         3.1          1.5         0.2  setosa
## 36          5.0         3.2          1.2         0.2  setosa
## 37          5.5         3.5          1.3         0.2  setosa
## 38          4.9         3.6          1.4         0.1  setosa
## 39          4.4         3.0          1.3         0.2  setosa
## 40          5.1         3.4          1.5         0.2  setosa
## 41          5.0         3.5          1.3         0.3  setosa
## 42          4.5         2.3          1.3         0.3  setosa
## 43          4.4         3.2          1.3         0.2  setosa
## 44          5.0         3.5          1.6         0.6  setosa
## 45          5.1         3.8          1.9         0.4  setosa
## 46          4.8         3.0          1.4         0.3  setosa
## 47          5.1         3.8          1.6         0.2  setosa
## 48          4.6         3.2          1.4         0.2  setosa
## 49          5.3         3.7          1.5         0.2  setosa
## 50          5.0         3.3          1.4         0.2  setosa
(Virginica <- subset(iris, Species == "virginica"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 101          6.3         3.3          6.0         2.5 virginica
## 102          5.8         2.7          5.1         1.9 virginica
## 103          7.1         3.0          5.9         2.1 virginica
## 104          6.3         2.9          5.6         1.8 virginica
## 105          6.5         3.0          5.8         2.2 virginica
## 106          7.6         3.0          6.6         2.1 virginica
## 107          4.9         2.5          4.5         1.7 virginica
## 108          7.3         2.9          6.3         1.8 virginica
## 109          6.7         2.5          5.8         1.8 virginica
## 110          7.2         3.6          6.1         2.5 virginica
## 111          6.5         3.2          5.1         2.0 virginica
## 112          6.4         2.7          5.3         1.9 virginica
## 113          6.8         3.0          5.5         2.1 virginica
## 114          5.7         2.5          5.0         2.0 virginica
## 115          5.8         2.8          5.1         2.4 virginica
## 116          6.4         3.2          5.3         2.3 virginica
## 117          6.5         3.0          5.5         1.8 virginica
## 118          7.7         3.8          6.7         2.2 virginica
## 119          7.7         2.6          6.9         2.3 virginica
## 120          6.0         2.2          5.0         1.5 virginica
## 121          6.9         3.2          5.7         2.3 virginica
## 122          5.6         2.8          4.9         2.0 virginica
## 123          7.7         2.8          6.7         2.0 virginica
## 124          6.3         2.7          4.9         1.8 virginica
## 125          6.7         3.3          5.7         2.1 virginica
## 126          7.2         3.2          6.0         1.8 virginica
## 127          6.2         2.8          4.8         1.8 virginica
## 128          6.1         3.0          4.9         1.8 virginica
## 129          6.4         2.8          5.6         2.1 virginica
## 130          7.2         3.0          5.8         1.6 virginica
## 131          7.4         2.8          6.1         1.9 virginica
## 132          7.9         3.8          6.4         2.0 virginica
## 133          6.4         2.8          5.6         2.2 virginica
## 134          6.3         2.8          5.1         1.5 virginica
## 135          6.1         2.6          5.6         1.4 virginica
## 136          7.7         3.0          6.1         2.3 virginica
## 137          6.3         3.4          5.6         2.4 virginica
## 138          6.4         3.1          5.5         1.8 virginica
## 139          6.0         3.0          4.8         1.8 virginica
## 140          6.9         3.1          5.4         2.1 virginica
## 141          6.7         3.1          5.6         2.4 virginica
## 142          6.9         3.1          5.1         2.3 virginica
## 143          5.8         2.7          5.1         1.9 virginica
## 144          6.8         3.2          5.9         2.3 virginica
## 145          6.7         3.3          5.7         2.5 virginica
## 146          6.7         3.0          5.2         2.3 virginica
## 147          6.3         2.5          5.0         1.9 virginica
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
# Draw boxplot for each type of flower
boxplot(Versicolor[,1:4], main="Versicolor, Rainbow Palette",ylim =
          c(0,8),las=2, col=rainbow(4))

boxplot(Setosa[,1:4], main="Setosa, Heat color Palette",ylim = c(0,8),las=2,
        col=heat.colors(4))

boxplot(Virginica[,1:4], main="Virginica, Topo colors Palette",ylim =
          c(0,8),las=2, col=topo.colors(4))

# Lab Exercise 7: How to load external datasets

# From a local directory
# the folder that contains the file should be specified completely
# using the forward slash symbol instead of the backward splash
library(readr)
Cancer <- read_csv("C:/Users/Acer/Downloads/Cancer.csv")
## Rows: 173 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): country, continent
## dbl (15): incomeperperson, alcconsumption, armedforcesrate, breastcancer, co...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(Cancer)
dim(Cancer)
## [1] 173  17
names(Cancer)
##  [1] "country"            "incomeperperson"    "alcconsumption"    
##  [4] "armedforcesrate"    "breastcancer"       "co2emissions"      
##  [7] "femaleemployrate"   "hivrate"            "internetuserate"   
## [10] "lifeexpectancy"     "oilperperson"       "polityscore"       
## [13] "relectricperperson" "suicideper100th"    "employrate"        
## [16] "urbanrate"          "continent"
# compute mean value for every continent
(means <- round(tapply(Cancer$breastcancer, Cancer$continent, mean),
                digits=2))
##    AF    AS    EE LATAM NORAM    OC    WE 
## 24.02 24.51 49.44 36.70 71.73 45.80 74.80
# draw boxplot per continent
boxplot(Cancer$breastcancer ~ Cancer$continent, main= "Breast cancer by
continent (brown dot = mean value)", xlab="continents", ylab="new
cases per 100,00 residents", col=rainbow(7))

# insert the mean value using brown dot
points(means, col="brown", pch=18)

# Lab Exercise 8: How to load external datasets and change data layout

library(readr)
hsb2 <- read_csv("C:/Users/Acer/Downloads/hsb2.csv")
## New names:
## Rows: 200 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (12): ...1, id, female, race, ses, schtyp, prog, read, write, math, scie...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
View(hsb2)

# display only the top 6 rows
head(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1    70      0     4     1      1     1    57    52    41      47    57
## 2     2   121      1     4     2      1     3    68    59    53      63    61
## 3     3    86      0     4     3      1     1    44    33    54      58    31
## 4     4   141      0     4     3      1     3    63    44    47      53    56
## 5     5   172      0     4     2      1     2    47    52    57      53    61
## 6     6   113      0     4     2      1     2    44    52    51      63    61
# display only the last 6 rows
tail(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1   195   179      1     4     2      2     2    47    65    60      50    56
## 2   196    31      1     2     2      2     1    55    59    52      42    56
## 3   197   145      1     4     2      1     3    42    46    38      36    46
## 4   198   187      1     4     2      2     1    57    41    57      55    52
## 5   199   118      1     4     2      1     1    55    62    58      58    61
## 6   200   137      1     4     3      1     2    63    65    65      53    61
# delete redundant first column (run only once)
(hsb2 <- hsb2[-1])
## # A tibble: 200 × 11
##       id female  race   ses schtyp  prog  read write  math science socst
##    <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    70      0     4     1      1     1    57    52    41      47    57
##  2   121      1     4     2      1     3    68    59    53      63    61
##  3    86      0     4     3      1     1    44    33    54      58    31
##  4   141      0     4     3      1     3    63    44    47      53    56
##  5   172      0     4     2      1     2    47    52    57      53    61
##  6   113      0     4     2      1     2    44    52    51      63    61
##  7    50      0     3     2      1     1    50    59    42      53    61
##  8    11      0     1     2      1     2    34    46    45      39    36
##  9    84      0     4     2      1     1    63    57    54      58    51
## 10    48      0     3     2      1     2    57    55    52      50    51
## # … with 190 more rows
# Remarks
# hsb2 dataset consists of 200 selected random samples from senior
# high school students in the US.
# We want to compare the student performance across different subjects
# change data layout by grouping different subjects 
# into one column using melt() command. Install first reshape2 package
# install.packages("reshape2")

library(reshape2)
(hsb2_long <- melt(hsb2, measure.vars =
                     c("read","write","math","science","socst")))
##       id female race ses schtyp prog variable value
## 1     70      0    4   1      1    1     read    57
## 2    121      1    4   2      1    3     read    68
## 3     86      0    4   3      1    1     read    44
## 4    141      0    4   3      1    3     read    63
## 5    172      0    4   2      1    2     read    47
## 6    113      0    4   2      1    2     read    44
## 7     50      0    3   2      1    1     read    50
## 8     11      0    1   2      1    2     read    34
## 9     84      0    4   2      1    1     read    63
## 10    48      0    3   2      1    2     read    57
## 11    75      0    4   2      1    3     read    60
## 12    60      0    4   2      1    2     read    57
## 13    95      0    4   3      1    2     read    73
## 14   104      0    4   3      1    2     read    54
## 15    38      0    3   1      1    2     read    45
## 16   115      0    4   1      1    1     read    42
## 17    76      0    4   3      1    2     read    47
## 18   195      0    4   2      2    1     read    57
## 19   114      0    4   3      1    2     read    68
## 20    85      0    4   2      1    1     read    55
## 21   167      0    4   2      1    1     read    63
## 22   143      0    4   2      1    3     read    63
## 23    41      0    3   2      1    2     read    50
## 24    20      0    1   3      1    2     read    60
## 25    12      0    1   2      1    3     read    37
## 26    53      0    3   2      1    3     read    34
## 27   154      0    4   3      1    2     read    65
## 28   178      0    4   2      2    3     read    47
## 29   196      0    4   3      2    2     read    44
## 30    29      0    2   1      1    1     read    52
## 31   126      0    4   2      1    1     read    42
## 32   103      0    4   3      1    2     read    76
## 33   192      0    4   3      2    2     read    65
## 34   150      0    4   2      1    3     read    42
## 35   199      0    4   3      2    2     read    52
## 36   144      0    4   3      1    1     read    60
## 37   200      0    4   2      2    2     read    68
## 38    80      0    4   3      1    2     read    65
## 39    16      0    1   1      1    3     read    47
## 40   153      0    4   2      1    3     read    39
## 41   176      0    4   2      2    2     read    47
## 42   177      0    4   2      2    2     read    55
## 43   168      0    4   2      1    2     read    52
## 44    40      0    3   1      1    1     read    42
## 45    62      0    4   3      1    1     read    65
## 46   169      0    4   1      1    1     read    55
## 47    49      0    3   3      1    3     read    50
## 48   136      0    4   2      1    2     read    65
## 49   189      0    4   2      2    2     read    47
## 50     7      0    1   2      1    2     read    57
## 51    27      0    2   2      1    2     read    53
## 52   128      0    4   3      1    2     read    39
## 53    21      0    1   2      1    1     read    44
## 54   183      0    4   2      2    2     read    63
## 55   132      0    4   2      1    2     read    73
## 56    15      0    1   3      1    3     read    39
## 57    67      0    4   1      1    3     read    37
## 58    22      0    1   2      1    3     read    42
## 59   185      0    4   2      2    2     read    63
## 60     9      0    1   2      1    3     read    48
## 61   181      0    4   2      2    2     read    50
## 62   170      0    4   3      1    2     read    47
## 63   134      0    4   1      1    1     read    44
## 64   108      0    4   2      1    1     read    34
## 65   197      0    4   3      2    2     read    50
## 66   140      0    4   2      1    3     read    44
## 67   171      0    4   2      1    2     read    60
## 68   107      0    4   1      1    3     read    47
## 69    81      0    4   1      1    2     read    63
## 70    18      0    1   2      1    3     read    50
## 71   155      0    4   2      1    1     read    44
## 72    97      0    4   3      1    2     read    60
## 73    68      0    4   2      1    2     read    73
## 74   157      0    4   2      1    1     read    68
## 75    56      0    4   2      1    3     read    55
## 76     5      0    1   1      1    2     read    47
## 77   159      0    4   3      1    2     read    55
## 78   123      0    4   3      1    1     read    68
## 79   164      0    4   2      1    3     read    31
## 80    14      0    1   3      1    2     read    47
## 81   127      0    4   3      1    2     read    63
## 82   165      0    4   1      1    3     read    36
## 83   174      0    4   2      2    2     read    68
## 84     3      0    1   1      1    2     read    63
## 85    58      0    4   2      1    3     read    55
## 86   146      0    4   3      1    2     read    55
## 87   102      0    4   3      1    2     read    52
## 88   117      0    4   3      1    3     read    34
## 89   133      0    4   2      1    3     read    50
## 90    94      0    4   3      1    2     read    55
## 91    24      0    2   2      1    2     read    52
## 92   149      0    4   1      1    1     read    63
## 93    82      1    4   3      1    2     read    68
## 94     8      1    1   1      1    2     read    39
## 95   129      1    4   1      1    1     read    44
## 96   173      1    4   1      1    1     read    50
## 97    57      1    4   2      1    2     read    71
## 98   100      1    4   3      1    2     read    63
## 99     1      1    1   1      1    3     read    34
## 100  194      1    4   3      2    2     read    63
## 101   88      1    4   3      1    2     read    68
## 102   99      1    4   3      1    1     read    47
## 103   47      1    3   1      1    2     read    47
## 104  120      1    4   3      1    2     read    63
## 105  166      1    4   2      1    2     read    52
## 106   65      1    4   2      1    2     read    55
## 107  101      1    4   3      1    2     read    60
## 108   89      1    4   1      1    3     read    35
## 109   54      1    3   1      2    1     read    47
## 110  180      1    4   3      2    2     read    71
## 111  162      1    4   2      1    3     read    57
## 112    4      1    1   1      1    2     read    44
## 113  131      1    4   3      1    2     read    65
## 114  125      1    4   1      1    2     read    68
## 115   34      1    1   3      2    2     read    73
## 116  106      1    4   2      1    3     read    36
## 117  130      1    4   3      1    1     read    43
## 118   93      1    4   3      1    2     read    73
## 119  163      1    4   1      1    2     read    52
## 120   37      1    3   1      1    3     read    41
## 121   35      1    1   1      2    1     read    60
## 122   87      1    4   2      1    1     read    50
## 123   73      1    4   2      1    2     read    50
## 124  151      1    4   2      1    3     read    47
## 125   44      1    3   1      1    3     read    47
## 126  152      1    4   3      1    2     read    55
## 127  105      1    4   2      1    2     read    50
## 128   28      1    2   2      1    1     read    39
## 129   91      1    4   3      1    3     read    50
## 130   45      1    3   1      1    3     read    34
## 131  116      1    4   2      1    2     read    57
## 132   33      1    2   1      1    2     read    57
## 133   66      1    4   2      1    3     read    68
## 134   72      1    4   2      1    3     read    42
## 135   77      1    4   1      1    2     read    61
## 136   61      1    4   3      1    2     read    76
## 137  190      1    4   2      2    2     read    47
## 138   42      1    3   2      1    3     read    46
## 139    2      1    1   2      1    3     read    39
## 140   55      1    3   2      2    2     read    52
## 141   19      1    1   1      1    1     read    28
## 142   90      1    4   3      1    2     read    42
## 143  142      1    4   2      1    3     read    47
## 144   17      1    1   2      1    2     read    47
## 145  122      1    4   2      1    2     read    52
## 146  191      1    4   3      2    2     read    47
## 147   83      1    4   2      1    3     read    50
## 148  182      1    4   2      2    2     read    44
## 149    6      1    1   1      1    2     read    47
## 150   46      1    3   1      1    2     read    45
## 151   43      1    3   1      1    2     read    47
## 152   96      1    4   3      1    2     read    65
## 153  138      1    4   2      1    3     read    43
## 154   10      1    1   2      1    1     read    47
## 155   71      1    4   2      1    1     read    57
## 156  139      1    4   2      1    2     read    68
## 157  110      1    4   2      1    3     read    52
## 158  148      1    4   2      1    3     read    42
## 159  109      1    4   2      1    1     read    42
## 160   39      1    3   3      1    2     read    66
## 161  147      1    4   1      1    2     read    47
## 162   74      1    4   2      1    2     read    57
## 163  198      1    4   3      2    2     read    47
## 164  161      1    4   1      1    2     read    57
## 165  112      1    4   2      1    2     read    52
## 166   69      1    4   1      1    3     read    44
## 167  156      1    4   2      1    2     read    50
## 168  111      1    4   1      1    1     read    39
## 169  186      1    4   2      2    2     read    57
## 170   98      1    4   1      1    3     read    57
## 171  119      1    4   1      1    1     read    42
## 172   13      1    1   2      1    3     read    47
## 173   51      1    3   3      1    1     read    42
## 174   26      1    2   3      1    2     read    60
## 175   36      1    3   1      1    1     read    44
## 176  135      1    4   1      1    2     read    63
## 177   59      1    4   2      1    2     read    65
## 178   78      1    4   2      1    2     read    39
## 179   64      1    4   3      1    3     read    50
## 180   63      1    4   1      1    1     read    52
## 181   79      1    4   2      1    2     read    60
## 182  193      1    4   2      2    2     read    44
## 183   92      1    4   3      1    1     read    52
## 184  160      1    4   2      1    2     read    55
## 185   32      1    2   3      1    3     read    50
## 186   23      1    2   1      1    2     read    65
## 187  158      1    4   2      1    1     read    52
## 188   25      1    2   2      1    1     read    47
## 189  188      1    4   3      2    2     read    63
## 190   52      1    3   1      1    2     read    50
## 191  124      1    4   1      1    3     read    42
## 192  175      1    4   3      2    1     read    36
## 193  184      1    4   2      2    3     read    50
## 194   30      1    2   3      1    2     read    41
## 195  179      1    4   2      2    2     read    47
## 196   31      1    2   2      2    1     read    55
## 197  145      1    4   2      1    3     read    42
## 198  187      1    4   2      2    1     read    57
## 199  118      1    4   2      1    1     read    55
## 200  137      1    4   3      1    2     read    63
## 201   70      0    4   1      1    1    write    52
## 202  121      1    4   2      1    3    write    59
## 203   86      0    4   3      1    1    write    33
## 204  141      0    4   3      1    3    write    44
## 205  172      0    4   2      1    2    write    52
## 206  113      0    4   2      1    2    write    52
## 207   50      0    3   2      1    1    write    59
## 208   11      0    1   2      1    2    write    46
## 209   84      0    4   2      1    1    write    57
## 210   48      0    3   2      1    2    write    55
## 211   75      0    4   2      1    3    write    46
## 212   60      0    4   2      1    2    write    65
## 213   95      0    4   3      1    2    write    60
## 214  104      0    4   3      1    2    write    63
## 215   38      0    3   1      1    2    write    57
## 216  115      0    4   1      1    1    write    49
## 217   76      0    4   3      1    2    write    52
## 218  195      0    4   2      2    1    write    57
## 219  114      0    4   3      1    2    write    65
## 220   85      0    4   2      1    1    write    39
## 221  167      0    4   2      1    1    write    49
## 222  143      0    4   2      1    3    write    63
## 223   41      0    3   2      1    2    write    40
## 224   20      0    1   3      1    2    write    52
## 225   12      0    1   2      1    3    write    44
## 226   53      0    3   2      1    3    write    37
## 227  154      0    4   3      1    2    write    65
## 228  178      0    4   2      2    3    write    57
## 229  196      0    4   3      2    2    write    38
## 230   29      0    2   1      1    1    write    44
## 231  126      0    4   2      1    1    write    31
## 232  103      0    4   3      1    2    write    52
## 233  192      0    4   3      2    2    write    67
## 234  150      0    4   2      1    3    write    41
## 235  199      0    4   3      2    2    write    59
## 236  144      0    4   3      1    1    write    65
## 237  200      0    4   2      2    2    write    54
## 238   80      0    4   3      1    2    write    62
## 239   16      0    1   1      1    3    write    31
## 240  153      0    4   2      1    3    write    31
## 241  176      0    4   2      2    2    write    47
## 242  177      0    4   2      2    2    write    59
## 243  168      0    4   2      1    2    write    54
## 244   40      0    3   1      1    1    write    41
## 245   62      0    4   3      1    1    write    65
## 246  169      0    4   1      1    1    write    59
## 247   49      0    3   3      1    3    write    40
## 248  136      0    4   2      1    2    write    59
## 249  189      0    4   2      2    2    write    59
## 250    7      0    1   2      1    2    write    54
## 251   27      0    2   2      1    2    write    61
## 252  128      0    4   3      1    2    write    33
## 253   21      0    1   2      1    1    write    44
## 254  183      0    4   2      2    2    write    59
## 255  132      0    4   2      1    2    write    62
## 256   15      0    1   3      1    3    write    39
## 257   67      0    4   1      1    3    write    37
## 258   22      0    1   2      1    3    write    39
## 259  185      0    4   2      2    2    write    57
## 260    9      0    1   2      1    3    write    49
## 261  181      0    4   2      2    2    write    46
## 262  170      0    4   3      1    2    write    62
## 263  134      0    4   1      1    1    write    44
## 264  108      0    4   2      1    1    write    33
## 265  197      0    4   3      2    2    write    42
## 266  140      0    4   2      1    3    write    41
## 267  171      0    4   2      1    2    write    54
## 268  107      0    4   1      1    3    write    39
## 269   81      0    4   1      1    2    write    43
## 270   18      0    1   2      1    3    write    33
## 271  155      0    4   2      1    1    write    44
## 272   97      0    4   3      1    2    write    54
## 273   68      0    4   2      1    2    write    67
## 274  157      0    4   2      1    1    write    59
## 275   56      0    4   2      1    3    write    45
## 276    5      0    1   1      1    2    write    40
## 277  159      0    4   3      1    2    write    61
## 278  123      0    4   3      1    1    write    59
## 279  164      0    4   2      1    3    write    36
## 280   14      0    1   3      1    2    write    41
## 281  127      0    4   3      1    2    write    59
## 282  165      0    4   1      1    3    write    49
## 283  174      0    4   2      2    2    write    59
## 284    3      0    1   1      1    2    write    65
## 285   58      0    4   2      1    3    write    41
## 286  146      0    4   3      1    2    write    62
## 287  102      0    4   3      1    2    write    41
## 288  117      0    4   3      1    3    write    49
## 289  133      0    4   2      1    3    write    31
## 290   94      0    4   3      1    2    write    49
## 291   24      0    2   2      1    2    write    62
## 292  149      0    4   1      1    1    write    49
## 293   82      1    4   3      1    2    write    62
## 294    8      1    1   1      1    2    write    44
## 295  129      1    4   1      1    1    write    44
## 296  173      1    4   1      1    1    write    62
## 297   57      1    4   2      1    2    write    65
## 298  100      1    4   3      1    2    write    65
## 299    1      1    1   1      1    3    write    44
## 300  194      1    4   3      2    2    write    63
## 301   88      1    4   3      1    2    write    60
## 302   99      1    4   3      1    1    write    59
## 303   47      1    3   1      1    2    write    46
## 304  120      1    4   3      1    2    write    52
## 305  166      1    4   2      1    2    write    59
## 306   65      1    4   2      1    2    write    54
## 307  101      1    4   3      1    2    write    62
## 308   89      1    4   1      1    3    write    35
## 309   54      1    3   1      2    1    write    54
## 310  180      1    4   3      2    2    write    65
## 311  162      1    4   2      1    3    write    52
## 312    4      1    1   1      1    2    write    50
## 313  131      1    4   3      1    2    write    59
## 314  125      1    4   1      1    2    write    65
## 315   34      1    1   3      2    2    write    61
## 316  106      1    4   2      1    3    write    44
## 317  130      1    4   3      1    1    write    54
## 318   93      1    4   3      1    2    write    67
## 319  163      1    4   1      1    2    write    57
## 320   37      1    3   1      1    3    write    47
## 321   35      1    1   1      2    1    write    54
## 322   87      1    4   2      1    1    write    52
## 323   73      1    4   2      1    2    write    52
## 324  151      1    4   2      1    3    write    46
## 325   44      1    3   1      1    3    write    62
## 326  152      1    4   3      1    2    write    57
## 327  105      1    4   2      1    2    write    41
## 328   28      1    2   2      1    1    write    53
## 329   91      1    4   3      1    3    write    49
## 330   45      1    3   1      1    3    write    35
## 331  116      1    4   2      1    2    write    59
## 332   33      1    2   1      1    2    write    65
## 333   66      1    4   2      1    3    write    62
## 334   72      1    4   2      1    3    write    54
## 335   77      1    4   1      1    2    write    59
## 336   61      1    4   3      1    2    write    63
## 337  190      1    4   2      2    2    write    59
## 338   42      1    3   2      1    3    write    52
## 339    2      1    1   2      1    3    write    41
## 340   55      1    3   2      2    2    write    49
## 341   19      1    1   1      1    1    write    46
## 342   90      1    4   3      1    2    write    54
## 343  142      1    4   2      1    3    write    42
## 344   17      1    1   2      1    2    write    57
## 345  122      1    4   2      1    2    write    59
## 346  191      1    4   3      2    2    write    52
## 347   83      1    4   2      1    3    write    62
## 348  182      1    4   2      2    2    write    52
## 349    6      1    1   1      1    2    write    41
## 350   46      1    3   1      1    2    write    55
## 351   43      1    3   1      1    2    write    37
## 352   96      1    4   3      1    2    write    54
## 353  138      1    4   2      1    3    write    57
## 354   10      1    1   2      1    1    write    54
## 355   71      1    4   2      1    1    write    62
## 356  139      1    4   2      1    2    write    59
## 357  110      1    4   2      1    3    write    55
## 358  148      1    4   2      1    3    write    57
## 359  109      1    4   2      1    1    write    39
## 360   39      1    3   3      1    2    write    67
## 361  147      1    4   1      1    2    write    62
## 362   74      1    4   2      1    2    write    50
## 363  198      1    4   3      2    2    write    61
## 364  161      1    4   1      1    2    write    62
## 365  112      1    4   2      1    2    write    59
## 366   69      1    4   1      1    3    write    44
## 367  156      1    4   2      1    2    write    59
## 368  111      1    4   1      1    1    write    54
## 369  186      1    4   2      2    2    write    62
## 370   98      1    4   1      1    3    write    60
## 371  119      1    4   1      1    1    write    57
## 372   13      1    1   2      1    3    write    46
## 373   51      1    3   3      1    1    write    36
## 374   26      1    2   3      1    2    write    59
## 375   36      1    3   1      1    1    write    49
## 376  135      1    4   1      1    2    write    60
## 377   59      1    4   2      1    2    write    67
## 378   78      1    4   2      1    2    write    54
## 379   64      1    4   3      1    3    write    52
## 380   63      1    4   1      1    1    write    65
## 381   79      1    4   2      1    2    write    62
## 382  193      1    4   2      2    2    write    49
## 383   92      1    4   3      1    1    write    67
## 384  160      1    4   2      1    2    write    65
## 385   32      1    2   3      1    3    write    67
## 386   23      1    2   1      1    2    write    65
## 387  158      1    4   2      1    1    write    54
## 388   25      1    2   2      1    1    write    44
## 389  188      1    4   3      2    2    write    62
## 390   52      1    3   1      1    2    write    46
## 391  124      1    4   1      1    3    write    54
## 392  175      1    4   3      2    1    write    57
## 393  184      1    4   2      2    3    write    52
## 394   30      1    2   3      1    2    write    59
## 395  179      1    4   2      2    2    write    65
## 396   31      1    2   2      2    1    write    59
## 397  145      1    4   2      1    3    write    46
## 398  187      1    4   2      2    1    write    41
## 399  118      1    4   2      1    1    write    62
## 400  137      1    4   3      1    2    write    65
## 401   70      0    4   1      1    1     math    41
## 402  121      1    4   2      1    3     math    53
## 403   86      0    4   3      1    1     math    54
## 404  141      0    4   3      1    3     math    47
## 405  172      0    4   2      1    2     math    57
## 406  113      0    4   2      1    2     math    51
## 407   50      0    3   2      1    1     math    42
## 408   11      0    1   2      1    2     math    45
## 409   84      0    4   2      1    1     math    54
## 410   48      0    3   2      1    2     math    52
## 411   75      0    4   2      1    3     math    51
## 412   60      0    4   2      1    2     math    51
## 413   95      0    4   3      1    2     math    71
## 414  104      0    4   3      1    2     math    57
## 415   38      0    3   1      1    2     math    50
## 416  115      0    4   1      1    1     math    43
## 417   76      0    4   3      1    2     math    51
## 418  195      0    4   2      2    1     math    60
## 419  114      0    4   3      1    2     math    62
## 420   85      0    4   2      1    1     math    57
## 421  167      0    4   2      1    1     math    35
## 422  143      0    4   2      1    3     math    75
## 423   41      0    3   2      1    2     math    45
## 424   20      0    1   3      1    2     math    57
## 425   12      0    1   2      1    3     math    45
## 426   53      0    3   2      1    3     math    46
## 427  154      0    4   3      1    2     math    66
## 428  178      0    4   2      2    3     math    57
## 429  196      0    4   3      2    2     math    49
## 430   29      0    2   1      1    1     math    49
## 431  126      0    4   2      1    1     math    57
## 432  103      0    4   3      1    2     math    64
## 433  192      0    4   3      2    2     math    63
## 434  150      0    4   2      1    3     math    57
## 435  199      0    4   3      2    2     math    50
## 436  144      0    4   3      1    1     math    58
## 437  200      0    4   2      2    2     math    75
## 438   80      0    4   3      1    2     math    68
## 439   16      0    1   1      1    3     math    44
## 440  153      0    4   2      1    3     math    40
## 441  176      0    4   2      2    2     math    41
## 442  177      0    4   2      2    2     math    62
## 443  168      0    4   2      1    2     math    57
## 444   40      0    3   1      1    1     math    43
## 445   62      0    4   3      1    1     math    48
## 446  169      0    4   1      1    1     math    63
## 447   49      0    3   3      1    3     math    39
## 448  136      0    4   2      1    2     math    70
## 449  189      0    4   2      2    2     math    63
## 450    7      0    1   2      1    2     math    59
## 451   27      0    2   2      1    2     math    61
## 452  128      0    4   3      1    2     math    38
## 453   21      0    1   2      1    1     math    61
## 454  183      0    4   2      2    2     math    49
## 455  132      0    4   2      1    2     math    73
## 456   15      0    1   3      1    3     math    44
## 457   67      0    4   1      1    3     math    42
## 458   22      0    1   2      1    3     math    39
## 459  185      0    4   2      2    2     math    55
## 460    9      0    1   2      1    3     math    52
## 461  181      0    4   2      2    2     math    45
## 462  170      0    4   3      1    2     math    61
## 463  134      0    4   1      1    1     math    39
## 464  108      0    4   2      1    1     math    41
## 465  197      0    4   3      2    2     math    50
## 466  140      0    4   2      1    3     math    40
## 467  171      0    4   2      1    2     math    60
## 468  107      0    4   1      1    3     math    47
## 469   81      0    4   1      1    2     math    59
## 470   18      0    1   2      1    3     math    49
## 471  155      0    4   2      1    1     math    46
## 472   97      0    4   3      1    2     math    58
## 473   68      0    4   2      1    2     math    71
## 474  157      0    4   2      1    1     math    58
## 475   56      0    4   2      1    3     math    46
## 476    5      0    1   1      1    2     math    43
## 477  159      0    4   3      1    2     math    54
## 478  123      0    4   3      1    1     math    56
## 479  164      0    4   2      1    3     math    46
## 480   14      0    1   3      1    2     math    54
## 481  127      0    4   3      1    2     math    57
## 482  165      0    4   1      1    3     math    54
## 483  174      0    4   2      2    2     math    71
## 484    3      0    1   1      1    2     math    48
## 485   58      0    4   2      1    3     math    40
## 486  146      0    4   3      1    2     math    64
## 487  102      0    4   3      1    2     math    51
## 488  117      0    4   3      1    3     math    39
## 489  133      0    4   2      1    3     math    40
## 490   94      0    4   3      1    2     math    61
## 491   24      0    2   2      1    2     math    66
## 492  149      0    4   1      1    1     math    49
## 493   82      1    4   3      1    2     math    65
## 494    8      1    1   1      1    2     math    52
## 495  129      1    4   1      1    1     math    46
## 496  173      1    4   1      1    1     math    61
## 497   57      1    4   2      1    2     math    72
## 498  100      1    4   3      1    2     math    71
## 499    1      1    1   1      1    3     math    40
## 500  194      1    4   3      2    2     math    69
## 501   88      1    4   3      1    2     math    64
## 502   99      1    4   3      1    1     math    56
## 503   47      1    3   1      1    2     math    49
## 504  120      1    4   3      1    2     math    54
## 505  166      1    4   2      1    2     math    53
## 506   65      1    4   2      1    2     math    66
## 507  101      1    4   3      1    2     math    67
## 508   89      1    4   1      1    3     math    40
## 509   54      1    3   1      2    1     math    46
## 510  180      1    4   3      2    2     math    69
## 511  162      1    4   2      1    3     math    40
## 512    4      1    1   1      1    2     math    41
## 513  131      1    4   3      1    2     math    57
## 514  125      1    4   1      1    2     math    58
## 515   34      1    1   3      2    2     math    57
## 516  106      1    4   2      1    3     math    37
## 517  130      1    4   3      1    1     math    55
## 518   93      1    4   3      1    2     math    62
## 519  163      1    4   1      1    2     math    64
## 520   37      1    3   1      1    3     math    40
## 521   35      1    1   1      2    1     math    50
## 522   87      1    4   2      1    1     math    46
## 523   73      1    4   2      1    2     math    53
## 524  151      1    4   2      1    3     math    52
## 525   44      1    3   1      1    3     math    45
## 526  152      1    4   3      1    2     math    56
## 527  105      1    4   2      1    2     math    45
## 528   28      1    2   2      1    1     math    54
## 529   91      1    4   3      1    3     math    56
## 530   45      1    3   1      1    3     math    41
## 531  116      1    4   2      1    2     math    54
## 532   33      1    2   1      1    2     math    72
## 533   66      1    4   2      1    3     math    56
## 534   72      1    4   2      1    3     math    47
## 535   77      1    4   1      1    2     math    49
## 536   61      1    4   3      1    2     math    60
## 537  190      1    4   2      2    2     math    54
## 538   42      1    3   2      1    3     math    55
## 539    2      1    1   2      1    3     math    33
## 540   55      1    3   2      2    2     math    49
## 541   19      1    1   1      1    1     math    43
## 542   90      1    4   3      1    2     math    50
## 543  142      1    4   2      1    3     math    52
## 544   17      1    1   2      1    2     math    48
## 545  122      1    4   2      1    2     math    58
## 546  191      1    4   3      2    2     math    43
## 547   83      1    4   2      1    3     math    41
## 548  182      1    4   2      2    2     math    43
## 549    6      1    1   1      1    2     math    46
## 550   46      1    3   1      1    2     math    44
## 551   43      1    3   1      1    2     math    43
## 552   96      1    4   3      1    2     math    61
## 553  138      1    4   2      1    3     math    40
## 554   10      1    1   2      1    1     math    49
## 555   71      1    4   2      1    1     math    56
## 556  139      1    4   2      1    2     math    61
## 557  110      1    4   2      1    3     math    50
## 558  148      1    4   2      1    3     math    51
## 559  109      1    4   2      1    1     math    42
## 560   39      1    3   3      1    2     math    67
## 561  147      1    4   1      1    2     math    53
## 562   74      1    4   2      1    2     math    50
## 563  198      1    4   3      2    2     math    51
## 564  161      1    4   1      1    2     math    72
## 565  112      1    4   2      1    2     math    48
## 566   69      1    4   1      1    3     math    40
## 567  156      1    4   2      1    2     math    53
## 568  111      1    4   1      1    1     math    39
## 569  186      1    4   2      2    2     math    63
## 570   98      1    4   1      1    3     math    51
## 571  119      1    4   1      1    1     math    45
## 572   13      1    1   2      1    3     math    39
## 573   51      1    3   3      1    1     math    42
## 574   26      1    2   3      1    2     math    62
## 575   36      1    3   1      1    1     math    44
## 576  135      1    4   1      1    2     math    65
## 577   59      1    4   2      1    2     math    63
## 578   78      1    4   2      1    2     math    54
## 579   64      1    4   3      1    3     math    45
## 580   63      1    4   1      1    1     math    60
## 581   79      1    4   2      1    2     math    49
## 582  193      1    4   2      2    2     math    48
## 583   92      1    4   3      1    1     math    57
## 584  160      1    4   2      1    2     math    55
## 585   32      1    2   3      1    3     math    66
## 586   23      1    2   1      1    2     math    64
## 587  158      1    4   2      1    1     math    55
## 588   25      1    2   2      1    1     math    42
## 589  188      1    4   3      2    2     math    56
## 590   52      1    3   1      1    2     math    53
## 591  124      1    4   1      1    3     math    41
## 592  175      1    4   3      2    1     math    42
## 593  184      1    4   2      2    3     math    53
## 594   30      1    2   3      1    2     math    42
## 595  179      1    4   2      2    2     math    60
## 596   31      1    2   2      2    1     math    52
## 597  145      1    4   2      1    3     math    38
## 598  187      1    4   2      2    1     math    57
## 599  118      1    4   2      1    1     math    58
## 600  137      1    4   3      1    2     math    65
## 601   70      0    4   1      1    1  science    47
## 602  121      1    4   2      1    3  science    63
## 603   86      0    4   3      1    1  science    58
## 604  141      0    4   3      1    3  science    53
## 605  172      0    4   2      1    2  science    53
## 606  113      0    4   2      1    2  science    63
## 607   50      0    3   2      1    1  science    53
## 608   11      0    1   2      1    2  science    39
## 609   84      0    4   2      1    1  science    58
## 610   48      0    3   2      1    2  science    50
## 611   75      0    4   2      1    3  science    53
## 612   60      0    4   2      1    2  science    63
## 613   95      0    4   3      1    2  science    61
## 614  104      0    4   3      1    2  science    55
## 615   38      0    3   1      1    2  science    31
## 616  115      0    4   1      1    1  science    50
## 617   76      0    4   3      1    2  science    50
## 618  195      0    4   2      2    1  science    58
## 619  114      0    4   3      1    2  science    55
## 620   85      0    4   2      1    1  science    53
## 621  167      0    4   2      1    1  science    66
## 622  143      0    4   2      1    3  science    72
## 623   41      0    3   2      1    2  science    55
## 624   20      0    1   3      1    2  science    61
## 625   12      0    1   2      1    3  science    39
## 626   53      0    3   2      1    3  science    39
## 627  154      0    4   3      1    2  science    61
## 628  178      0    4   2      2    3  science    58
## 629  196      0    4   3      2    2  science    39
## 630   29      0    2   1      1    1  science    55
## 631  126      0    4   2      1    1  science    47
## 632  103      0    4   3      1    2  science    64
## 633  192      0    4   3      2    2  science    66
## 634  150      0    4   2      1    3  science    72
## 635  199      0    4   3      2    2  science    61
## 636  144      0    4   3      1    1  science    61
## 637  200      0    4   2      2    2  science    66
## 638   80      0    4   3      1    2  science    66
## 639   16      0    1   1      1    3  science    36
## 640  153      0    4   2      1    3  science    39
## 641  176      0    4   2      2    2  science    42
## 642  177      0    4   2      2    2  science    58
## 643  168      0    4   2      1    2  science    55
## 644   40      0    3   1      1    1  science    50
## 645   62      0    4   3      1    1  science    63
## 646  169      0    4   1      1    1  science    69
## 647   49      0    3   3      1    3  science    49
## 648  136      0    4   2      1    2  science    63
## 649  189      0    4   2      2    2  science    53
## 650    7      0    1   2      1    2  science    47
## 651   27      0    2   2      1    2  science    57
## 652  128      0    4   3      1    2  science    47
## 653   21      0    1   2      1    1  science    50
## 654  183      0    4   2      2    2  science    55
## 655  132      0    4   2      1    2  science    69
## 656   15      0    1   3      1    3  science    26
## 657   67      0    4   1      1    3  science    33
## 658   22      0    1   2      1    3  science    56
## 659  185      0    4   2      2    2  science    58
## 660    9      0    1   2      1    3  science    44
## 661  181      0    4   2      2    2  science    58
## 662  170      0    4   3      1    2  science    69
## 663  134      0    4   1      1    1  science    34
## 664  108      0    4   2      1    1  science    36
## 665  197      0    4   3      2    2  science    36
## 666  140      0    4   2      1    3  science    50
## 667  171      0    4   2      1    2  science    55
## 668  107      0    4   1      1    3  science    42
## 669   81      0    4   1      1    2  science    65
## 670   18      0    1   2      1    3  science    44
## 671  155      0    4   2      1    1  science    39
## 672   97      0    4   3      1    2  science    58
## 673   68      0    4   2      1    2  science    63
## 674  157      0    4   2      1    1  science    74
## 675   56      0    4   2      1    3  science    58
## 676    5      0    1   1      1    2  science    45
## 677  159      0    4   3      1    2  science    49
## 678  123      0    4   3      1    1  science    63
## 679  164      0    4   2      1    3  science    39
## 680   14      0    1   3      1    2  science    42
## 681  127      0    4   3      1    2  science    55
## 682  165      0    4   1      1    3  science    61
## 683  174      0    4   2      2    2  science    66
## 684    3      0    1   1      1    2  science    63
## 685   58      0    4   2      1    3  science    44
## 686  146      0    4   3      1    2  science    63
## 687  102      0    4   3      1    2  science    53
## 688  117      0    4   3      1    3  science    42
## 689  133      0    4   2      1    3  science    34
## 690   94      0    4   3      1    2  science    61
## 691   24      0    2   2      1    2  science    47
## 692  149      0    4   1      1    1  science    66
## 693   82      1    4   3      1    2  science    69
## 694    8      1    1   1      1    2  science    44
## 695  129      1    4   1      1    1  science    47
## 696  173      1    4   1      1    1  science    63
## 697   57      1    4   2      1    2  science    66
## 698  100      1    4   3      1    2  science    69
## 699    1      1    1   1      1    3  science    39
## 700  194      1    4   3      2    2  science    61
## 701   88      1    4   3      1    2  science    69
## 702   99      1    4   3      1    1  science    66
## 703   47      1    3   1      1    2  science    33
## 704  120      1    4   3      1    2  science    50
## 705  166      1    4   2      1    2  science    61
## 706   65      1    4   2      1    2  science    42
## 707  101      1    4   3      1    2  science    50
## 708   89      1    4   1      1    3  science    51
## 709   54      1    3   1      2    1  science    50
## 710  180      1    4   3      2    2  science    58
## 711  162      1    4   2      1    3  science    61
## 712    4      1    1   1      1    2  science    39
## 713  131      1    4   3      1    2  science    46
## 714  125      1    4   1      1    2  science    59
## 715   34      1    1   3      2    2  science    55
## 716  106      1    4   2      1    3  science    42
## 717  130      1    4   3      1    1  science    55
## 718   93      1    4   3      1    2  science    58
## 719  163      1    4   1      1    2  science    58
## 720   37      1    3   1      1    3  science    39
## 721   35      1    1   1      2    1  science    50
## 722   87      1    4   2      1    1  science    50
## 723   73      1    4   2      1    2  science    39
## 724  151      1    4   2      1    3  science    48
## 725   44      1    3   1      1    3  science    34
## 726  152      1    4   3      1    2  science    58
## 727  105      1    4   2      1    2  science    44
## 728   28      1    2   2      1    1  science    50
## 729   91      1    4   3      1    3  science    47
## 730   45      1    3   1      1    3  science    29
## 731  116      1    4   2      1    2  science    50
## 732   33      1    2   1      1    2  science    54
## 733   66      1    4   2      1    3  science    50
## 734   72      1    4   2      1    3  science    47
## 735   77      1    4   1      1    2  science    44
## 736   61      1    4   3      1    2  science    67
## 737  190      1    4   2      2    2  science    58
## 738   42      1    3   2      1    3  science    44
## 739    2      1    1   2      1    3  science    42
## 740   55      1    3   2      2    2  science    44
## 741   19      1    1   1      1    1  science    44
## 742   90      1    4   3      1    2  science    50
## 743  142      1    4   2      1    3  science    39
## 744   17      1    1   2      1    2  science    44
## 745  122      1    4   2      1    2  science    53
## 746  191      1    4   3      2    2  science    48
## 747   83      1    4   2      1    3  science    55
## 748  182      1    4   2      2    2  science    44
## 749    6      1    1   1      1    2  science    40
## 750   46      1    3   1      1    2  science    34
## 751   43      1    3   1      1    2  science    42
## 752   96      1    4   3      1    2  science    58
## 753  138      1    4   2      1    3  science    50
## 754   10      1    1   2      1    1  science    53
## 755   71      1    4   2      1    1  science    58
## 756  139      1    4   2      1    2  science    55
## 757  110      1    4   2      1    3  science    54
## 758  148      1    4   2      1    3  science    47
## 759  109      1    4   2      1    1  science    42
## 760   39      1    3   3      1    2  science    61
## 761  147      1    4   1      1    2  science    53
## 762   74      1    4   2      1    2  science    51
## 763  198      1    4   3      2    2  science    63
## 764  161      1    4   1      1    2  science    61
## 765  112      1    4   2      1    2  science    55
## 766   69      1    4   1      1    3  science    40
## 767  156      1    4   2      1    2  science    61
## 768  111      1    4   1      1    1  science    47
## 769  186      1    4   2      2    2  science    55
## 770   98      1    4   1      1    3  science    53
## 771  119      1    4   1      1    1  science    50
## 772   13      1    1   2      1    3  science    47
## 773   51      1    3   3      1    1  science    31
## 774   26      1    2   3      1    2  science    61
## 775   36      1    3   1      1    1  science    35
## 776  135      1    4   1      1    2  science    54
## 777   59      1    4   2      1    2  science    55
## 778   78      1    4   2      1    2  science    53
## 779   64      1    4   3      1    3  science    58
## 780   63      1    4   1      1    1  science    56
## 781   79      1    4   2      1    2  science    50
## 782  193      1    4   2      2    2  science    39
## 783   92      1    4   3      1    1  science    63
## 784  160      1    4   2      1    2  science    50
## 785   32      1    2   3      1    3  science    66
## 786   23      1    2   1      1    2  science    58
## 787  158      1    4   2      1    1  science    53
## 788   25      1    2   2      1    1  science    42
## 789  188      1    4   3      2    2  science    55
## 790   52      1    3   1      1    2  science    53
## 791  124      1    4   1      1    3  science    42
## 792  175      1    4   3      2    1  science    50
## 793  184      1    4   2      2    3  science    55
## 794   30      1    2   3      1    2  science    34
## 795  179      1    4   2      2    2  science    50
## 796   31      1    2   2      2    1  science    42
## 797  145      1    4   2      1    3  science    36
## 798  187      1    4   2      2    1  science    55
## 799  118      1    4   2      1    1  science    58
## 800  137      1    4   3      1    2  science    53
## 801   70      0    4   1      1    1    socst    57
## 802  121      1    4   2      1    3    socst    61
## 803   86      0    4   3      1    1    socst    31
## 804  141      0    4   3      1    3    socst    56
## 805  172      0    4   2      1    2    socst    61
## 806  113      0    4   2      1    2    socst    61
## 807   50      0    3   2      1    1    socst    61
## 808   11      0    1   2      1    2    socst    36
## 809   84      0    4   2      1    1    socst    51
## 810   48      0    3   2      1    2    socst    51
## 811   75      0    4   2      1    3    socst    61
## 812   60      0    4   2      1    2    socst    61
## 813   95      0    4   3      1    2    socst    71
## 814  104      0    4   3      1    2    socst    46
## 815   38      0    3   1      1    2    socst    56
## 816  115      0    4   1      1    1    socst    56
## 817   76      0    4   3      1    2    socst    56
## 818  195      0    4   2      2    1    socst    56
## 819  114      0    4   3      1    2    socst    61
## 820   85      0    4   2      1    1    socst    46
## 821  167      0    4   2      1    1    socst    41
## 822  143      0    4   2      1    3    socst    66
## 823   41      0    3   2      1    2    socst    56
## 824   20      0    1   3      1    2    socst    61
## 825   12      0    1   2      1    3    socst    46
## 826   53      0    3   2      1    3    socst    31
## 827  154      0    4   3      1    2    socst    66
## 828  178      0    4   2      2    3    socst    46
## 829  196      0    4   3      2    2    socst    46
## 830   29      0    2   1      1    1    socst    41
## 831  126      0    4   2      1    1    socst    51
## 832  103      0    4   3      1    2    socst    61
## 833  192      0    4   3      2    2    socst    71
## 834  150      0    4   2      1    3    socst    31
## 835  199      0    4   3      2    2    socst    61
## 836  144      0    4   3      1    1    socst    66
## 837  200      0    4   2      2    2    socst    66
## 838   80      0    4   3      1    2    socst    66
## 839   16      0    1   1      1    3    socst    36
## 840  153      0    4   2      1    3    socst    51
## 841  176      0    4   2      2    2    socst    51
## 842  177      0    4   2      2    2    socst    51
## 843  168      0    4   2      1    2    socst    51
## 844   40      0    3   1      1    1    socst    41
## 845   62      0    4   3      1    1    socst    66
## 846  169      0    4   1      1    1    socst    46
## 847   49      0    3   3      1    3    socst    47
## 848  136      0    4   2      1    2    socst    51
## 849  189      0    4   2      2    2    socst    46
## 850    7      0    1   2      1    2    socst    51
## 851   27      0    2   2      1    2    socst    56
## 852  128      0    4   3      1    2    socst    41
## 853   21      0    1   2      1    1    socst    46
## 854  183      0    4   2      2    2    socst    71
## 855  132      0    4   2      1    2    socst    66
## 856   15      0    1   3      1    3    socst    42
## 857   67      0    4   1      1    3    socst    32
## 858   22      0    1   2      1    3    socst    46
## 859  185      0    4   2      2    2    socst    41
## 860    9      0    1   2      1    3    socst    51
## 861  181      0    4   2      2    2    socst    61
## 862  170      0    4   3      1    2    socst    66
## 863  134      0    4   1      1    1    socst    46
## 864  108      0    4   2      1    1    socst    36
## 865  197      0    4   3      2    2    socst    61
## 866  140      0    4   2      1    3    socst    26
## 867  171      0    4   2      1    2    socst    66
## 868  107      0    4   1      1    3    socst    26
## 869   81      0    4   1      1    2    socst    44
## 870   18      0    1   2      1    3    socst    36
## 871  155      0    4   2      1    1    socst    51
## 872   97      0    4   3      1    2    socst    61
## 873   68      0    4   2      1    2    socst    66
## 874  157      0    4   2      1    1    socst    66
## 875   56      0    4   2      1    3    socst    51
## 876    5      0    1   1      1    2    socst    31
## 877  159      0    4   3      1    2    socst    61
## 878  123      0    4   3      1    1    socst    66
## 879  164      0    4   2      1    3    socst    46
## 880   14      0    1   3      1    2    socst    56
## 881  127      0    4   3      1    2    socst    56
## 882  165      0    4   1      1    3    socst    36
## 883  174      0    4   2      2    2    socst    56
## 884    3      0    1   1      1    2    socst    56
## 885   58      0    4   2      1    3    socst    41
## 886  146      0    4   3      1    2    socst    66
## 887  102      0    4   3      1    2    socst    56
## 888  117      0    4   3      1    3    socst    56
## 889  133      0    4   2      1    3    socst    31
## 890   94      0    4   3      1    2    socst    56
## 891   24      0    2   2      1    2    socst    46
## 892  149      0    4   1      1    1    socst    46
## 893   82      1    4   3      1    2    socst    61
## 894    8      1    1   1      1    2    socst    48
## 895  129      1    4   1      1    1    socst    51
## 896  173      1    4   1      1    1    socst    51
## 897   57      1    4   2      1    2    socst    56
## 898  100      1    4   3      1    2    socst    71
## 899    1      1    1   1      1    3    socst    41
## 900  194      1    4   3      2    2    socst    61
## 901   88      1    4   3      1    2    socst    66
## 902   99      1    4   3      1    1    socst    61
## 903   47      1    3   1      1    2    socst    41
## 904  120      1    4   3      1    2    socst    51
## 905  166      1    4   2      1    2    socst    51
## 906   65      1    4   2      1    2    socst    56
## 907  101      1    4   3      1    2    socst    56
## 908   89      1    4   1      1    3    socst    33
## 909   54      1    3   1      2    1    socst    56
## 910  180      1    4   3      2    2    socst    71
## 911  162      1    4   2      1    3    socst    56
## 912    4      1    1   1      1    2    socst    51
## 913  131      1    4   3      1    2    socst    66
## 914  125      1    4   1      1    2    socst    56
## 915   34      1    1   3      2    2    socst    66
## 916  106      1    4   2      1    3    socst    41
## 917  130      1    4   3      1    1    socst    46
## 918   93      1    4   3      1    2    socst    66
## 919  163      1    4   1      1    2    socst    56
## 920   37      1    3   1      1    3    socst    51
## 921   35      1    1   1      2    1    socst    51
## 922   87      1    4   2      1    1    socst    56
## 923   73      1    4   2      1    2    socst    56
## 924  151      1    4   2      1    3    socst    46
## 925   44      1    3   1      1    3    socst    46
## 926  152      1    4   3      1    2    socst    61
## 927  105      1    4   2      1    2    socst    56
## 928   28      1    2   2      1    1    socst    41
## 929   91      1    4   3      1    3    socst    46
## 930   45      1    3   1      1    3    socst    26
## 931  116      1    4   2      1    2    socst    56
## 932   33      1    2   1      1    2    socst    56
## 933   66      1    4   2      1    3    socst    51
## 934   72      1    4   2      1    3    socst    46
## 935   77      1    4   1      1    2    socst    66
## 936   61      1    4   3      1    2    socst    66
## 937  190      1    4   2      2    2    socst    46
## 938   42      1    3   2      1    3    socst    56
## 939    2      1    1   2      1    3    socst    41
## 940   55      1    3   2      2    2    socst    61
## 941   19      1    1   1      1    1    socst    51
## 942   90      1    4   3      1    2    socst    52
## 943  142      1    4   2      1    3    socst    51
## 944   17      1    1   2      1    2    socst    41
## 945  122      1    4   2      1    2    socst    66
## 946  191      1    4   3      2    2    socst    61
## 947   83      1    4   2      1    3    socst    31
## 948  182      1    4   2      2    2    socst    51
## 949    6      1    1   1      1    2    socst    41
## 950   46      1    3   1      1    2    socst    41
## 951   43      1    3   1      1    2    socst    46
## 952   96      1    4   3      1    2    socst    56
## 953  138      1    4   2      1    3    socst    51
## 954   10      1    1   2      1    1    socst    61
## 955   71      1    4   2      1    1    socst    66
## 956  139      1    4   2      1    2    socst    71
## 957  110      1    4   2      1    3    socst    61
## 958  148      1    4   2      1    3    socst    61
## 959  109      1    4   2      1    1    socst    41
## 960   39      1    3   3      1    2    socst    66
## 961  147      1    4   1      1    2    socst    61
## 962   74      1    4   2      1    2    socst    58
## 963  198      1    4   3      2    2    socst    31
## 964  161      1    4   1      1    2    socst    61
## 965  112      1    4   2      1    2    socst    61
## 966   69      1    4   1      1    3    socst    31
## 967  156      1    4   2      1    2    socst    61
## 968  111      1    4   1      1    1    socst    36
## 969  186      1    4   2      2    2    socst    41
## 970   98      1    4   1      1    3    socst    37
## 971  119      1    4   1      1    1    socst    43
## 972   13      1    1   2      1    3    socst    61
## 973   51      1    3   3      1    1    socst    39
## 974   26      1    2   3      1    2    socst    51
## 975   36      1    3   1      1    1    socst    51
## 976  135      1    4   1      1    2    socst    66
## 977   59      1    4   2      1    2    socst    71
## 978   78      1    4   2      1    2    socst    41
## 979   64      1    4   3      1    3    socst    36
## 980   63      1    4   1      1    1    socst    51
## 981   79      1    4   2      1    2    socst    51
## 982  193      1    4   2      2    2    socst    51
## 983   92      1    4   3      1    1    socst    61
## 984  160      1    4   2      1    2    socst    61
## 985   32      1    2   3      1    3    socst    56
## 986   23      1    2   1      1    2    socst    71
## 987  158      1    4   2      1    1    socst    51
## 988   25      1    2   2      1    1    socst    36
## 989  188      1    4   3      2    2    socst    61
## 990   52      1    3   1      1    2    socst    66
## 991  124      1    4   1      1    3    socst    41
## 992  175      1    4   3      2    1    socst    41
## 993  184      1    4   2      2    3    socst    56
## 994   30      1    2   3      1    2    socst    51
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
#Remark: Pay extra attention to the last 2 columns
head(hsb2)
## # A tibble: 6 × 11
##      id female  race   ses schtyp  prog  read write  math science socst
##   <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1    70      0     4     1      1     1    57    52    41      47    57
## 2   121      1     4     2      1     3    68    59    53      63    61
## 3    86      0     4     3      1     1    44    33    54      58    31
## 4   141      0     4     3      1     3    63    44    47      53    56
## 5   172      0     4     2      1     2    47    52    57      53    61
## 6   113      0     4     2      1     2    44    52    51      63    61
tail(hsb2)
## # A tibble: 6 × 11
##      id female  race   ses schtyp  prog  read write  math science socst
##   <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1   179      1     4     2      2     2    47    65    60      50    56
## 2    31      1     2     2      2     1    55    59    52      42    56
## 3   145      1     4     2      1     3    42    46    38      36    46
## 4   187      1     4     2      2     1    57    41    57      55    52
## 5   118      1     4     2      1     1    55    62    58      58    61
## 6   137      1     4     3      1     2    63    65    65      53    61
# get thefrequency
table(hsb2_long$variable)
## 
##    read   write    math science   socst 
##     200     200     200     200     200
# This means that the tables hsb2 and hsb2 are the same
# tables displayed in two ways

# display data structure of the hsb2_long dataset
str(hsb2_long)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : num  0 1 0 0 0 0 0 0 0 0 ...
##  $ race    : num  4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : num  1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : num  1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
# the variables female, race, ses, schtyp, prog are stored as numbers
# for encoding purposes. However these variables are actually qualitative variables
# so we convert each from integer type to categorical type

# defining some variables to become factor variable
# we use another variable to preserve the file hsb2_long

data <- hsb2_long
data$ses = factor(data$ses, labels=c("low", "middle", "high")) 
data$schtyp = factor(data$schtyp, labels=c("public", "private")) 
data$prog = factor(data$prog, labels=c("general", "academic", "vocational")) 
data$race = factor(data$race, labels=c("hispanic", "asian", "africanamer","white")) 
data$female = factor(data$female, labels=c("female", "male"))

# check data structure again. The former integer variables are now categorical variable
str(data)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : Factor w/ 2 levels "female","male": 1 2 1 1 1 1 1 1 1 1 ...
##  $ race    : Factor w/ 4 levels "hispanic","asian",..: 4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : Factor w/ 3 levels "low","middle",..: 1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : Factor w/ 3 levels "general","academic",..: 1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
# we compare student performance by using boxplots
library(gplots) 
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
# compute the average value by group using tapply() command
means <- round(tapply(data$value, data$variable, mean), digits=2) 

# create boxplot by group
boxplot(data$value ~ data$variable, main= "Student Performance by Subject
(brown dot = mean score)", 
        xlab="Subject matter", ylab="Percentage Scores", col=rainbow(5))

# insert the average values
points(means, col="brown", pch=18)

# can also compute the median values
medians = round(tapply(data$value, data$variable, median), digits=2)
medians
##    read   write    math science   socst 
##      50      54      52      53      52
points(medians, col="red", pch=18)

# Lab Exercise 9: How to plot categorical variables

library(ggplot2)

# create the plot object p
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~race)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

library(ggplot2)
attach(hsb2_long)
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~schtyp)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

# Lab Exercise 10: Scatter Plots with marginal Distributions
# Advance Scatter plots using libraries

# install.packages("ggExtra")
# install.packages("tidyverse")

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.0     ✔ stringr   1.5.0
## ✔ forcats   1.0.0     ✔ tibble    3.2.0
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(ggExtra)

# set theme appearance of grid background
theme_set(theme_bw(1))

# create X and Y vector
(xAxis <- rnorm(1000)) # normal distribution with mean 0 and sd=1
##    [1]  0.001077924 -1.630869914  0.801192197 -0.463052970 -0.275248656
##    [6] -1.206690837 -0.921710287  0.167326898 -0.841639294  1.451874447
##   [11] -0.370221220  0.184417925 -0.245533032  0.942833449  0.072911566
##   [16]  0.575972677  0.642687766 -1.417858423  0.245770534 -0.301733496
##   [21] -1.025296389 -0.017533598 -0.508099358  1.533833687 -0.774723877
##   [26] -0.285227270 -0.416073779  1.010836856 -0.529166254  0.600978932
##   [31] -0.649472278  0.594358858  0.486144347 -2.789792000 -0.174556845
##   [36]  0.133294365 -0.308711976  1.087565051  0.325160453 -0.995586036
##   [41] -0.509719324 -0.550777277 -0.668354608 -0.803313175  0.281208653
##   [46] -0.999304954 -0.480106750 -0.626274440 -0.062705181  0.593672812
##   [51]  0.557931318 -0.571628917  0.800391252 -0.292954955 -0.036062992
##   [56] -0.930970809 -0.050831596 -1.218120750  0.082542338  0.420232454
##   [61]  0.183824142 -1.576311651  1.042104431  0.068030824 -0.901354991
##   [66]  0.518028692  0.314944468  0.368145410  1.031346698 -0.555650137
##   [71]  0.573527458 -0.635001732  0.402726095  0.007714037  0.987597342
##   [76] -0.178315054  0.507699141  0.553168827  0.287188510 -0.727512703
##   [81] -0.521539222 -1.484248535 -0.179874315  0.795454057 -0.696781486
##   [86]  1.158518325 -0.784201611 -0.071498176 -1.383245820 -0.072945463
##   [91] -0.044415252 -0.892559363  0.527236687 -2.348370585 -0.603148688
##   [96] -1.770116115  2.307338943  2.078054846 -1.387668447  1.569164771
##  [101] -0.481541692  0.796703225  0.384873929  0.837024202 -0.670014710
##  [106] -0.225509505  1.025755620  0.431043665 -1.309207763 -0.536201674
##  [111]  0.440653000 -0.036183785 -0.195678409 -0.819340560 -0.019838093
##  [116] -0.143055611 -0.020676929  0.356167350  0.628785161 -1.249840247
##  [121]  2.028756527 -1.730672576  0.081417169  0.574100189  1.163213499
##  [126]  0.469826343 -0.767106981  1.006892113 -0.751847743  1.084257450
##  [131]  0.750250438  0.005224619 -1.335375496  0.809575467 -0.422189987
##  [136] -0.624295199  0.394041738  0.978508473 -1.217209108  0.563988619
##  [141]  1.377382207 -1.685004641  0.296232400 -0.748013236  0.068999673
##  [146] -1.283534750 -0.577523469  0.335687572 -1.366504016 -0.609538361
##  [151] -0.209105891 -1.039693268  1.403617314 -1.065186283 -0.893025606
##  [156]  0.685929999  0.289820516 -0.570375924  1.340015864  0.715555233
##  [161] -0.598122642  0.561358931  0.223262785 -0.688570713 -0.424276956
##  [166] -0.607546181  0.707610902  0.012920802 -0.284820049  0.364880902
##  [171]  0.019632460  1.908369531 -0.512072911 -0.833541986  1.577207008
##  [176]  1.079330094  0.181864957  0.932786507 -1.653031458 -1.560248076
##  [181]  0.407524131 -0.388866447  1.929189457 -0.735365940 -1.048676262
##  [186]  0.650489546  1.311574404  0.326377556 -0.182917685  0.575070417
##  [191] -1.271430118  1.157342566 -0.006461685 -1.100671598 -0.248194421
##  [196]  1.152907309  0.160197725  0.484955388  0.882323959  0.106251700
##  [201]  0.979028985 -0.104352102  1.479021030  2.043662312  1.792728335
##  [206]  1.926467943  0.710391903 -1.200190007 -1.216382100 -0.961411060
##  [211]  0.390201626  0.759532495 -1.631118178 -1.089169639  1.581638683
##  [216]  0.292060197 -1.002433022 -1.566842057  0.056212457 -0.411830613
##  [221]  0.556606511  0.527058283  2.107015891 -2.231925185 -0.618082003
##  [226] -1.693706938 -1.153137786 -0.580987438  1.824607741  0.761104493
##  [231]  0.362969451 -1.796513947 -0.154302730 -1.851231436 -1.171934910
##  [236] -0.153606157 -0.836972420 -0.122730912  0.482090601 -1.577702105
##  [241]  0.137863753 -1.127380006 -1.026097292 -0.608173832  1.876082065
##  [246]  1.008173928  2.014240912  1.802876181  1.400457551  0.048559571
##  [251] -0.165448031 -0.867945582  0.171677754  0.385376363  0.007095654
##  [256] -0.777196479 -1.887894082 -0.956896286  0.158931433 -0.966596149
##  [261] -0.120483390  0.553026753 -0.473545951  3.485660505 -2.632511277
##  [266]  0.825571085 -0.145219124 -0.728566709 -0.609207244  1.486484322
##  [271] -0.469533454  0.437968859 -1.432645975 -0.714492073 -0.358755102
##  [276] -0.208258492  1.194001408  1.070155225  0.021096655 -0.688713916
##  [281]  0.684404327  0.211072696 -1.267782655 -1.545909911  0.826942755
##  [286]  0.864762761 -0.806516413 -0.620744523  1.083100857  0.855850930
##  [291] -0.208453310  0.223053617 -0.009960012  0.534063757 -0.094706522
##  [296]  1.539960064  0.500781858  0.900726711 -1.431724069  2.399037619
##  [301] -0.106144819 -1.366962064 -1.461439589  0.093025403  1.381108518
##  [306] -2.103395730  0.173398060 -0.962195162 -0.399853329  1.693386721
##  [311] -1.942534924 -1.162255677 -1.143817666  1.366440987 -0.051807000
##  [316]  0.348706701  2.028410899 -0.067045706  0.087145706  0.894169112
##  [321]  0.252476736 -0.563565829 -0.126473261  0.289536151 -0.790231663
##  [326]  0.858330148  0.854046655  1.470441640 -0.748311601 -0.770924535
##  [331] -1.017278856  3.402903515  0.402872553  0.148690616  1.968101945
##  [336] -0.011293051 -1.987367296  0.463437825 -0.387512310 -1.228813761
##  [341] -1.807016384 -0.245577216 -0.713319197 -1.200415241 -0.882582341
##  [346]  0.974094599 -0.288548956  1.195906512 -0.797201395  1.290066166
##  [351]  0.928044452  0.664485058 -0.594463435  0.195060020  0.183231628
##  [356] -2.656183285  0.538965249  0.219967607 -1.738009631  0.786397546
##  [361] -2.741990071  0.066815464 -0.310762358 -0.594468636  1.809287523
##  [366]  0.943781424  0.359142808  0.949853403 -1.242332703 -0.551998860
##  [371]  0.372287732 -0.763470966  1.253431432 -1.001713339  0.105656372
##  [376] -0.412003383  1.072601521  1.768067806  1.510394588 -1.319438001
##  [381] -0.734001878 -0.033124889 -0.110180616  0.145302643  0.156725095
##  [386]  0.584125581 -3.137719660  0.882977260  1.474019299 -1.835646786
##  [391] -0.563914575 -1.184994405  0.088495666  0.272748332 -1.703224662
##  [396] -0.583863540 -0.718602629 -1.378929249 -0.792967636  0.941994280
##  [401] -0.369517670  0.299073663 -0.667257128 -1.513618671  0.087907245
##  [406] -1.656095635 -0.287941357 -0.335068994  1.364035332  0.796551054
##  [411] -0.026084403  1.123234970  0.118696197  1.323144407 -0.387983354
##  [416] -0.865876994 -0.870755737 -0.340851149  0.297637308  1.025212044
##  [421] -0.372702387 -0.296121702  0.872003897  0.949144777 -0.846578876
##  [426] -1.244562414  0.106599779 -0.014364552 -1.259715342 -0.903302338
##  [431]  0.774289526  0.468554865  0.166753602  0.787470912 -0.844814746
##  [436]  0.814332075 -0.793953231 -0.408634658  0.151186307  0.993645208
##  [441]  1.845049607 -0.646928332 -0.338291518 -0.004712909  0.137123789
##  [446] -0.824718835 -0.481967523 -1.585273312 -0.500305234 -1.592132738
##  [451]  1.664570685 -0.913006261  0.768404849  1.415189202 -1.145562513
##  [456]  1.103646310 -0.278578017 -0.862147916  1.594186083  2.056734205
##  [461] -0.861103880 -0.831136878  2.488748530 -0.979897596  1.795188592
##  [466] -0.813480742 -1.548275661 -0.848512799 -1.294266677 -1.205917630
##  [471]  0.737018082 -0.449621481 -1.335474452 -0.556355663  0.277077557
##  [476] -0.420815202 -0.514776169 -0.168427725  1.192767917 -1.377812711
##  [481]  0.023161367  0.883356122 -0.941463426 -1.399377508  0.369964487
##  [486]  1.292232312  1.301755611  0.411529101  1.508613157 -0.382518250
##  [491]  0.269392434  0.146742571  0.078098170  0.592047222  1.957477399
##  [496] -0.521761508 -1.076746555  0.786890273  1.778374969  1.925947344
##  [501]  0.092578011  0.495789091  0.043880813  0.264826594 -1.072719262
##  [506]  0.985587029 -0.569121384  0.664794430 -0.703989323  1.121805662
##  [511]  0.477412308 -1.277956079  0.110410830 -1.378877035 -1.104366758
##  [516]  1.980107287 -0.930233361 -0.490410659  0.755300225 -0.820224304
##  [521] -0.314574519 -2.046352285 -1.082622698 -1.388836881 -0.399386421
##  [526] -0.832770089 -2.068413948  0.649291167 -0.829191986 -0.374164305
##  [531]  0.429561005 -1.027532613 -0.543149942 -0.292333539 -1.184493643
##  [536]  1.217960016 -0.241514054 -1.027530336 -0.102916671 -1.252805702
##  [541] -0.398339396 -1.155362593 -1.519895756  0.968864314 -0.046015423
##  [546] -1.519790272 -2.976375349  0.435975649 -0.402546714 -0.225992591
##  [551] -0.154804908  1.962125205  0.497311164  1.481510762  1.263000116
##  [556] -0.697145264 -1.585914834 -0.539583099 -0.434972905  1.531388389
##  [561]  0.647941654  0.639369709 -0.444891789  0.516655050 -0.386908215
##  [566] -0.265805642  0.220539404 -1.357716972 -0.725113488 -1.267622814
##  [571]  1.038574709 -0.717671132  1.372306414  0.525834209 -0.061584675
##  [576] -0.905363075  0.421950229  0.194194654 -1.355607481 -0.915424217
##  [581] -1.063682041  0.653395838 -0.757046003 -1.386568813 -0.160233822
##  [586]  0.424618185  1.418368185  0.776831744  0.241368109 -0.395433687
##  [591]  1.593129505  0.574447023 -0.597321844  2.344925948 -1.582595657
##  [596]  0.463297330  0.406284424 -2.468935314 -0.497662569  1.822125484
##  [601] -2.441536907 -0.154692579  0.349984809  1.755859062 -0.108016441
##  [606] -0.372219061 -1.172996264  2.077947241  0.829177936  0.952489322
##  [611]  0.299018720 -1.064355810  0.985696570  1.398831360  1.361488527
##  [616] -0.972409158  0.912542850  2.127756180  0.946964480 -0.618948836
##  [621]  0.364453886 -1.321048835 -0.513638347 -1.781110712 -0.479183801
##  [626]  0.069866390 -0.397315708 -1.755057413  1.004611990  0.304485180
##  [631] -0.473195380 -0.317356740  0.933925940 -0.395110510 -1.997505194
##  [636]  0.604980882 -0.113359665  0.806186524 -0.316713495 -1.377052188
##  [641] -1.281674443  0.684495910 -0.980231638  1.111467768  0.031569867
##  [646]  0.980052854  0.447731088  1.046573472 -0.863266775  0.001795783
##  [651]  1.653878450  1.148482692 -0.815017518 -0.954494266  0.744090452
##  [656]  0.985687801 -1.044035899  0.055273381 -0.977524285  2.334348986
##  [661]  0.468052618 -0.455758963 -0.824347758  1.556192467 -0.467910037
##  [666] -0.895871155  0.212615582 -0.113748773  1.807701917  0.033421315
##  [671]  0.206690396 -0.538864481  0.050861386  0.948959766 -0.622845814
##  [676]  0.879263359  0.466619534  0.868317232  0.495206243  1.846521168
##  [681] -1.650049194  0.190116747  1.247671058 -1.793899151  0.519136991
##  [686] -0.072658420  0.509525716  0.241638235 -1.838608784  0.838622540
##  [691]  0.253688593 -1.357806170  0.409020140 -0.199680144  0.610400044
##  [696] -1.642044875 -0.237752514 -1.427906138 -0.714034962 -0.332420428
##  [701] -1.210772507  0.247162471 -0.511938210  0.505267936 -0.140541361
##  [706] -0.782125950  1.668004939 -0.990455603 -0.805111756  0.967252428
##  [711] -0.720192957  0.550018081  0.340568760 -0.004591242 -2.156768874
##  [716]  0.618242956  0.020005001  0.689534770 -0.746858908 -0.092871051
##  [721] -0.873121716  1.472924389 -0.242151809  0.525023954 -1.507912449
##  [726]  1.338254606  1.950040588  1.472508097  0.538646293 -0.623756747
##  [731] -0.912360208  0.463860500 -1.722407899 -0.066888419  1.183710395
##  [736]  0.630840371 -0.228346327  2.170634615  0.299263547 -0.583008190
##  [741] -0.958363965  1.597342908 -0.167060606 -0.706877476  0.512665093
##  [746]  0.066437183  0.157042037  0.433331123  0.425728247 -0.229712166
##  [751] -0.811874553  1.614674608 -0.389964883  1.654240293  0.498362885
##  [756]  0.355977379  0.181620006 -2.066775658 -0.887629250  0.076549278
##  [761]  0.306016174  0.407523610  0.065570055  2.203123128 -0.025903145
##  [766]  0.077341701  0.417648509 -0.974219571  0.013827649 -0.025273460
##  [771] -0.607467052 -0.591275558  1.733164805  0.781144483  0.856296669
##  [776] -0.075048615 -1.253113361  0.138834607 -0.022773277 -1.675978029
##  [781]  0.626194616 -0.478192393 -0.544286684 -0.247510506 -0.657851135
##  [786]  0.171642562  0.149695959 -1.169907736 -0.909512257  0.872538709
##  [791]  0.137105024  2.592036516 -1.266557423  1.239556480  0.081549786
##  [796]  0.396064015 -1.417899769 -1.704076471 -0.822017317  1.486512387
##  [801] -0.031635041 -0.284024958 -1.016307936  0.518748512  0.454742988
##  [806]  0.942021037 -0.611611423  0.527102627 -0.565160050 -0.386083242
##  [811]  0.684099161  1.278193337  1.391787379 -0.610195504 -0.648404689
##  [816] -0.052875991  1.115110365 -0.642646728 -0.329526358 -0.883051275
##  [821]  0.703805350  1.218857451 -0.113008126 -0.021897169 -0.137060043
##  [826] -0.355718624 -0.667967359 -1.752808239 -0.882549482  1.568041549
##  [831] -0.655181126  0.201692855  0.172190493 -0.094737839  1.171066556
##  [836] -0.283086338  1.126671004  1.808939576  1.825541933  0.797362766
##  [841]  0.182986860 -0.709881799 -0.664680757  2.516431210  1.120517644
##  [846]  1.540391614  0.371810178  0.563581344  1.351893154  0.026595585
##  [851] -0.201196063 -1.197729700  1.070001901 -0.418279464  1.028969071
##  [856]  0.813759571  0.416318781 -2.512680394  0.185109946 -1.020318651
##  [861]  2.345925197 -0.021076408  0.496224586 -1.898713443 -0.950571527
##  [866] -0.010772066 -0.396625388 -1.070993741  0.511029246  1.473854218
##  [871]  0.982265669 -0.958962259 -0.581594272 -0.105563748  0.204213981
##  [876] -0.083984765  0.115338986  0.558260308 -0.306684591  0.728338981
##  [881] -0.062027886  0.312969373  0.715073927  1.785635335  1.562206062
##  [886] -0.307412251 -0.200564040 -0.442372242 -0.122340648  0.501440314
##  [891] -1.261328597 -0.314769102 -1.390071997  1.638121638 -1.603698075
##  [896] -0.059722663  0.184474230  2.269502090  0.553885160 -1.451345437
##  [901]  0.566454270  0.715319302  0.760963089 -0.615469802  0.086929569
##  [906] -0.508109454 -0.806884221  0.737092180  0.365585556 -1.254915592
##  [911] -0.956502285  0.925106124 -1.451558464  1.786560953 -1.230537212
##  [916] -0.474135569  1.066971122 -0.345958063  1.811681783  0.518519398
##  [921]  0.974195942  0.989789561  0.664136160 -0.415230540 -0.786862526
##  [926] -1.332459510  0.556865228  0.413823674  1.312937024 -1.773184619
##  [931]  1.000597224  1.565296836 -0.477279661  0.085587758  1.372366971
##  [936] -0.248546372 -1.098829127  0.677466680  0.328251908 -0.951368820
##  [941] -1.883817004 -0.644709462 -0.966193968 -0.821568050  1.181470410
##  [946]  0.157356350  0.500257926 -0.107348773  0.668222077 -1.550614394
##  [951]  0.220794915  1.065687151 -0.853515977  0.846346293 -0.733673373
##  [956]  1.151136614  1.159105019  0.161076158 -2.266603148  1.670214180
##  [961]  0.088193408  0.187784285 -0.201882480 -0.354548164 -0.666353276
##  [966]  0.099907993 -0.131183089  1.523832762 -1.896024853  0.263332824
##  [971] -0.136004132 -1.056328148  0.993536100  0.125972418 -0.636347471
##  [976] -1.055062802 -0.796014652  0.137708805  1.114772347  0.427069705
##  [981] -1.573738375 -2.909977566  1.772225758 -0.188183182 -0.300829351
##  [986] -1.351418308 -0.847513573  1.019803135  1.078847903 -2.696212853
##  [991]  1.105414851  0.952766769  0.204972420  0.910300690  0.822300179
##  [996]  0.662749220  0.301601206 -0.386042463  0.142477912 -1.545568549
yAxis <- rnorm(1000) + xAxis + 10
yAxis
##    [1]  8.984784  6.700325 11.118479  8.814946 12.273942  7.613248  9.683336
##    [8]  9.789410  8.090054 12.302137  8.980494 10.837204  8.855358 10.268559
##   [15] 10.868858 11.194294 10.789700  8.514630 10.801223  9.335378 11.599325
##   [22]  9.577549  9.339796  9.762563  9.162990 10.375549  9.528601  9.375813
##   [29]  9.925400  9.508630  8.807830 11.622365 11.350589  8.157197  8.899755
##   [36] 10.347998  9.781617 10.622697 10.764483  9.302356  9.923679  9.594947
##   [43]  9.711662  8.143874 11.736669 10.889188 10.049393 10.516435 10.556302
##   [50]  9.184864 10.557379  9.585500 12.463173  8.556998  9.503737 10.225983
##   [57] 10.426404  7.606686 10.141007 10.113221 10.792460  8.885330 10.457961
##   [64] 10.238638  9.312675  9.097014 10.539198 11.592587 10.511587  9.944528
##   [71] 10.139505  8.893903 10.868632  9.461556 11.376608 10.331983 10.323855
##   [78] 11.572209  9.571436 10.135179 10.782376  7.656187  8.644578 10.176204
##   [85]  9.735038 10.539452  9.410417  8.899732  9.471919  8.213742 10.895502
##   [92]  9.064712 10.011257  7.032222  9.756339  7.931808 12.997191 11.705673
##   [99]  8.983342 11.957163  8.410154 10.517905  8.824796 13.060681  8.612647
##  [106]  9.825594 10.463638 10.125512  9.832842 11.207432  9.760561 10.959928
##  [113]  8.899034  7.966727 10.059401  9.963121 10.036487 12.260610 12.016405
##  [120]  8.637216 12.027002 10.049465 10.222609 10.812837  8.730558 10.843557
##  [127]  9.074031 11.243610  7.986200 11.076300  9.331354 11.208792  8.817331
##  [134]  9.368861 12.168430  9.987903 12.466551 10.622827  8.852701  9.155186
##  [141] 13.206877  7.328309 10.158918  6.844564  9.687365  8.356732 10.082774
##  [148] 10.387169  9.609955  9.421872  9.492402  8.022526 13.454631  8.108310
##  [155] 10.719413 11.159195 10.943990 10.265060 10.142453 11.193825  9.465217
##  [162] 11.314400 10.938592 10.127545  8.545048 10.406270 10.754377  9.913491
##  [169]  9.472538 10.888453 10.274572 13.276099 10.194960  8.887124 13.310434
##  [176] 12.137836 10.789018 10.222104  8.824952  8.563015 12.020006 10.725329
##  [183] 10.614976  8.392410  8.578610  9.449048 10.009989 11.105984  9.295698
##  [190] 10.438632  9.133640 12.771188 10.368802  9.597231 10.388339 11.606745
##  [197] 10.632810 11.808962 10.941555 10.387435 11.139192  9.817920 10.726035
##  [204] 13.066974 12.058362 11.446837 10.001464 10.513427  9.452810  8.436466
##  [211]  9.029181 10.524116  7.013840  9.044008 11.047312  8.843637  9.262744
##  [218]  8.172594 11.170022  9.795045 11.506833 11.303724 10.963970  7.392117
##  [225]  8.524304  7.592546  7.866162 10.933122 12.095249 10.490064 10.465068
##  [232]  7.750893  9.955644  6.770406 10.604088 10.861838 10.607539  9.867305
##  [239] 10.675445  9.818186 10.497826  7.762387  9.558764 11.284825 11.763780
##  [246] 12.184758 11.695939 11.833310 11.136580  9.496410 10.439990  9.147707
##  [253]  8.939227 10.826269  9.685344  9.772486  9.858567 10.202468 11.534542
##  [260]  9.694993  8.286831 11.837309  8.656031 14.547797  7.860564 11.500954
##  [267] 11.071868  7.252576 10.210898 12.911406  9.576215  8.661608  7.853244
##  [274]  7.364023  9.999082 10.485564 13.005482 11.246533  9.939399  8.123246
##  [281]  9.951502  9.520815  9.096554  8.318737 10.690795  9.618299  8.888650
##  [288] 10.455099  9.523523  9.294081  9.285815 10.227273 10.046910 11.583860
##  [295] 10.890611 12.625440  8.770276 10.214978  9.724912 12.612627  9.201791
##  [302]  8.442953 10.355317  9.550641  9.753374  8.359984 10.526688  7.871034
##  [309] 10.030776 12.016682  7.622795  8.008687 11.575875 12.685948 10.832234
##  [316]  9.027820 12.838845 10.047154  9.329465 11.884183 10.122245 10.078699
##  [323] 10.970858 10.451501 10.240237 10.815012 10.454634 12.183785  8.171511
##  [330]  9.059963 10.769928 14.071659 11.546163 10.100302 11.049973 10.682260
##  [337]  8.954132 11.453180  9.561360  8.742265  8.289112 10.146970  9.386492
##  [344]  8.039552  8.914465 10.072671 10.696000 12.447986  9.470572 11.348252
##  [351] 10.909260 11.481516  8.365327 10.374632 11.473357  6.749228  8.999364
##  [358] 10.904134  8.435945 10.743009  6.852674  9.093485  9.268726  9.019224
##  [365] 10.201992 10.520016 11.847206 10.817047  9.620674 10.841913 10.541593
##  [372]  9.393086 12.200273  9.845008 10.148219  8.692739 12.301122 11.958052
##  [379] 10.814375  6.401286  8.032333 10.496386  8.709828 10.654943 12.603048
##  [386] 10.645578  7.177732 10.056118 10.631079  8.317982 10.707773  7.940264
##  [393]  9.938016  9.564036  7.973511  9.319872  8.234441  9.070571  9.064745
##  [400]  9.242888  9.770944 10.352122  9.806540  9.186066 11.627319  8.587858
##  [407] 11.442565 10.790461 11.442013 10.987313  8.664280 12.218324 10.383038
##  [414] 10.893095 10.301434 10.836845 10.205778  9.243299 10.992912  9.962394
##  [421] 11.081504  9.981955  9.654934 13.983011  8.900236  9.768392  9.348375
##  [428] 10.735157  7.800902  7.726110 10.139757 10.800441  9.602247 11.517442
##  [435]  7.538177  8.615666 10.715749 11.027472 11.591365  9.581636 11.965620
##  [442]  8.818485 10.401841  9.916339 10.427646  9.989783 11.948073  7.962022
##  [449]  8.561328  7.693738 12.110985  8.961612  9.812623 11.836962  8.507040
##  [456] 12.611362 11.916456  9.735844 11.864648 12.647463  7.063101  7.952670
##  [463] 13.592505  8.319063 12.017952  8.277895  8.379202 11.621330  8.618307
##  [470]  9.288354  9.873584  7.126201  8.841269  9.412391  9.273510 10.096959
##  [477]  8.161682 10.408912 11.032026  8.868971  8.609948 10.156575  9.297268
##  [484]  8.235753 10.843325  9.767443 12.472135 11.021959 10.928018 10.384733
##  [491] 10.221791  9.514269  9.474409 11.089374 11.697753  8.772538  9.003942
##  [498] 11.908526 11.934424 11.888672 10.102465 10.907967  9.283119 10.752258
##  [505]  8.377719 12.373238  9.840700  9.748570  7.325687  9.898393 10.278249
##  [512]  9.397503 11.471943  7.993012 10.141899 12.614454  6.917763  8.054747
##  [519]  9.963533  9.159639 11.217574  7.455922  6.658700  8.456209  9.043905
##  [526]  7.539216  9.365364 11.536546  9.966696  8.863066  9.409746  7.946490
##  [533]  9.696795  9.612429  7.739120 11.801870 10.793038  8.224660  9.669010
##  [540]  9.571127  8.668090  6.885290  8.026682 11.051294  9.733158  8.561926
##  [547]  6.761213 11.430086  9.724905 10.915775  9.535991 11.628491  9.113187
##  [554] 11.068549  9.936907 10.721670  9.794036  9.561175 10.659810 12.165878
##  [561] 10.187705 10.948850 10.127773  8.167046  8.915684  7.806735 10.025573
##  [568]  7.217854  9.548902  8.603701 11.155206  8.808956 11.881487 11.014470
##  [575] 10.976336  9.943754 10.176609 11.636513  9.786759  8.637870  9.415614
##  [582] 11.881767 10.870672  8.774560  8.857423 10.471791 10.608874 11.053825
##  [589]  9.113886  9.873393 12.618744 11.457812 10.933680 12.641827  9.294838
##  [596] 10.151347  8.600576  8.855225  8.419200 12.148294  6.602888 12.243741
##  [603] 10.164616 14.193475  9.099514 10.201535  7.768270 10.300171 10.155415
##  [610] 10.576700 10.975301  7.940647 10.574781 11.133195 10.558767  9.393760
##  [617] 10.130453 10.785808 11.577227  9.429652 10.621231  8.404698  8.938396
##  [624]  7.798813  9.986656 11.494258  9.633669  7.329544 10.651681  9.968928
##  [631] 10.124367  9.343363  9.912672  9.122048  7.039590 11.795011 10.237145
##  [638] 11.370047  9.923458  9.796140  5.346698 10.569483  8.237295 11.822686
##  [645]  8.944316 10.099980 11.129731 11.030863  8.671636 10.148431 11.803714
##  [652]  9.879237 10.423058  9.253339 12.516297 10.853303  9.122672 11.127126
##  [659]  9.513109 14.048919 11.747505  9.380299  9.837106 10.710972  8.692309
##  [666]  8.245206 10.341040  8.787556 12.263379 12.314274 12.709177 11.001235
##  [673]  9.850663 11.928324  9.695865 10.556535 10.641112 10.733686 11.886567
##  [680] 11.356111  8.349953 11.536640 10.384196  8.225717 11.387124 11.329200
##  [687] 11.154594 10.425815  8.750697 11.042454  8.814594  7.602447 10.787543
##  [694]  9.827684  9.806586  8.342718  9.080326  8.205754  9.402041  8.757667
##  [701]  8.499962  9.589591  8.003281 12.215821 11.785333 10.125051 11.381581
##  [708] 10.613053  9.322072 11.071663  9.442115  9.120322  7.926767  9.985293
##  [715]  6.990729 11.067822  9.223668 10.748616 10.289160 10.571800  9.926012
##  [722] 13.063839  9.751824 10.993458  6.837095 12.395740 12.365621 11.711021
##  [729] 11.582504  8.846489  9.317769 10.979087  8.446700 10.367957 12.676996
##  [736]  9.724764  8.778603 12.263119  9.238525  7.834121  7.307167 12.640863
##  [743]  9.035785  8.449943 10.081918 11.023919 10.939597 11.646358  9.708050
##  [750]  9.410256  8.182276 11.049240 10.383818 12.423194  9.728969 10.647606
##  [757] 10.255737  7.584948  9.036777  9.479180  9.759835  8.918659  9.386736
##  [764] 12.366621  9.530757 10.158095 11.089273  8.202288 10.213876 10.381802
##  [771]  7.865663  7.946014 11.349208  8.302748 10.171675  9.701660  7.588552
##  [778]  9.379636  8.500283  7.350132 11.398833  9.248220  9.028786  8.852832
##  [785] 10.349731 11.500001 10.225988  7.432825 10.464784 10.855860 10.326656
##  [792] 10.656819  8.392862 12.055624 10.714002 11.492191  8.889547  8.847777
##  [799]  9.700667 11.390159 10.775471  9.322121  7.253196  9.258393  9.894357
##  [806] 12.351662  9.294048 10.991597 10.452825  8.384148 10.831056 10.330869
##  [813] 11.451032  8.728909  9.023295 11.544023 12.339630 11.911523  9.072166
##  [820]  8.336106 10.563075 10.675474  8.098852 10.481394 10.861506 10.094960
##  [827]  8.711487  8.076675  8.804658 11.758939  8.245167 11.600840  9.184036
##  [834] 12.543777  9.623159 10.374473  9.744546 12.098816 11.126575  9.949521
##  [841] 10.275360 10.962297  9.735631 12.747066 11.437870 11.651103  8.686535
##  [848] 11.746910 11.249326  9.219739  9.472024  7.499361 10.316907  9.644327
##  [855] 11.141298 11.522665 11.526858  7.976835  8.861137  9.164876 11.576915
##  [862]  9.660766  9.007329  9.615257 10.611669 11.553071  8.612791  8.693776
##  [869] 11.258892 13.618803 12.804018 10.939437 10.726555 10.054316 10.962498
##  [876] 11.051440 12.333788  9.646670  9.431180  9.286578 10.067625 11.681930
##  [883]  9.715805 10.224939 13.724767 12.279691  9.496859  9.329736  8.727838
##  [890] 11.056363  8.616760  9.598864  7.215738 11.566543  7.446868  9.814717
##  [897] 10.798028 10.832557  9.330817  9.209948 10.733505 11.017264 10.958267
##  [904]  9.599542 11.457333  8.414126  8.957749 12.009328 10.405115  9.107448
##  [911]  9.093949 10.143036  7.149481 11.555270 10.255003  9.499160 11.128639
##  [918]  7.158757 11.152294  9.903146 11.032954  9.568849 12.266367  8.660444
##  [925]  8.583312  8.409802  9.809807 10.348939  9.181033  9.671457 10.932281
##  [932] 11.454503  8.877483 11.036353 11.074686  9.559910  8.427883 11.186308
##  [939] 11.275577  9.401156  9.244987  8.638729  8.477686  9.364069  9.335608
##  [946] 10.271207 11.635929  9.676485 12.493398  7.371118  8.143091 10.445803
##  [953]  9.843700 10.905391 10.378495  8.162185 10.768036 10.944931  7.208008
##  [960] 11.936578 10.888311 10.776751 10.306143  8.863324  7.541529  9.539837
##  [967] 11.083625 11.815626  7.177838  8.701289  9.924350  8.818110 11.226740
##  [974]  9.115142 10.814696 10.417167  9.627613  9.950472 11.370896 11.922489
##  [981]  7.738907  7.922421 10.801073  8.672432 10.381830  5.645012  8.966473
##  [988] 10.655435 10.531512  7.938439  9.913044 10.472313 10.910439  9.010875
##  [995] 11.933051 10.510978 11.881657  8.756952 10.291801  9.325882
# create groups for different values of X
(group <- rep(1,1000)) # a vector consisting of 1000 elements
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1
group[xAxis > -1.5] <- 2
group[xAxis > -.5] <- 3
group[xAxis > .5] <- 4
group[xAxis > 1.5] <- 5
group
##    [1] 3 1 4 3 3 2 2 3 2 4 3 3 3 4 3 4 4 2 3 3 2 3 2 5 2 3 3 4 2 4 2 4 3 1 3 3 3
##   [38] 4 3 2 2 2 2 2 3 2 3 2 3 4 4 2 4 3 3 2 3 2 3 3 3 1 4 3 2 4 3 3 4 2 4 2 3 3
##   [75] 4 3 4 4 3 2 2 2 3 4 2 4 2 3 2 3 3 2 4 1 2 1 5 5 2 5 3 4 3 4 2 3 4 3 2 2 3
##  [112] 3 3 2 3 3 3 3 4 2 5 1 3 4 4 3 2 4 2 4 4 3 2 4 3 2 3 4 2 4 4 1 3 2 3 2 2 3
##  [149] 2 2 3 2 4 2 2 4 3 2 4 4 2 4 3 2 3 2 4 3 3 3 3 5 2 2 5 4 3 4 1 1 3 3 5 2 2
##  [186] 4 4 3 3 4 2 4 3 2 3 4 3 3 4 3 4 3 4 5 5 5 4 2 2 2 3 4 1 2 5 3 2 1 3 3 4 4
##  [223] 5 1 2 1 2 2 5 4 3 1 3 1 2 3 2 3 3 1 3 2 2 2 5 4 5 5 4 3 3 2 3 3 3 2 1 2 3
##  [260] 2 3 4 3 5 1 4 3 2 2 4 3 3 2 2 3 3 4 4 3 2 4 3 2 1 4 4 2 2 4 4 3 3 3 4 3 5
##  [297] 4 4 2 5 3 2 2 3 4 1 3 2 3 5 1 2 2 4 3 3 5 3 3 4 3 2 3 3 2 4 4 4 2 2 2 5 3
##  [334] 3 5 3 1 3 3 2 1 3 2 2 2 4 3 4 2 4 4 4 2 3 3 1 4 3 1 4 1 3 3 2 5 4 3 4 2 2
##  [371] 3 2 4 2 3 3 4 5 5 2 2 3 3 3 3 4 1 4 4 1 2 2 3 3 1 2 2 2 2 4 3 3 2 1 3 1 3
##  [408] 3 4 4 3 4 3 4 3 2 2 3 3 4 3 3 4 4 2 2 3 3 2 2 4 3 3 4 2 4 2 3 3 4 5 2 3 3
##  [445] 3 2 3 1 2 1 5 2 4 4 2 4 3 2 5 5 2 2 5 2 5 2 1 2 2 2 4 3 2 2 3 3 2 3 4 2 3
##  [482] 4 2 2 3 4 4 3 5 3 3 3 3 4 5 2 2 4 5 5 3 3 3 3 2 4 2 4 2 4 3 2 3 2 2 5 2 3
##  [519] 4 2 3 1 2 2 3 2 1 4 2 3 3 2 2 3 2 4 3 2 3 2 3 2 1 4 3 1 1 3 3 3 3 5 3 4 4
##  [556] 2 1 2 3 5 4 4 3 4 3 3 3 2 2 2 4 2 4 4 3 2 3 3 2 2 2 4 2 2 3 3 4 4 3 3 5 4
##  [593] 2 5 1 3 3 1 3 5 1 3 3 5 3 3 2 5 4 4 3 2 4 4 4 2 4 5 4 2 3 2 2 1 3 3 3 1 4
##  [630] 3 3 3 4 3 1 4 3 4 3 2 2 4 2 4 3 4 3 4 2 3 5 4 2 2 4 4 2 3 2 5 3 3 2 5 3 2
##  [667] 3 3 5 3 3 2 3 4 2 4 3 4 3 5 1 3 4 1 4 3 4 3 1 4 3 2 3 3 4 1 3 2 2 3 2 3 2
##  [704] 4 3 2 5 2 2 4 2 4 3 3 1 4 3 4 2 3 2 4 3 4 1 4 5 4 4 2 2 3 1 3 4 4 3 5 3 2
##  [741] 2 5 3 2 4 3 3 3 3 3 2 5 3 5 3 3 3 1 2 3 3 3 3 5 3 3 3 2 3 3 2 2 5 4 4 3 2
##  [778] 3 3 1 4 3 2 3 2 3 3 2 2 4 3 5 2 4 3 3 2 1 2 4 3 3 2 4 3 4 2 4 2 3 4 4 4 2
##  [815] 2 3 4 2 3 2 4 4 3 3 3 3 2 1 2 5 2 3 3 3 4 3 4 5 5 4 3 2 2 5 4 5 3 4 4 3 3
##  [852] 2 4 3 4 4 3 1 3 2 5 3 3 1 2 3 3 2 4 4 4 2 2 3 3 3 3 4 3 4 3 3 4 5 5 3 3 3
##  [889] 3 4 2 3 2 5 1 3 3 5 4 2 4 4 4 2 3 2 2 4 3 2 2 4 2 5 2 3 4 3 5 4 4 4 4 3 2
##  [926] 2 4 3 4 1 4 5 3 3 4 3 2 4 3 2 1 2 2 2 4 3 4 3 4 1 3 4 2 4 2 4 4 3 1 5 3 3
##  [963] 3 3 2 3 3 5 1 3 3 2 4 3 2 2 2 3 4 3 1 1 5 3 3 2 2 4 4 1 4 4 3 4 4 4 3 3 3
## [1000] 1
# create sample dataframe by joining variables
sample_data <- data.frame(xAxis,yAxis,group)
sample_data
##             xAxis     yAxis group
## 1     0.001077924  8.984784     3
## 2    -1.630869914  6.700325     1
## 3     0.801192197 11.118479     4
## 4    -0.463052970  8.814946     3
## 5    -0.275248656 12.273942     3
## 6    -1.206690837  7.613248     2
## 7    -0.921710287  9.683336     2
## 8     0.167326898  9.789410     3
## 9    -0.841639294  8.090054     2
## 10    1.451874447 12.302137     4
## 11   -0.370221220  8.980494     3
## 12    0.184417925 10.837204     3
## 13   -0.245533032  8.855358     3
## 14    0.942833449 10.268559     4
## 15    0.072911566 10.868858     3
## 16    0.575972677 11.194294     4
## 17    0.642687766 10.789700     4
## 18   -1.417858423  8.514630     2
## 19    0.245770534 10.801223     3
## 20   -0.301733496  9.335378     3
## 21   -1.025296389 11.599325     2
## 22   -0.017533598  9.577549     3
## 23   -0.508099358  9.339796     2
## 24    1.533833687  9.762563     5
## 25   -0.774723877  9.162990     2
## 26   -0.285227270 10.375549     3
## 27   -0.416073779  9.528601     3
## 28    1.010836856  9.375813     4
## 29   -0.529166254  9.925400     2
## 30    0.600978932  9.508630     4
## 31   -0.649472278  8.807830     2
## 32    0.594358858 11.622365     4
## 33    0.486144347 11.350589     3
## 34   -2.789792000  8.157197     1
## 35   -0.174556845  8.899755     3
## 36    0.133294365 10.347998     3
## 37   -0.308711976  9.781617     3
## 38    1.087565051 10.622697     4
## 39    0.325160453 10.764483     3
## 40   -0.995586036  9.302356     2
## 41   -0.509719324  9.923679     2
## 42   -0.550777277  9.594947     2
## 43   -0.668354608  9.711662     2
## 44   -0.803313175  8.143874     2
## 45    0.281208653 11.736669     3
## 46   -0.999304954 10.889188     2
## 47   -0.480106750 10.049393     3
## 48   -0.626274440 10.516435     2
## 49   -0.062705181 10.556302     3
## 50    0.593672812  9.184864     4
## 51    0.557931318 10.557379     4
## 52   -0.571628917  9.585500     2
## 53    0.800391252 12.463173     4
## 54   -0.292954955  8.556998     3
## 55   -0.036062992  9.503737     3
## 56   -0.930970809 10.225983     2
## 57   -0.050831596 10.426404     3
## 58   -1.218120750  7.606686     2
## 59    0.082542338 10.141007     3
## 60    0.420232454 10.113221     3
## 61    0.183824142 10.792460     3
## 62   -1.576311651  8.885330     1
## 63    1.042104431 10.457961     4
## 64    0.068030824 10.238638     3
## 65   -0.901354991  9.312675     2
## 66    0.518028692  9.097014     4
## 67    0.314944468 10.539198     3
## 68    0.368145410 11.592587     3
## 69    1.031346698 10.511587     4
## 70   -0.555650137  9.944528     2
## 71    0.573527458 10.139505     4
## 72   -0.635001732  8.893903     2
## 73    0.402726095 10.868632     3
## 74    0.007714037  9.461556     3
## 75    0.987597342 11.376608     4
## 76   -0.178315054 10.331983     3
## 77    0.507699141 10.323855     4
## 78    0.553168827 11.572209     4
## 79    0.287188510  9.571436     3
## 80   -0.727512703 10.135179     2
## 81   -0.521539222 10.782376     2
## 82   -1.484248535  7.656187     2
## 83   -0.179874315  8.644578     3
## 84    0.795454057 10.176204     4
## 85   -0.696781486  9.735038     2
## 86    1.158518325 10.539452     4
## 87   -0.784201611  9.410417     2
## 88   -0.071498176  8.899732     3
## 89   -1.383245820  9.471919     2
## 90   -0.072945463  8.213742     3
## 91   -0.044415252 10.895502     3
## 92   -0.892559363  9.064712     2
## 93    0.527236687 10.011257     4
## 94   -2.348370585  7.032222     1
## 95   -0.603148688  9.756339     2
## 96   -1.770116115  7.931808     1
## 97    2.307338943 12.997191     5
## 98    2.078054846 11.705673     5
## 99   -1.387668447  8.983342     2
## 100   1.569164771 11.957163     5
## 101  -0.481541692  8.410154     3
## 102   0.796703225 10.517905     4
## 103   0.384873929  8.824796     3
## 104   0.837024202 13.060681     4
## 105  -0.670014710  8.612647     2
## 106  -0.225509505  9.825594     3
## 107   1.025755620 10.463638     4
## 108   0.431043665 10.125512     3
## 109  -1.309207763  9.832842     2
## 110  -0.536201674 11.207432     2
## 111   0.440653000  9.760561     3
## 112  -0.036183785 10.959928     3
## 113  -0.195678409  8.899034     3
## 114  -0.819340560  7.966727     2
## 115  -0.019838093 10.059401     3
## 116  -0.143055611  9.963121     3
## 117  -0.020676929 10.036487     3
## 118   0.356167350 12.260610     3
## 119   0.628785161 12.016405     4
## 120  -1.249840247  8.637216     2
## 121   2.028756527 12.027002     5
## 122  -1.730672576 10.049465     1
## 123   0.081417169 10.222609     3
## 124   0.574100189 10.812837     4
## 125   1.163213499  8.730558     4
## 126   0.469826343 10.843557     3
## 127  -0.767106981  9.074031     2
## 128   1.006892113 11.243610     4
## 129  -0.751847743  7.986200     2
## 130   1.084257450 11.076300     4
## 131   0.750250438  9.331354     4
## 132   0.005224619 11.208792     3
## 133  -1.335375496  8.817331     2
## 134   0.809575467  9.368861     4
## 135  -0.422189987 12.168430     3
## 136  -0.624295199  9.987903     2
## 137   0.394041738 12.466551     3
## 138   0.978508473 10.622827     4
## 139  -1.217209108  8.852701     2
## 140   0.563988619  9.155186     4
## 141   1.377382207 13.206877     4
## 142  -1.685004641  7.328309     1
## 143   0.296232400 10.158918     3
## 144  -0.748013236  6.844564     2
## 145   0.068999673  9.687365     3
## 146  -1.283534750  8.356732     2
## 147  -0.577523469 10.082774     2
## 148   0.335687572 10.387169     3
## 149  -1.366504016  9.609955     2
## 150  -0.609538361  9.421872     2
## 151  -0.209105891  9.492402     3
## 152  -1.039693268  8.022526     2
## 153   1.403617314 13.454631     4
## 154  -1.065186283  8.108310     2
## 155  -0.893025606 10.719413     2
## 156   0.685929999 11.159195     4
## 157   0.289820516 10.943990     3
## 158  -0.570375924 10.265060     2
## 159   1.340015864 10.142453     4
## 160   0.715555233 11.193825     4
## 161  -0.598122642  9.465217     2
## 162   0.561358931 11.314400     4
## 163   0.223262785 10.938592     3
## 164  -0.688570713 10.127545     2
## 165  -0.424276956  8.545048     3
## 166  -0.607546181 10.406270     2
## 167   0.707610902 10.754377     4
## 168   0.012920802  9.913491     3
## 169  -0.284820049  9.472538     3
## 170   0.364880902 10.888453     3
## 171   0.019632460 10.274572     3
## 172   1.908369531 13.276099     5
## 173  -0.512072911 10.194960     2
## 174  -0.833541986  8.887124     2
## 175   1.577207008 13.310434     5
## 176   1.079330094 12.137836     4
## 177   0.181864957 10.789018     3
## 178   0.932786507 10.222104     4
## 179  -1.653031458  8.824952     1
## 180  -1.560248076  8.563015     1
## 181   0.407524131 12.020006     3
## 182  -0.388866447 10.725329     3
## 183   1.929189457 10.614976     5
## 184  -0.735365940  8.392410     2
## 185  -1.048676262  8.578610     2
## 186   0.650489546  9.449048     4
## 187   1.311574404 10.009989     4
## 188   0.326377556 11.105984     3
## 189  -0.182917685  9.295698     3
## 190   0.575070417 10.438632     4
## 191  -1.271430118  9.133640     2
## 192   1.157342566 12.771188     4
## 193  -0.006461685 10.368802     3
## 194  -1.100671598  9.597231     2
## 195  -0.248194421 10.388339     3
## 196   1.152907309 11.606745     4
## 197   0.160197725 10.632810     3
## 198   0.484955388 11.808962     3
## 199   0.882323959 10.941555     4
## 200   0.106251700 10.387435     3
## 201   0.979028985 11.139192     4
## 202  -0.104352102  9.817920     3
## 203   1.479021030 10.726035     4
## 204   2.043662312 13.066974     5
## 205   1.792728335 12.058362     5
## 206   1.926467943 11.446837     5
## 207   0.710391903 10.001464     4
## 208  -1.200190007 10.513427     2
## 209  -1.216382100  9.452810     2
## 210  -0.961411060  8.436466     2
## 211   0.390201626  9.029181     3
## 212   0.759532495 10.524116     4
## 213  -1.631118178  7.013840     1
## 214  -1.089169639  9.044008     2
## 215   1.581638683 11.047312     5
## 216   0.292060197  8.843637     3
## 217  -1.002433022  9.262744     2
## 218  -1.566842057  8.172594     1
## 219   0.056212457 11.170022     3
## 220  -0.411830613  9.795045     3
## 221   0.556606511 11.506833     4
## 222   0.527058283 11.303724     4
## 223   2.107015891 10.963970     5
## 224  -2.231925185  7.392117     1
## 225  -0.618082003  8.524304     2
## 226  -1.693706938  7.592546     1
## 227  -1.153137786  7.866162     2
## 228  -0.580987438 10.933122     2
## 229   1.824607741 12.095249     5
## 230   0.761104493 10.490064     4
## 231   0.362969451 10.465068     3
## 232  -1.796513947  7.750893     1
## 233  -0.154302730  9.955644     3
## 234  -1.851231436  6.770406     1
## 235  -1.171934910 10.604088     2
## 236  -0.153606157 10.861838     3
## 237  -0.836972420 10.607539     2
## 238  -0.122730912  9.867305     3
## 239   0.482090601 10.675445     3
## 240  -1.577702105  9.818186     1
## 241   0.137863753 10.497826     3
## 242  -1.127380006  7.762387     2
## 243  -1.026097292  9.558764     2
## 244  -0.608173832 11.284825     2
## 245   1.876082065 11.763780     5
## 246   1.008173928 12.184758     4
## 247   2.014240912 11.695939     5
## 248   1.802876181 11.833310     5
## 249   1.400457551 11.136580     4
## 250   0.048559571  9.496410     3
## 251  -0.165448031 10.439990     3
## 252  -0.867945582  9.147707     2
## 253   0.171677754  8.939227     3
## 254   0.385376363 10.826269     3
## 255   0.007095654  9.685344     3
## 256  -0.777196479  9.772486     2
## 257  -1.887894082  9.858567     1
## 258  -0.956896286 10.202468     2
## 259   0.158931433 11.534542     3
## 260  -0.966596149  9.694993     2
## 261  -0.120483390  8.286831     3
## 262   0.553026753 11.837309     4
## 263  -0.473545951  8.656031     3
## 264   3.485660505 14.547797     5
## 265  -2.632511277  7.860564     1
## 266   0.825571085 11.500954     4
## 267  -0.145219124 11.071868     3
## 268  -0.728566709  7.252576     2
## 269  -0.609207244 10.210898     2
## 270   1.486484322 12.911406     4
## 271  -0.469533454  9.576215     3
## 272   0.437968859  8.661608     3
## 273  -1.432645975  7.853244     2
## 274  -0.714492073  7.364023     2
## 275  -0.358755102  9.999082     3
## 276  -0.208258492 10.485564     3
## 277   1.194001408 13.005482     4
## 278   1.070155225 11.246533     4
## 279   0.021096655  9.939399     3
## 280  -0.688713916  8.123246     2
## 281   0.684404327  9.951502     4
## 282   0.211072696  9.520815     3
## 283  -1.267782655  9.096554     2
## 284  -1.545909911  8.318737     1
## 285   0.826942755 10.690795     4
## 286   0.864762761  9.618299     4
## 287  -0.806516413  8.888650     2
## 288  -0.620744523 10.455099     2
## 289   1.083100857  9.523523     4
## 290   0.855850930  9.294081     4
## 291  -0.208453310  9.285815     3
## 292   0.223053617 10.227273     3
## 293  -0.009960012 10.046910     3
## 294   0.534063757 11.583860     4
## 295  -0.094706522 10.890611     3
## 296   1.539960064 12.625440     5
## 297   0.500781858  8.770276     4
## 298   0.900726711 10.214978     4
## 299  -1.431724069  9.724912     2
## 300   2.399037619 12.612627     5
## 301  -0.106144819  9.201791     3
## 302  -1.366962064  8.442953     2
## 303  -1.461439589 10.355317     2
## 304   0.093025403  9.550641     3
## 305   1.381108518  9.753374     4
## 306  -2.103395730  8.359984     1
## 307   0.173398060 10.526688     3
## 308  -0.962195162  7.871034     2
## 309  -0.399853329 10.030776     3
## 310   1.693386721 12.016682     5
## 311  -1.942534924  7.622795     1
## 312  -1.162255677  8.008687     2
## 313  -1.143817666 11.575875     2
## 314   1.366440987 12.685948     4
## 315  -0.051807000 10.832234     3
## 316   0.348706701  9.027820     3
## 317   2.028410899 12.838845     5
## 318  -0.067045706 10.047154     3
## 319   0.087145706  9.329465     3
## 320   0.894169112 11.884183     4
## 321   0.252476736 10.122245     3
## 322  -0.563565829 10.078699     2
## 323  -0.126473261 10.970858     3
## 324   0.289536151 10.451501     3
## 325  -0.790231663 10.240237     2
## 326   0.858330148 10.815012     4
## 327   0.854046655 10.454634     4
## 328   1.470441640 12.183785     4
## 329  -0.748311601  8.171511     2
## 330  -0.770924535  9.059963     2
## 331  -1.017278856 10.769928     2
## 332   3.402903515 14.071659     5
## 333   0.402872553 11.546163     3
## 334   0.148690616 10.100302     3
## 335   1.968101945 11.049973     5
## 336  -0.011293051 10.682260     3
## 337  -1.987367296  8.954132     1
## 338   0.463437825 11.453180     3
## 339  -0.387512310  9.561360     3
## 340  -1.228813761  8.742265     2
## 341  -1.807016384  8.289112     1
## 342  -0.245577216 10.146970     3
## 343  -0.713319197  9.386492     2
## 344  -1.200415241  8.039552     2
## 345  -0.882582341  8.914465     2
## 346   0.974094599 10.072671     4
## 347  -0.288548956 10.696000     3
## 348   1.195906512 12.447986     4
## 349  -0.797201395  9.470572     2
## 350   1.290066166 11.348252     4
## 351   0.928044452 10.909260     4
## 352   0.664485058 11.481516     4
## 353  -0.594463435  8.365327     2
## 354   0.195060020 10.374632     3
## 355   0.183231628 11.473357     3
## 356  -2.656183285  6.749228     1
## 357   0.538965249  8.999364     4
## 358   0.219967607 10.904134     3
## 359  -1.738009631  8.435945     1
## 360   0.786397546 10.743009     4
## 361  -2.741990071  6.852674     1
## 362   0.066815464  9.093485     3
## 363  -0.310762358  9.268726     3
## 364  -0.594468636  9.019224     2
## 365   1.809287523 10.201992     5
## 366   0.943781424 10.520016     4
## 367   0.359142808 11.847206     3
## 368   0.949853403 10.817047     4
## 369  -1.242332703  9.620674     2
## 370  -0.551998860 10.841913     2
## 371   0.372287732 10.541593     3
## 372  -0.763470966  9.393086     2
## 373   1.253431432 12.200273     4
## 374  -1.001713339  9.845008     2
## 375   0.105656372 10.148219     3
## 376  -0.412003383  8.692739     3
## 377   1.072601521 12.301122     4
## 378   1.768067806 11.958052     5
## 379   1.510394588 10.814375     5
## 380  -1.319438001  6.401286     2
## 381  -0.734001878  8.032333     2
## 382  -0.033124889 10.496386     3
## 383  -0.110180616  8.709828     3
## 384   0.145302643 10.654943     3
## 385   0.156725095 12.603048     3
## 386   0.584125581 10.645578     4
## 387  -3.137719660  7.177732     1
## 388   0.882977260 10.056118     4
## 389   1.474019299 10.631079     4
## 390  -1.835646786  8.317982     1
## 391  -0.563914575 10.707773     2
## 392  -1.184994405  7.940264     2
## 393   0.088495666  9.938016     3
## 394   0.272748332  9.564036     3
## 395  -1.703224662  7.973511     1
## 396  -0.583863540  9.319872     2
## 397  -0.718602629  8.234441     2
## 398  -1.378929249  9.070571     2
## 399  -0.792967636  9.064745     2
## 400   0.941994280  9.242888     4
## 401  -0.369517670  9.770944     3
## 402   0.299073663 10.352122     3
## 403  -0.667257128  9.806540     2
## 404  -1.513618671  9.186066     1
## 405   0.087907245 11.627319     3
## 406  -1.656095635  8.587858     1
## 407  -0.287941357 11.442565     3
## 408  -0.335068994 10.790461     3
## 409   1.364035332 11.442013     4
## 410   0.796551054 10.987313     4
## 411  -0.026084403  8.664280     3
## 412   1.123234970 12.218324     4
## 413   0.118696197 10.383038     3
## 414   1.323144407 10.893095     4
## 415  -0.387983354 10.301434     3
## 416  -0.865876994 10.836845     2
## 417  -0.870755737 10.205778     2
## 418  -0.340851149  9.243299     3
## 419   0.297637308 10.992912     3
## 420   1.025212044  9.962394     4
## 421  -0.372702387 11.081504     3
## 422  -0.296121702  9.981955     3
## 423   0.872003897  9.654934     4
## 424   0.949144777 13.983011     4
## 425  -0.846578876  8.900236     2
## 426  -1.244562414  9.768392     2
## 427   0.106599779  9.348375     3
## 428  -0.014364552 10.735157     3
## 429  -1.259715342  7.800902     2
## 430  -0.903302338  7.726110     2
## 431   0.774289526 10.139757     4
## 432   0.468554865 10.800441     3
## 433   0.166753602  9.602247     3
## 434   0.787470912 11.517442     4
## 435  -0.844814746  7.538177     2
## 436   0.814332075  8.615666     4
## 437  -0.793953231 10.715749     2
## 438  -0.408634658 11.027472     3
## 439   0.151186307 11.591365     3
## 440   0.993645208  9.581636     4
## 441   1.845049607 11.965620     5
## 442  -0.646928332  8.818485     2
## 443  -0.338291518 10.401841     3
## 444  -0.004712909  9.916339     3
## 445   0.137123789 10.427646     3
## 446  -0.824718835  9.989783     2
## 447  -0.481967523 11.948073     3
## 448  -1.585273312  7.962022     1
## 449  -0.500305234  8.561328     2
## 450  -1.592132738  7.693738     1
## 451   1.664570685 12.110985     5
## 452  -0.913006261  8.961612     2
## 453   0.768404849  9.812623     4
## 454   1.415189202 11.836962     4
## 455  -1.145562513  8.507040     2
## 456   1.103646310 12.611362     4
## 457  -0.278578017 11.916456     3
## 458  -0.862147916  9.735844     2
## 459   1.594186083 11.864648     5
## 460   2.056734205 12.647463     5
## 461  -0.861103880  7.063101     2
## 462  -0.831136878  7.952670     2
## 463   2.488748530 13.592505     5
## 464  -0.979897596  8.319063     2
## 465   1.795188592 12.017952     5
## 466  -0.813480742  8.277895     2
## 467  -1.548275661  8.379202     1
## 468  -0.848512799 11.621330     2
## 469  -1.294266677  8.618307     2
## 470  -1.205917630  9.288354     2
## 471   0.737018082  9.873584     4
## 472  -0.449621481  7.126201     3
## 473  -1.335474452  8.841269     2
## 474  -0.556355663  9.412391     2
## 475   0.277077557  9.273510     3
## 476  -0.420815202 10.096959     3
## 477  -0.514776169  8.161682     2
## 478  -0.168427725 10.408912     3
## 479   1.192767917 11.032026     4
## 480  -1.377812711  8.868971     2
## 481   0.023161367  8.609948     3
## 482   0.883356122 10.156575     4
## 483  -0.941463426  9.297268     2
## 484  -1.399377508  8.235753     2
## 485   0.369964487 10.843325     3
## 486   1.292232312  9.767443     4
## 487   1.301755611 12.472135     4
## 488   0.411529101 11.021959     3
## 489   1.508613157 10.928018     5
## 490  -0.382518250 10.384733     3
## 491   0.269392434 10.221791     3
## 492   0.146742571  9.514269     3
## 493   0.078098170  9.474409     3
## 494   0.592047222 11.089374     4
## 495   1.957477399 11.697753     5
## 496  -0.521761508  8.772538     2
## 497  -1.076746555  9.003942     2
## 498   0.786890273 11.908526     4
## 499   1.778374969 11.934424     5
## 500   1.925947344 11.888672     5
## 501   0.092578011 10.102465     3
## 502   0.495789091 10.907967     3
## 503   0.043880813  9.283119     3
## 504   0.264826594 10.752258     3
## 505  -1.072719262  8.377719     2
## 506   0.985587029 12.373238     4
## 507  -0.569121384  9.840700     2
## 508   0.664794430  9.748570     4
## 509  -0.703989323  7.325687     2
## 510   1.121805662  9.898393     4
## 511   0.477412308 10.278249     3
## 512  -1.277956079  9.397503     2
## 513   0.110410830 11.471943     3
## 514  -1.378877035  7.993012     2
## 515  -1.104366758 10.141899     2
## 516   1.980107287 12.614454     5
## 517  -0.930233361  6.917763     2
## 518  -0.490410659  8.054747     3
## 519   0.755300225  9.963533     4
## 520  -0.820224304  9.159639     2
## 521  -0.314574519 11.217574     3
## 522  -2.046352285  7.455922     1
## 523  -1.082622698  6.658700     2
## 524  -1.388836881  8.456209     2
## 525  -0.399386421  9.043905     3
## 526  -0.832770089  7.539216     2
## 527  -2.068413948  9.365364     1
## 528   0.649291167 11.536546     4
## 529  -0.829191986  9.966696     2
## 530  -0.374164305  8.863066     3
## 531   0.429561005  9.409746     3
## 532  -1.027532613  7.946490     2
## 533  -0.543149942  9.696795     2
## 534  -0.292333539  9.612429     3
## 535  -1.184493643  7.739120     2
## 536   1.217960016 11.801870     4
## 537  -0.241514054 10.793038     3
## 538  -1.027530336  8.224660     2
## 539  -0.102916671  9.669010     3
## 540  -1.252805702  9.571127     2
## 541  -0.398339396  8.668090     3
## 542  -1.155362593  6.885290     2
## 543  -1.519895756  8.026682     1
## 544   0.968864314 11.051294     4
## 545  -0.046015423  9.733158     3
## 546  -1.519790272  8.561926     1
## 547  -2.976375349  6.761213     1
## 548   0.435975649 11.430086     3
## 549  -0.402546714  9.724905     3
## 550  -0.225992591 10.915775     3
## 551  -0.154804908  9.535991     3
## 552   1.962125205 11.628491     5
## 553   0.497311164  9.113187     3
## 554   1.481510762 11.068549     4
## 555   1.263000116  9.936907     4
## 556  -0.697145264 10.721670     2
## 557  -1.585914834  9.794036     1
## 558  -0.539583099  9.561175     2
## 559  -0.434972905 10.659810     3
## 560   1.531388389 12.165878     5
## 561   0.647941654 10.187705     4
## 562   0.639369709 10.948850     4
## 563  -0.444891789 10.127773     3
## 564   0.516655050  8.167046     4
## 565  -0.386908215  8.915684     3
## 566  -0.265805642  7.806735     3
## 567   0.220539404 10.025573     3
## 568  -1.357716972  7.217854     2
## 569  -0.725113488  9.548902     2
## 570  -1.267622814  8.603701     2
## 571   1.038574709 11.155206     4
## 572  -0.717671132  8.808956     2
## 573   1.372306414 11.881487     4
## 574   0.525834209 11.014470     4
## 575  -0.061584675 10.976336     3
## 576  -0.905363075  9.943754     2
## 577   0.421950229 10.176609     3
## 578   0.194194654 11.636513     3
## 579  -1.355607481  9.786759     2
## 580  -0.915424217  8.637870     2
## 581  -1.063682041  9.415614     2
## 582   0.653395838 11.881767     4
## 583  -0.757046003 10.870672     2
## 584  -1.386568813  8.774560     2
## 585  -0.160233822  8.857423     3
## 586   0.424618185 10.471791     3
## 587   1.418368185 10.608874     4
## 588   0.776831744 11.053825     4
## 589   0.241368109  9.113886     3
## 590  -0.395433687  9.873393     3
## 591   1.593129505 12.618744     5
## 592   0.574447023 11.457812     4
## 593  -0.597321844 10.933680     2
## 594   2.344925948 12.641827     5
## 595  -1.582595657  9.294838     1
## 596   0.463297330 10.151347     3
## 597   0.406284424  8.600576     3
## 598  -2.468935314  8.855225     1
## 599  -0.497662569  8.419200     3
## 600   1.822125484 12.148294     5
## 601  -2.441536907  6.602888     1
## 602  -0.154692579 12.243741     3
## 603   0.349984809 10.164616     3
## 604   1.755859062 14.193475     5
## 605  -0.108016441  9.099514     3
## 606  -0.372219061 10.201535     3
## 607  -1.172996264  7.768270     2
## 608   2.077947241 10.300171     5
## 609   0.829177936 10.155415     4
## 610   0.952489322 10.576700     4
## 611   0.299018720 10.975301     3
## 612  -1.064355810  7.940647     2
## 613   0.985696570 10.574781     4
## 614   1.398831360 11.133195     4
## 615   1.361488527 10.558767     4
## 616  -0.972409158  9.393760     2
## 617   0.912542850 10.130453     4
## 618   2.127756180 10.785808     5
## 619   0.946964480 11.577227     4
## 620  -0.618948836  9.429652     2
## 621   0.364453886 10.621231     3
## 622  -1.321048835  8.404698     2
## 623  -0.513638347  8.938396     2
## 624  -1.781110712  7.798813     1
## 625  -0.479183801  9.986656     3
## 626   0.069866390 11.494258     3
## 627  -0.397315708  9.633669     3
## 628  -1.755057413  7.329544     1
## 629   1.004611990 10.651681     4
## 630   0.304485180  9.968928     3
## 631  -0.473195380 10.124367     3
## 632  -0.317356740  9.343363     3
## 633   0.933925940  9.912672     4
## 634  -0.395110510  9.122048     3
## 635  -1.997505194  7.039590     1
## 636   0.604980882 11.795011     4
## 637  -0.113359665 10.237145     3
## 638   0.806186524 11.370047     4
## 639  -0.316713495  9.923458     3
## 640  -1.377052188  9.796140     2
## 641  -1.281674443  5.346698     2
## 642   0.684495910 10.569483     4
## 643  -0.980231638  8.237295     2
## 644   1.111467768 11.822686     4
## 645   0.031569867  8.944316     3
## 646   0.980052854 10.099980     4
## 647   0.447731088 11.129731     3
## 648   1.046573472 11.030863     4
## 649  -0.863266775  8.671636     2
## 650   0.001795783 10.148431     3
## 651   1.653878450 11.803714     5
## 652   1.148482692  9.879237     4
## 653  -0.815017518 10.423058     2
## 654  -0.954494266  9.253339     2
## 655   0.744090452 12.516297     4
## 656   0.985687801 10.853303     4
## 657  -1.044035899  9.122672     2
## 658   0.055273381 11.127126     3
## 659  -0.977524285  9.513109     2
## 660   2.334348986 14.048919     5
## 661   0.468052618 11.747505     3
## 662  -0.455758963  9.380299     3
## 663  -0.824347758  9.837106     2
## 664   1.556192467 10.710972     5
## 665  -0.467910037  8.692309     3
## 666  -0.895871155  8.245206     2
## 667   0.212615582 10.341040     3
## 668  -0.113748773  8.787556     3
## 669   1.807701917 12.263379     5
## 670   0.033421315 12.314274     3
## 671   0.206690396 12.709177     3
## 672  -0.538864481 11.001235     2
## 673   0.050861386  9.850663     3
## 674   0.948959766 11.928324     4
## 675  -0.622845814  9.695865     2
## 676   0.879263359 10.556535     4
## 677   0.466619534 10.641112     3
## 678   0.868317232 10.733686     4
## 679   0.495206243 11.886567     3
## 680   1.846521168 11.356111     5
## 681  -1.650049194  8.349953     1
## 682   0.190116747 11.536640     3
## 683   1.247671058 10.384196     4
## 684  -1.793899151  8.225717     1
## 685   0.519136991 11.387124     4
## 686  -0.072658420 11.329200     3
## 687   0.509525716 11.154594     4
## 688   0.241638235 10.425815     3
## 689  -1.838608784  8.750697     1
## 690   0.838622540 11.042454     4
## 691   0.253688593  8.814594     3
## 692  -1.357806170  7.602447     2
## 693   0.409020140 10.787543     3
## 694  -0.199680144  9.827684     3
## 695   0.610400044  9.806586     4
## 696  -1.642044875  8.342718     1
## 697  -0.237752514  9.080326     3
## 698  -1.427906138  8.205754     2
## 699  -0.714034962  9.402041     2
## 700  -0.332420428  8.757667     3
## 701  -1.210772507  8.499962     2
## 702   0.247162471  9.589591     3
## 703  -0.511938210  8.003281     2
## 704   0.505267936 12.215821     4
## 705  -0.140541361 11.785333     3
## 706  -0.782125950 10.125051     2
## 707   1.668004939 11.381581     5
## 708  -0.990455603 10.613053     2
## 709  -0.805111756  9.322072     2
## 710   0.967252428 11.071663     4
## 711  -0.720192957  9.442115     2
## 712   0.550018081  9.120322     4
## 713   0.340568760  7.926767     3
## 714  -0.004591242  9.985293     3
## 715  -2.156768874  6.990729     1
## 716   0.618242956 11.067822     4
## 717   0.020005001  9.223668     3
## 718   0.689534770 10.748616     4
## 719  -0.746858908 10.289160     2
## 720  -0.092871051 10.571800     3
## 721  -0.873121716  9.926012     2
## 722   1.472924389 13.063839     4
## 723  -0.242151809  9.751824     3
## 724   0.525023954 10.993458     4
## 725  -1.507912449  6.837095     1
## 726   1.338254606 12.395740     4
## 727   1.950040588 12.365621     5
## 728   1.472508097 11.711021     4
## 729   0.538646293 11.582504     4
## 730  -0.623756747  8.846489     2
## 731  -0.912360208  9.317769     2
## 732   0.463860500 10.979087     3
## 733  -1.722407899  8.446700     1
## 734  -0.066888419 10.367957     3
## 735   1.183710395 12.676996     4
## 736   0.630840371  9.724764     4
## 737  -0.228346327  8.778603     3
## 738   2.170634615 12.263119     5
## 739   0.299263547  9.238525     3
## 740  -0.583008190  7.834121     2
## 741  -0.958363965  7.307167     2
## 742   1.597342908 12.640863     5
## 743  -0.167060606  9.035785     3
## 744  -0.706877476  8.449943     2
## 745   0.512665093 10.081918     4
## 746   0.066437183 11.023919     3
## 747   0.157042037 10.939597     3
## 748   0.433331123 11.646358     3
## 749   0.425728247  9.708050     3
## 750  -0.229712166  9.410256     3
## 751  -0.811874553  8.182276     2
## 752   1.614674608 11.049240     5
## 753  -0.389964883 10.383818     3
## 754   1.654240293 12.423194     5
## 755   0.498362885  9.728969     3
## 756   0.355977379 10.647606     3
## 757   0.181620006 10.255737     3
## 758  -2.066775658  7.584948     1
## 759  -0.887629250  9.036777     2
## 760   0.076549278  9.479180     3
## 761   0.306016174  9.759835     3
## 762   0.407523610  8.918659     3
## 763   0.065570055  9.386736     3
## 764   2.203123128 12.366621     5
## 765  -0.025903145  9.530757     3
## 766   0.077341701 10.158095     3
## 767   0.417648509 11.089273     3
## 768  -0.974219571  8.202288     2
## 769   0.013827649 10.213876     3
## 770  -0.025273460 10.381802     3
## 771  -0.607467052  7.865663     2
## 772  -0.591275558  7.946014     2
## 773   1.733164805 11.349208     5
## 774   0.781144483  8.302748     4
## 775   0.856296669 10.171675     4
## 776  -0.075048615  9.701660     3
## 777  -1.253113361  7.588552     2
## 778   0.138834607  9.379636     3
## 779  -0.022773277  8.500283     3
## 780  -1.675978029  7.350132     1
## 781   0.626194616 11.398833     4
## 782  -0.478192393  9.248220     3
## 783  -0.544286684  9.028786     2
## 784  -0.247510506  8.852832     3
## 785  -0.657851135 10.349731     2
## 786   0.171642562 11.500001     3
## 787   0.149695959 10.225988     3
## 788  -1.169907736  7.432825     2
## 789  -0.909512257 10.464784     2
## 790   0.872538709 10.855860     4
## 791   0.137105024 10.326656     3
## 792   2.592036516 10.656819     5
## 793  -1.266557423  8.392862     2
## 794   1.239556480 12.055624     4
## 795   0.081549786 10.714002     3
## 796   0.396064015 11.492191     3
## 797  -1.417899769  8.889547     2
## 798  -1.704076471  8.847777     1
## 799  -0.822017317  9.700667     2
## 800   1.486512387 11.390159     4
## 801  -0.031635041 10.775471     3
## 802  -0.284024958  9.322121     3
## 803  -1.016307936  7.253196     2
## 804   0.518748512  9.258393     4
## 805   0.454742988  9.894357     3
## 806   0.942021037 12.351662     4
## 807  -0.611611423  9.294048     2
## 808   0.527102627 10.991597     4
## 809  -0.565160050 10.452825     2
## 810  -0.386083242  8.384148     3
## 811   0.684099161 10.831056     4
## 812   1.278193337 10.330869     4
## 813   1.391787379 11.451032     4
## 814  -0.610195504  8.728909     2
## 815  -0.648404689  9.023295     2
## 816  -0.052875991 11.544023     3
## 817   1.115110365 12.339630     4
## 818  -0.642646728 11.911523     2
## 819  -0.329526358  9.072166     3
## 820  -0.883051275  8.336106     2
## 821   0.703805350 10.563075     4
## 822   1.218857451 10.675474     4
## 823  -0.113008126  8.098852     3
## 824  -0.021897169 10.481394     3
## 825  -0.137060043 10.861506     3
## 826  -0.355718624 10.094960     3
## 827  -0.667967359  8.711487     2
## 828  -1.752808239  8.076675     1
## 829  -0.882549482  8.804658     2
## 830   1.568041549 11.758939     5
## 831  -0.655181126  8.245167     2
## 832   0.201692855 11.600840     3
## 833   0.172190493  9.184036     3
## 834  -0.094737839 12.543777     3
## 835   1.171066556  9.623159     4
## 836  -0.283086338 10.374473     3
## 837   1.126671004  9.744546     4
## 838   1.808939576 12.098816     5
## 839   1.825541933 11.126575     5
## 840   0.797362766  9.949521     4
## 841   0.182986860 10.275360     3
## 842  -0.709881799 10.962297     2
## 843  -0.664680757  9.735631     2
## 844   2.516431210 12.747066     5
## 845   1.120517644 11.437870     4
## 846   1.540391614 11.651103     5
## 847   0.371810178  8.686535     3
## 848   0.563581344 11.746910     4
## 849   1.351893154 11.249326     4
## 850   0.026595585  9.219739     3
## 851  -0.201196063  9.472024     3
## 852  -1.197729700  7.499361     2
## 853   1.070001901 10.316907     4
## 854  -0.418279464  9.644327     3
## 855   1.028969071 11.141298     4
## 856   0.813759571 11.522665     4
## 857   0.416318781 11.526858     3
## 858  -2.512680394  7.976835     1
## 859   0.185109946  8.861137     3
## 860  -1.020318651  9.164876     2
## 861   2.345925197 11.576915     5
## 862  -0.021076408  9.660766     3
## 863   0.496224586  9.007329     3
## 864  -1.898713443  9.615257     1
## 865  -0.950571527 10.611669     2
## 866  -0.010772066 11.553071     3
## 867  -0.396625388  8.612791     3
## 868  -1.070993741  8.693776     2
## 869   0.511029246 11.258892     4
## 870   1.473854218 13.618803     4
## 871   0.982265669 12.804018     4
## 872  -0.958962259 10.939437     2
## 873  -0.581594272 10.726555     2
## 874  -0.105563748 10.054316     3
## 875   0.204213981 10.962498     3
## 876  -0.083984765 11.051440     3
## 877   0.115338986 12.333788     3
## 878   0.558260308  9.646670     4
## 879  -0.306684591  9.431180     3
## 880   0.728338981  9.286578     4
## 881  -0.062027886 10.067625     3
## 882   0.312969373 11.681930     3
## 883   0.715073927  9.715805     4
## 884   1.785635335 10.224939     5
## 885   1.562206062 13.724767     5
## 886  -0.307412251 12.279691     3
## 887  -0.200564040  9.496859     3
## 888  -0.442372242  9.329736     3
## 889  -0.122340648  8.727838     3
## 890   0.501440314 11.056363     4
## 891  -1.261328597  8.616760     2
## 892  -0.314769102  9.598864     3
## 893  -1.390071997  7.215738     2
## 894   1.638121638 11.566543     5
## 895  -1.603698075  7.446868     1
## 896  -0.059722663  9.814717     3
## 897   0.184474230 10.798028     3
## 898   2.269502090 10.832557     5
## 899   0.553885160  9.330817     4
## 900  -1.451345437  9.209948     2
## 901   0.566454270 10.733505     4
## 902   0.715319302 11.017264     4
## 903   0.760963089 10.958267     4
## 904  -0.615469802  9.599542     2
## 905   0.086929569 11.457333     3
## 906  -0.508109454  8.414126     2
## 907  -0.806884221  8.957749     2
## 908   0.737092180 12.009328     4
## 909   0.365585556 10.405115     3
## 910  -1.254915592  9.107448     2
## 911  -0.956502285  9.093949     2
## 912   0.925106124 10.143036     4
## 913  -1.451558464  7.149481     2
## 914   1.786560953 11.555270     5
## 915  -1.230537212 10.255003     2
## 916  -0.474135569  9.499160     3
## 917   1.066971122 11.128639     4
## 918  -0.345958063  7.158757     3
## 919   1.811681783 11.152294     5
## 920   0.518519398  9.903146     4
## 921   0.974195942 11.032954     4
## 922   0.989789561  9.568849     4
## 923   0.664136160 12.266367     4
## 924  -0.415230540  8.660444     3
## 925  -0.786862526  8.583312     2
## 926  -1.332459510  8.409802     2
## 927   0.556865228  9.809807     4
## 928   0.413823674 10.348939     3
## 929   1.312937024  9.181033     4
## 930  -1.773184619  9.671457     1
## 931   1.000597224 10.932281     4
## 932   1.565296836 11.454503     5
## 933  -0.477279661  8.877483     3
## 934   0.085587758 11.036353     3
## 935   1.372366971 11.074686     4
## 936  -0.248546372  9.559910     3
## 937  -1.098829127  8.427883     2
## 938   0.677466680 11.186308     4
## 939   0.328251908 11.275577     3
## 940  -0.951368820  9.401156     2
## 941  -1.883817004  9.244987     1
## 942  -0.644709462  8.638729     2
## 943  -0.966193968  8.477686     2
## 944  -0.821568050  9.364069     2
## 945   1.181470410  9.335608     4
## 946   0.157356350 10.271207     3
## 947   0.500257926 11.635929     4
## 948  -0.107348773  9.676485     3
## 949   0.668222077 12.493398     4
## 950  -1.550614394  7.371118     1
## 951   0.220794915  8.143091     3
## 952   1.065687151 10.445803     4
## 953  -0.853515977  9.843700     2
## 954   0.846346293 10.905391     4
## 955  -0.733673373 10.378495     2
## 956   1.151136614  8.162185     4
## 957   1.159105019 10.768036     4
## 958   0.161076158 10.944931     3
## 959  -2.266603148  7.208008     1
## 960   1.670214180 11.936578     5
## 961   0.088193408 10.888311     3
## 962   0.187784285 10.776751     3
## 963  -0.201882480 10.306143     3
## 964  -0.354548164  8.863324     3
## 965  -0.666353276  7.541529     2
## 966   0.099907993  9.539837     3
## 967  -0.131183089 11.083625     3
## 968   1.523832762 11.815626     5
## 969  -1.896024853  7.177838     1
## 970   0.263332824  8.701289     3
## 971  -0.136004132  9.924350     3
## 972  -1.056328148  8.818110     2
## 973   0.993536100 11.226740     4
## 974   0.125972418  9.115142     3
## 975  -0.636347471 10.814696     2
## 976  -1.055062802 10.417167     2
## 977  -0.796014652  9.627613     2
## 978   0.137708805  9.950472     3
## 979   1.114772347 11.370896     4
## 980   0.427069705 11.922489     3
## 981  -1.573738375  7.738907     1
## 982  -2.909977566  7.922421     1
## 983   1.772225758 10.801073     5
## 984  -0.188183182  8.672432     3
## 985  -0.300829351 10.381830     3
## 986  -1.351418308  5.645012     2
## 987  -0.847513573  8.966473     2
## 988   1.019803135 10.655435     4
## 989   1.078847903 10.531512     4
## 990  -2.696212853  7.938439     1
## 991   1.105414851  9.913044     4
## 992   0.952766769 10.472313     4
## 993   0.204972420 10.910439     3
## 994   0.910300690  9.010875     4
## 995   0.822300179 11.933051     4
## 996   0.662749220 10.510978     4
## 997   0.301601206 11.881657     3
## 998  -0.386042463  8.756952     3
## 999   0.142477912 10.291801     3
## 1000 -1.545568549  9.325882     1
# creates plot object using ggplot
plot <- ggplot(sample_data, aes(x = xAxis, y= yAxis, col = as.factor(group)))+
  geom_point()+theme(legend.position = "none")

# Display plot
plot

# Insert marginal ditribution using marginal function
ggMarginal(plot,type= 'histogram',groupColour=TRUE,groupFill=TRUE)