# Mindanao State University
# General Santos City
# A0 Basic Graphs Using R
# Submitted by: Davy D. Dongosa, 1-BSMATH
# Mat108
# Lab Exercise 1: How to create Lines in with different styles in R
# Step 1: Create Data
x <-1:10 # Create example data
y <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9) # using the c() function to create an array
# Step 2: Plot the line graph using the base plot() command
plot(x, y, type ="l")

# Step 3: Add Main Title & Change Axis Labels
plot(x, y, type = "l",
main = "Hello: This is my Line Plot",
xlab = "My X-Values",
ylab = "My Y-Values")

# Step 4: Add color to the line using the col command
plot(x, y, type = "l",
main = "This is my Line Plot",
xlab = "My X-Values",
ylab = "My Y-Values",
col = "red")

# Step 5: Modify Thickness of Line using lwd command
plot(x, y, type = "l",
main = "This is my Line Plot",
xlab = "My X-Values",
ylab = "My Y-Values",
lwd=7,
col = "green")

# Step 6: Add points to line graph by changing the type command
plot(x, y, type = "b",
main = "This is my Line Plot",
xlab = "My X-Values",
ylab = "My Y-Values",
lwd=3,
col = "blue")

# Step 6: Add points to line graph by changing the type command
plot(x, y, type = "b",
main = "This is my Line Plot",
xlab = "My X-Values",
ylab = "My Y-Values",
lwd=3,
col = "blue")
# Lab Exercise 2: How to create Lines in with different styles in R
# Step1: Assign values for different lines. We enclose the entire
# line with parenthesis symbol to force R to display the results instantly
# set the same value for the x variable
(x <- 1:10)
## [1] 1 2 3 4 5 6 7 8 9 10
# set different values for y variables
(y1 <-c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9))
## [1] 3 1 5 2 3 8 4 7 6 9
# set different values for y variables
(y2<-c(5, 1, 4, 6, 2, 3, 7, 8, 2, 8))
## [1] 5 1 4 6 2 3 7 8 2 8
# set different values for y variables
(y3 <-c(3, 3, 3, 3, 4, 4, 5, 5, 7, 7))
## [1] 3 3 3 3 4 4 5 5 7 7
# Plot first the pair x and y1.
plot(x, y1, type = "b",
main = "This is my Line Plot",
xlab = "My X-Values",
ylab = "My Y-Values",
lwd=3,
col = "blue")
# then Add the two lines (for x,y2) and (x,y3)
lines(x, y2, type ="b", col ="red",lwd=3)
lines(x, y3, type ="b", col = "green",lwd=3)
# Add legend to the plot
legend("topleft",
legend = c("Line y1", "Line y2","Line y3"),
col = c("black","red", "green"),
lty = 1)

# Step 2: Create Different Point Symbol for Each
# Line using the pch command
plot(x, y1, type ="b",pch = 16,
main = "This is my Line Plot",
xlab = "My X-Values",
ylab = "My Y-Values",
lwd=3,
col = "blue")
lines(x, y2, type = "b", col ="red",lwd=3, pch = 15)
lines(x, y3, type = "b", col = "green",lwd=3, pch = 8)
# Add legend
legend("topleft",
legend = c("Line y1", "Line y2", "Line y3"),
col = c("black", "red", "green"),
lty = 1)

# Lab Exercise 3: Create Line graph without x values
Pupils <-c(3.55 ,3.54 ,3.53 ,3.61 ,3.65 ,3.63 ,3.61
,3.61 ,3.59 ,3.63 ,3.59 ,3.63 ,3.62 ,3.62
,3.59 ,3.63 ,3.62 ,3.65 ,3.65)
# get number of elements of Pupils
length(Pupils)
## [1] 19
# Display the elements of Pupils
Pupils
## [1] 3.55 3.54 3.53 3.61 3.65 3.63 3.61 3.61 3.59 3.63 3.59 3.63 3.62 3.62 3.59
## [16] 3.63 3.62 3.65 3.65
# You can obtain the plot without x values
plot(Pupils, type = 'o')

# Lab Exercise 4: How to Create vertical, horizontal lines
# We will use buit-in cars dataset in R
# display the cars dataset
cars
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
## 7 10 18
## 8 10 26
## 9 10 34
## 10 11 17
## 11 11 28
## 12 12 14
## 13 12 20
## 14 12 24
## 15 12 28
## 16 13 26
## 17 13 34
## 18 13 34
## 19 13 46
## 20 14 26
## 21 14 36
## 22 14 60
## 23 14 80
## 24 15 20
## 25 15 26
## 26 15 54
## 27 16 32
## 28 16 40
## 29 17 32
## 30 17 40
## 31 17 50
## 32 18 42
## 33 18 56
## 34 18 76
## 35 18 84
## 36 19 36
## 37 19 46
## 38 19 68
## 39 20 32
## 40 20 48
## 41 20 52
## 42 20 56
## 43 20 64
## 44 22 66
## 45 23 54
## 46 24 70
## 47 24 92
## 48 24 93
## 49 24 120
## 50 25 85
# get the number of rows and columns using dim() command
dim(cars)
## [1] 50 2
# display the variable names of the cars dataset
names(cars)
## [1] "speed" "dist"
# display only the first column of the dataset
cars$speed # using the column name
## [1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
cars[,1] # using the column number
## [1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
# Remarks: the following commands will give you the same result
plot(cars,) # using the comma after the name

plot(cars[,1],cars[,2]) # using the column index 1 and 2

attach(cars); plot(speed,dist) # using the attach command to load the variables

plot(cars$speed,cars$dist) # using the dollar notation

# combine all 4 plots using the par() command
par(mfrow = c(2,2)) # set a 2x2 plot output
plot(cars,) # using the comma after the name
plot(cars[,1],cars[,2]) # using the column index 1 and 2
attach(cars); plot(speed,dist) # using the attach command to load the variables
## The following objects are masked from cars (pos = 3):
##
## dist, speed
plot(cars$speed,cars$dist) # using the dollar notation

par(mfrow = c(1,1)) # reset to default plot setting
# Problem: Create vertical lines using the v command
plot(cars)
abline(v = 15, col = "darkgreen",lwd=3) # vertical line
abline(v = 10, col = "blue",lwd=3) # vertical line
# Problem: Create horizontal lines using the h command
abline(h = 80, col = "darkgreen",lwd=3) # vertical line
abline(h = 20, col = "blue",lwd=3) # vertical line

# Create more lines simultaneously, using a vector of values
plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
lwd = c(1, 3,2), # line thickness
lty = c(2,2,2)) # dashed lines

plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
lwd = c(1, 3,2)) # line thickness and solid lines

# create horizontal lines
plot(cars)
abline(h = 60, col = "red",lty = 1, lwd = 3)
abline(h = 100, col = "red",lty = 2, lwd = 3)
abline(h = 20, col = "red",lty = 3, lwd = 3)

# Lab Exercise 5: How to Plot data by group
# We will use buit-in iris dataset in R
# this dataset is a collection of 4 species of flowers with different
# sepal length and width and also with different petal length and width
dim(iris) # iris dataset has 150 rows and 5 columns
## [1] 150 5
names(iris)
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
# two different commands to get the frequency table
table(iris$Species) # refer to the dataset by variable name
##
## setosa versicolor virginica
## 50 50 50
table(iris[,5]) # refer to the dataset by column number
##
## setosa versicolor virginica
## 50 50 50
# get summary of all columns
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
#create scatterplot of sepal width vs. sepal length
plot(iris$Sepal.Width, iris$Sepal.Length,
col='steelblue',
main='Scatterplot',
xlab='Sepal Width',
ylab='Sepal Length',
pch=19)#create scatterplot of sepal width vs. sepal length
plot(iris$Sepal.Width, iris$Sepal.Length,
col='steelblue',
main='Scatterplot',
xlab='Sepal Width',
ylab='Sepal Length',
pch=19)

plot(iris$Sepal.Width, iris$Sepal.Length,
col='steelblue',
main='Scatterplot',
xlab='Sepal Width',
ylab='Sepal Length',
pch=1)

# another way to retrieve columns of data
PL <-iris$Petal.Length
PW <- iris$Petal.Width
plot(PL, PW)

# add color by species
plot(PL, PW, col = iris$Species, main= "My Plot")
# draw a line along with the distribution of points
# using the abline and lm commands
abline(lm(PW ~ PL))
# add text annotation
text(5, 0.5, "Regression Line")
legend("topleft", # specify the location of the legend
levels(iris$Species), # specify the levels of species
pch = 1:3, # specify three symbols used for the three species
col = 1:3 # specify three colors for the three species
)

# Lab Exercise 6: Generate advance scatter plot
pairs(iris, col = rainbow(3)[iris$Species]) # set colors by species

# How to filter data for each flower
(Versicolor <- subset(iris, Species == "versicolor"))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 51 7.0 3.2 4.7 1.4 versicolor
## 52 6.4 3.2 4.5 1.5 versicolor
## 53 6.9 3.1 4.9 1.5 versicolor
## 54 5.5 2.3 4.0 1.3 versicolor
## 55 6.5 2.8 4.6 1.5 versicolor
## 56 5.7 2.8 4.5 1.3 versicolor
## 57 6.3 3.3 4.7 1.6 versicolor
## 58 4.9 2.4 3.3 1.0 versicolor
## 59 6.6 2.9 4.6 1.3 versicolor
## 60 5.2 2.7 3.9 1.4 versicolor
## 61 5.0 2.0 3.5 1.0 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 63 6.0 2.2 4.0 1.0 versicolor
## 64 6.1 2.9 4.7 1.4 versicolor
## 65 5.6 2.9 3.6 1.3 versicolor
## 66 6.7 3.1 4.4 1.4 versicolor
## 67 5.6 3.0 4.5 1.5 versicolor
## 68 5.8 2.7 4.1 1.0 versicolor
## 69 6.2 2.2 4.5 1.5 versicolor
## 70 5.6 2.5 3.9 1.1 versicolor
## 71 5.9 3.2 4.8 1.8 versicolor
## 72 6.1 2.8 4.0 1.3 versicolor
## 73 6.3 2.5 4.9 1.5 versicolor
## 74 6.1 2.8 4.7 1.2 versicolor
## 75 6.4 2.9 4.3 1.3 versicolor
## 76 6.6 3.0 4.4 1.4 versicolor
## 77 6.8 2.8 4.8 1.4 versicolor
## 78 6.7 3.0 5.0 1.7 versicolor
## 79 6.0 2.9 4.5 1.5 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 81 5.5 2.4 3.8 1.1 versicolor
## 82 5.5 2.4 3.7 1.0 versicolor
## 83 5.8 2.7 3.9 1.2 versicolor
## 84 6.0 2.7 5.1 1.6 versicolor
## 85 5.4 3.0 4.5 1.5 versicolor
## 86 6.0 3.4 4.5 1.6 versicolor
## 87 6.7 3.1 4.7 1.5 versicolor
## 88 6.3 2.3 4.4 1.3 versicolor
## 89 5.6 3.0 4.1 1.3 versicolor
## 90 5.5 2.5 4.0 1.3 versicolor
## 91 5.5 2.6 4.4 1.2 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 93 5.8 2.6 4.0 1.2 versicolor
## 94 5.0 2.3 3.3 1.0 versicolor
## 95 5.6 2.7 4.2 1.3 versicolor
## 96 5.7 3.0 4.2 1.2 versicolor
## 97 5.7 2.9 4.2 1.3 versicolor
## 98 6.2 2.9 4.3 1.3 versicolor
## 99 5.1 2.5 3.0 1.1 versicolor
## 100 5.7 2.8 4.1 1.3 versicolor
(Setosa <- subset(iris, Species == "setosa"))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 41 5.0 3.5 1.3 0.3 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 44 5.0 3.5 1.6 0.6 setosa
## 45 5.1 3.8 1.9 0.4 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 47 5.1 3.8 1.6 0.2 setosa
## 48 4.6 3.2 1.4 0.2 setosa
## 49 5.3 3.7 1.5 0.2 setosa
## 50 5.0 3.3 1.4 0.2 setosa
(Virginica <- subset(iris, Species == "virginica"))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 101 6.3 3.3 6.0 2.5 virginica
## 102 5.8 2.7 5.1 1.9 virginica
## 103 7.1 3.0 5.9 2.1 virginica
## 104 6.3 2.9 5.6 1.8 virginica
## 105 6.5 3.0 5.8 2.2 virginica
## 106 7.6 3.0 6.6 2.1 virginica
## 107 4.9 2.5 4.5 1.7 virginica
## 108 7.3 2.9 6.3 1.8 virginica
## 109 6.7 2.5 5.8 1.8 virginica
## 110 7.2 3.6 6.1 2.5 virginica
## 111 6.5 3.2 5.1 2.0 virginica
## 112 6.4 2.7 5.3 1.9 virginica
## 113 6.8 3.0 5.5 2.1 virginica
## 114 5.7 2.5 5.0 2.0 virginica
## 115 5.8 2.8 5.1 2.4 virginica
## 116 6.4 3.2 5.3 2.3 virginica
## 117 6.5 3.0 5.5 1.8 virginica
## 118 7.7 3.8 6.7 2.2 virginica
## 119 7.7 2.6 6.9 2.3 virginica
## 120 6.0 2.2 5.0 1.5 virginica
## 121 6.9 3.2 5.7 2.3 virginica
## 122 5.6 2.8 4.9 2.0 virginica
## 123 7.7 2.8 6.7 2.0 virginica
## 124 6.3 2.7 4.9 1.8 virginica
## 125 6.7 3.3 5.7 2.1 virginica
## 126 7.2 3.2 6.0 1.8 virginica
## 127 6.2 2.8 4.8 1.8 virginica
## 128 6.1 3.0 4.9 1.8 virginica
## 129 6.4 2.8 5.6 2.1 virginica
## 130 7.2 3.0 5.8 1.6 virginica
## 131 7.4 2.8 6.1 1.9 virginica
## 132 7.9 3.8 6.4 2.0 virginica
## 133 6.4 2.8 5.6 2.2 virginica
## 134 6.3 2.8 5.1 1.5 virginica
## 135 6.1 2.6 5.6 1.4 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 137 6.3 3.4 5.6 2.4 virginica
## 138 6.4 3.1 5.5 1.8 virginica
## 139 6.0 3.0 4.8 1.8 virginica
## 140 6.9 3.1 5.4 2.1 virginica
## 141 6.7 3.1 5.6 2.4 virginica
## 142 6.9 3.1 5.1 2.3 virginica
## 143 5.8 2.7 5.1 1.9 virginica
## 144 6.8 3.2 5.9 2.3 virginica
## 145 6.7 3.3 5.7 2.5 virginica
## 146 6.7 3.0 5.2 2.3 virginica
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
# Draw boxplot for each type of flower
boxplot(Versicolor[,1:4], main="Versicolor, Rainbow Palette",ylim =
c(0,8),las=2, col=rainbow(4))

boxplot(Setosa[,1:4], main="Setosa, Heat color Palette",ylim = c(0,8),las=2,
col=heat.colors(4))

boxplot(Virginica[,1:4], main="Virginica, Topo colors Palette",ylim =
c(0,8),las=2, col=topo.colors(4))

# Lab Exercise 7: How to load external datasets
# From a local directory
# the folder that contains the file should be specified completely
# using the forward slash symbol instead of the backward splash
library(readr)
cancer <- read_csv("Cancer.csv")
## Rows: 173 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): country, continent
## dbl (15): incomeperperson, alcconsumption, armedforcesrate, breastcancer, co...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dim(cancer)
## [1] 173 17
names(cancer)
## [1] "country" "incomeperperson" "alcconsumption"
## [4] "armedforcesrate" "breastcancer" "co2emissions"
## [7] "femaleemployrate" "hivrate" "internetuserate"
## [10] "lifeexpectancy" "oilperperson" "polityscore"
## [13] "relectricperperson" "suicideper100th" "employrate"
## [16] "urbanrate" "continent"
# compute mean value for every continent
(means <- round(tapply(cancer$breastcancer, cancer$continent, mean),
digits=2))
## AF AS EE LATAM NORAM OC WE
## 24.02 24.51 49.44 36.70 71.73 45.80 74.80
# draw boxplot per continent
boxplot(cancer$breastcancer ~ cancer$continent, main= "Breast cancer by
continent (brown dot = mean value)", xlab="continents", ylab="new
cases per 100,00 residents", col=rainbow(7))
# insert the mean value using brown dot
points(means, col="brown", pch=18)

# Lab Exercise 8: How to load external datasets and change data layout
library(readr)
hsb2 <- read_csv("hsb2.csv")
## New names:
## Rows: 200 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (12): ...1, id, female, race, ses, schtyp, prog, read, write, math, scie...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
# display only the top 6 rows
head(hsb2)
## # A tibble: 6 × 12
## ...1 id female race ses schtyp prog read write math science socst
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 70 0 4 1 1 1 57 52 41 47 57
## 2 2 121 1 4 2 1 3 68 59 53 63 61
## 3 3 86 0 4 3 1 1 44 33 54 58 31
## 4 4 141 0 4 3 1 3 63 44 47 53 56
## 5 5 172 0 4 2 1 2 47 52 57 53 61
## 6 6 113 0 4 2 1 2 44 52 51 63 61
# display only the last 6 rows
tail(hsb2)
## # A tibble: 6 × 12
## ...1 id female race ses schtyp prog read write math science socst
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 195 179 1 4 2 2 2 47 65 60 50 56
## 2 196 31 1 2 2 2 1 55 59 52 42 56
## 3 197 145 1 4 2 1 3 42 46 38 36 46
## 4 198 187 1 4 2 2 1 57 41 57 55 52
## 5 199 118 1 4 2 1 1 55 62 58 58 61
## 6 200 137 1 4 3 1 2 63 65 65 53 61
# delete redundant first column (run only once)
(hsb2 <- hsb2[-1])
## # A tibble: 200 × 11
## id female race ses schtyp prog read write math science socst
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 70 0 4 1 1 1 57 52 41 47 57
## 2 121 1 4 2 1 3 68 59 53 63 61
## 3 86 0 4 3 1 1 44 33 54 58 31
## 4 141 0 4 3 1 3 63 44 47 53 56
## 5 172 0 4 2 1 2 47 52 57 53 61
## 6 113 0 4 2 1 2 44 52 51 63 61
## 7 50 0 3 2 1 1 50 59 42 53 61
## 8 11 0 1 2 1 2 34 46 45 39 36
## 9 84 0 4 2 1 1 63 57 54 58 51
## 10 48 0 3 2 1 2 57 55 52 50 51
## # ℹ 190 more rows
# Remarks
# hsb2 dataset consists of 200 selected random samples from senior
# high school students in the US.
# We want to compare the student performance across different subjects
# change data layout by grouping different subjects
# into one column using melt() command. Install first reshape2 package
# install.packages("reshape2")
library(reshape2)
(hsb2_long <- melt(hsb2, measure.vars =
c("read","write","math","science","socst")))
## id female race ses schtyp prog variable value
## 1 70 0 4 1 1 1 read 57
## 2 121 1 4 2 1 3 read 68
## 3 86 0 4 3 1 1 read 44
## 4 141 0 4 3 1 3 read 63
## 5 172 0 4 2 1 2 read 47
## 6 113 0 4 2 1 2 read 44
## 7 50 0 3 2 1 1 read 50
## 8 11 0 1 2 1 2 read 34
## 9 84 0 4 2 1 1 read 63
## 10 48 0 3 2 1 2 read 57
## 11 75 0 4 2 1 3 read 60
## 12 60 0 4 2 1 2 read 57
## 13 95 0 4 3 1 2 read 73
## 14 104 0 4 3 1 2 read 54
## 15 38 0 3 1 1 2 read 45
## 16 115 0 4 1 1 1 read 42
## 17 76 0 4 3 1 2 read 47
## 18 195 0 4 2 2 1 read 57
## 19 114 0 4 3 1 2 read 68
## 20 85 0 4 2 1 1 read 55
## 21 167 0 4 2 1 1 read 63
## 22 143 0 4 2 1 3 read 63
## 23 41 0 3 2 1 2 read 50
## 24 20 0 1 3 1 2 read 60
## 25 12 0 1 2 1 3 read 37
## 26 53 0 3 2 1 3 read 34
## 27 154 0 4 3 1 2 read 65
## 28 178 0 4 2 2 3 read 47
## 29 196 0 4 3 2 2 read 44
## 30 29 0 2 1 1 1 read 52
## 31 126 0 4 2 1 1 read 42
## 32 103 0 4 3 1 2 read 76
## 33 192 0 4 3 2 2 read 65
## 34 150 0 4 2 1 3 read 42
## 35 199 0 4 3 2 2 read 52
## 36 144 0 4 3 1 1 read 60
## 37 200 0 4 2 2 2 read 68
## 38 80 0 4 3 1 2 read 65
## 39 16 0 1 1 1 3 read 47
## 40 153 0 4 2 1 3 read 39
## 41 176 0 4 2 2 2 read 47
## 42 177 0 4 2 2 2 read 55
## 43 168 0 4 2 1 2 read 52
## 44 40 0 3 1 1 1 read 42
## 45 62 0 4 3 1 1 read 65
## 46 169 0 4 1 1 1 read 55
## 47 49 0 3 3 1 3 read 50
## 48 136 0 4 2 1 2 read 65
## 49 189 0 4 2 2 2 read 47
## 50 7 0 1 2 1 2 read 57
## 51 27 0 2 2 1 2 read 53
## 52 128 0 4 3 1 2 read 39
## 53 21 0 1 2 1 1 read 44
## 54 183 0 4 2 2 2 read 63
## 55 132 0 4 2 1 2 read 73
## 56 15 0 1 3 1 3 read 39
## 57 67 0 4 1 1 3 read 37
## 58 22 0 1 2 1 3 read 42
## 59 185 0 4 2 2 2 read 63
## 60 9 0 1 2 1 3 read 48
## 61 181 0 4 2 2 2 read 50
## 62 170 0 4 3 1 2 read 47
## 63 134 0 4 1 1 1 read 44
## 64 108 0 4 2 1 1 read 34
## 65 197 0 4 3 2 2 read 50
## 66 140 0 4 2 1 3 read 44
## 67 171 0 4 2 1 2 read 60
## 68 107 0 4 1 1 3 read 47
## 69 81 0 4 1 1 2 read 63
## 70 18 0 1 2 1 3 read 50
## 71 155 0 4 2 1 1 read 44
## 72 97 0 4 3 1 2 read 60
## 73 68 0 4 2 1 2 read 73
## 74 157 0 4 2 1 1 read 68
## 75 56 0 4 2 1 3 read 55
## 76 5 0 1 1 1 2 read 47
## 77 159 0 4 3 1 2 read 55
## 78 123 0 4 3 1 1 read 68
## 79 164 0 4 2 1 3 read 31
## 80 14 0 1 3 1 2 read 47
## 81 127 0 4 3 1 2 read 63
## 82 165 0 4 1 1 3 read 36
## 83 174 0 4 2 2 2 read 68
## 84 3 0 1 1 1 2 read 63
## 85 58 0 4 2 1 3 read 55
## 86 146 0 4 3 1 2 read 55
## 87 102 0 4 3 1 2 read 52
## 88 117 0 4 3 1 3 read 34
## 89 133 0 4 2 1 3 read 50
## 90 94 0 4 3 1 2 read 55
## 91 24 0 2 2 1 2 read 52
## 92 149 0 4 1 1 1 read 63
## 93 82 1 4 3 1 2 read 68
## 94 8 1 1 1 1 2 read 39
## 95 129 1 4 1 1 1 read 44
## 96 173 1 4 1 1 1 read 50
## 97 57 1 4 2 1 2 read 71
## 98 100 1 4 3 1 2 read 63
## 99 1 1 1 1 1 3 read 34
## 100 194 1 4 3 2 2 read 63
## 101 88 1 4 3 1 2 read 68
## 102 99 1 4 3 1 1 read 47
## 103 47 1 3 1 1 2 read 47
## 104 120 1 4 3 1 2 read 63
## 105 166 1 4 2 1 2 read 52
## 106 65 1 4 2 1 2 read 55
## 107 101 1 4 3 1 2 read 60
## 108 89 1 4 1 1 3 read 35
## 109 54 1 3 1 2 1 read 47
## 110 180 1 4 3 2 2 read 71
## 111 162 1 4 2 1 3 read 57
## 112 4 1 1 1 1 2 read 44
## 113 131 1 4 3 1 2 read 65
## 114 125 1 4 1 1 2 read 68
## 115 34 1 1 3 2 2 read 73
## 116 106 1 4 2 1 3 read 36
## 117 130 1 4 3 1 1 read 43
## 118 93 1 4 3 1 2 read 73
## 119 163 1 4 1 1 2 read 52
## 120 37 1 3 1 1 3 read 41
## 121 35 1 1 1 2 1 read 60
## 122 87 1 4 2 1 1 read 50
## 123 73 1 4 2 1 2 read 50
## 124 151 1 4 2 1 3 read 47
## 125 44 1 3 1 1 3 read 47
## 126 152 1 4 3 1 2 read 55
## 127 105 1 4 2 1 2 read 50
## 128 28 1 2 2 1 1 read 39
## 129 91 1 4 3 1 3 read 50
## 130 45 1 3 1 1 3 read 34
## 131 116 1 4 2 1 2 read 57
## 132 33 1 2 1 1 2 read 57
## 133 66 1 4 2 1 3 read 68
## 134 72 1 4 2 1 3 read 42
## 135 77 1 4 1 1 2 read 61
## 136 61 1 4 3 1 2 read 76
## 137 190 1 4 2 2 2 read 47
## 138 42 1 3 2 1 3 read 46
## 139 2 1 1 2 1 3 read 39
## 140 55 1 3 2 2 2 read 52
## 141 19 1 1 1 1 1 read 28
## 142 90 1 4 3 1 2 read 42
## 143 142 1 4 2 1 3 read 47
## 144 17 1 1 2 1 2 read 47
## 145 122 1 4 2 1 2 read 52
## 146 191 1 4 3 2 2 read 47
## 147 83 1 4 2 1 3 read 50
## 148 182 1 4 2 2 2 read 44
## 149 6 1 1 1 1 2 read 47
## 150 46 1 3 1 1 2 read 45
## 151 43 1 3 1 1 2 read 47
## 152 96 1 4 3 1 2 read 65
## 153 138 1 4 2 1 3 read 43
## 154 10 1 1 2 1 1 read 47
## 155 71 1 4 2 1 1 read 57
## 156 139 1 4 2 1 2 read 68
## 157 110 1 4 2 1 3 read 52
## 158 148 1 4 2 1 3 read 42
## 159 109 1 4 2 1 1 read 42
## 160 39 1 3 3 1 2 read 66
## 161 147 1 4 1 1 2 read 47
## 162 74 1 4 2 1 2 read 57
## 163 198 1 4 3 2 2 read 47
## 164 161 1 4 1 1 2 read 57
## 165 112 1 4 2 1 2 read 52
## 166 69 1 4 1 1 3 read 44
## 167 156 1 4 2 1 2 read 50
## 168 111 1 4 1 1 1 read 39
## 169 186 1 4 2 2 2 read 57
## 170 98 1 4 1 1 3 read 57
## 171 119 1 4 1 1 1 read 42
## 172 13 1 1 2 1 3 read 47
## 173 51 1 3 3 1 1 read 42
## 174 26 1 2 3 1 2 read 60
## 175 36 1 3 1 1 1 read 44
## 176 135 1 4 1 1 2 read 63
## 177 59 1 4 2 1 2 read 65
## 178 78 1 4 2 1 2 read 39
## 179 64 1 4 3 1 3 read 50
## 180 63 1 4 1 1 1 read 52
## 181 79 1 4 2 1 2 read 60
## 182 193 1 4 2 2 2 read 44
## 183 92 1 4 3 1 1 read 52
## 184 160 1 4 2 1 2 read 55
## 185 32 1 2 3 1 3 read 50
## 186 23 1 2 1 1 2 read 65
## 187 158 1 4 2 1 1 read 52
## 188 25 1 2 2 1 1 read 47
## 189 188 1 4 3 2 2 read 63
## 190 52 1 3 1 1 2 read 50
## 191 124 1 4 1 1 3 read 42
## 192 175 1 4 3 2 1 read 36
## 193 184 1 4 2 2 3 read 50
## 194 30 1 2 3 1 2 read 41
## 195 179 1 4 2 2 2 read 47
## 196 31 1 2 2 2 1 read 55
## 197 145 1 4 2 1 3 read 42
## 198 187 1 4 2 2 1 read 57
## 199 118 1 4 2 1 1 read 55
## 200 137 1 4 3 1 2 read 63
## 201 70 0 4 1 1 1 write 52
## 202 121 1 4 2 1 3 write 59
## 203 86 0 4 3 1 1 write 33
## 204 141 0 4 3 1 3 write 44
## 205 172 0 4 2 1 2 write 52
## 206 113 0 4 2 1 2 write 52
## 207 50 0 3 2 1 1 write 59
## 208 11 0 1 2 1 2 write 46
## 209 84 0 4 2 1 1 write 57
## 210 48 0 3 2 1 2 write 55
## 211 75 0 4 2 1 3 write 46
## 212 60 0 4 2 1 2 write 65
## 213 95 0 4 3 1 2 write 60
## 214 104 0 4 3 1 2 write 63
## 215 38 0 3 1 1 2 write 57
## 216 115 0 4 1 1 1 write 49
## 217 76 0 4 3 1 2 write 52
## 218 195 0 4 2 2 1 write 57
## 219 114 0 4 3 1 2 write 65
## 220 85 0 4 2 1 1 write 39
## 221 167 0 4 2 1 1 write 49
## 222 143 0 4 2 1 3 write 63
## 223 41 0 3 2 1 2 write 40
## 224 20 0 1 3 1 2 write 52
## 225 12 0 1 2 1 3 write 44
## 226 53 0 3 2 1 3 write 37
## 227 154 0 4 3 1 2 write 65
## 228 178 0 4 2 2 3 write 57
## 229 196 0 4 3 2 2 write 38
## 230 29 0 2 1 1 1 write 44
## 231 126 0 4 2 1 1 write 31
## 232 103 0 4 3 1 2 write 52
## 233 192 0 4 3 2 2 write 67
## 234 150 0 4 2 1 3 write 41
## 235 199 0 4 3 2 2 write 59
## 236 144 0 4 3 1 1 write 65
## 237 200 0 4 2 2 2 write 54
## 238 80 0 4 3 1 2 write 62
## 239 16 0 1 1 1 3 write 31
## 240 153 0 4 2 1 3 write 31
## 241 176 0 4 2 2 2 write 47
## 242 177 0 4 2 2 2 write 59
## 243 168 0 4 2 1 2 write 54
## 244 40 0 3 1 1 1 write 41
## 245 62 0 4 3 1 1 write 65
## 246 169 0 4 1 1 1 write 59
## 247 49 0 3 3 1 3 write 40
## 248 136 0 4 2 1 2 write 59
## 249 189 0 4 2 2 2 write 59
## 250 7 0 1 2 1 2 write 54
## 251 27 0 2 2 1 2 write 61
## 252 128 0 4 3 1 2 write 33
## 253 21 0 1 2 1 1 write 44
## 254 183 0 4 2 2 2 write 59
## 255 132 0 4 2 1 2 write 62
## 256 15 0 1 3 1 3 write 39
## 257 67 0 4 1 1 3 write 37
## 258 22 0 1 2 1 3 write 39
## 259 185 0 4 2 2 2 write 57
## 260 9 0 1 2 1 3 write 49
## 261 181 0 4 2 2 2 write 46
## 262 170 0 4 3 1 2 write 62
## 263 134 0 4 1 1 1 write 44
## 264 108 0 4 2 1 1 write 33
## 265 197 0 4 3 2 2 write 42
## 266 140 0 4 2 1 3 write 41
## 267 171 0 4 2 1 2 write 54
## 268 107 0 4 1 1 3 write 39
## 269 81 0 4 1 1 2 write 43
## 270 18 0 1 2 1 3 write 33
## 271 155 0 4 2 1 1 write 44
## 272 97 0 4 3 1 2 write 54
## 273 68 0 4 2 1 2 write 67
## 274 157 0 4 2 1 1 write 59
## 275 56 0 4 2 1 3 write 45
## 276 5 0 1 1 1 2 write 40
## 277 159 0 4 3 1 2 write 61
## 278 123 0 4 3 1 1 write 59
## 279 164 0 4 2 1 3 write 36
## 280 14 0 1 3 1 2 write 41
## 281 127 0 4 3 1 2 write 59
## 282 165 0 4 1 1 3 write 49
## 283 174 0 4 2 2 2 write 59
## 284 3 0 1 1 1 2 write 65
## 285 58 0 4 2 1 3 write 41
## 286 146 0 4 3 1 2 write 62
## 287 102 0 4 3 1 2 write 41
## 288 117 0 4 3 1 3 write 49
## 289 133 0 4 2 1 3 write 31
## 290 94 0 4 3 1 2 write 49
## 291 24 0 2 2 1 2 write 62
## 292 149 0 4 1 1 1 write 49
## 293 82 1 4 3 1 2 write 62
## 294 8 1 1 1 1 2 write 44
## 295 129 1 4 1 1 1 write 44
## 296 173 1 4 1 1 1 write 62
## 297 57 1 4 2 1 2 write 65
## 298 100 1 4 3 1 2 write 65
## 299 1 1 1 1 1 3 write 44
## 300 194 1 4 3 2 2 write 63
## 301 88 1 4 3 1 2 write 60
## 302 99 1 4 3 1 1 write 59
## 303 47 1 3 1 1 2 write 46
## 304 120 1 4 3 1 2 write 52
## 305 166 1 4 2 1 2 write 59
## 306 65 1 4 2 1 2 write 54
## 307 101 1 4 3 1 2 write 62
## 308 89 1 4 1 1 3 write 35
## 309 54 1 3 1 2 1 write 54
## 310 180 1 4 3 2 2 write 65
## 311 162 1 4 2 1 3 write 52
## 312 4 1 1 1 1 2 write 50
## 313 131 1 4 3 1 2 write 59
## 314 125 1 4 1 1 2 write 65
## 315 34 1 1 3 2 2 write 61
## 316 106 1 4 2 1 3 write 44
## 317 130 1 4 3 1 1 write 54
## 318 93 1 4 3 1 2 write 67
## 319 163 1 4 1 1 2 write 57
## 320 37 1 3 1 1 3 write 47
## 321 35 1 1 1 2 1 write 54
## 322 87 1 4 2 1 1 write 52
## 323 73 1 4 2 1 2 write 52
## 324 151 1 4 2 1 3 write 46
## 325 44 1 3 1 1 3 write 62
## 326 152 1 4 3 1 2 write 57
## 327 105 1 4 2 1 2 write 41
## 328 28 1 2 2 1 1 write 53
## 329 91 1 4 3 1 3 write 49
## 330 45 1 3 1 1 3 write 35
## 331 116 1 4 2 1 2 write 59
## 332 33 1 2 1 1 2 write 65
## 333 66 1 4 2 1 3 write 62
## 334 72 1 4 2 1 3 write 54
## 335 77 1 4 1 1 2 write 59
## 336 61 1 4 3 1 2 write 63
## 337 190 1 4 2 2 2 write 59
## 338 42 1 3 2 1 3 write 52
## 339 2 1 1 2 1 3 write 41
## 340 55 1 3 2 2 2 write 49
## 341 19 1 1 1 1 1 write 46
## 342 90 1 4 3 1 2 write 54
## 343 142 1 4 2 1 3 write 42
## 344 17 1 1 2 1 2 write 57
## 345 122 1 4 2 1 2 write 59
## 346 191 1 4 3 2 2 write 52
## 347 83 1 4 2 1 3 write 62
## 348 182 1 4 2 2 2 write 52
## 349 6 1 1 1 1 2 write 41
## 350 46 1 3 1 1 2 write 55
## 351 43 1 3 1 1 2 write 37
## 352 96 1 4 3 1 2 write 54
## 353 138 1 4 2 1 3 write 57
## 354 10 1 1 2 1 1 write 54
## 355 71 1 4 2 1 1 write 62
## 356 139 1 4 2 1 2 write 59
## 357 110 1 4 2 1 3 write 55
## 358 148 1 4 2 1 3 write 57
## 359 109 1 4 2 1 1 write 39
## 360 39 1 3 3 1 2 write 67
## 361 147 1 4 1 1 2 write 62
## 362 74 1 4 2 1 2 write 50
## 363 198 1 4 3 2 2 write 61
## 364 161 1 4 1 1 2 write 62
## 365 112 1 4 2 1 2 write 59
## 366 69 1 4 1 1 3 write 44
## 367 156 1 4 2 1 2 write 59
## 368 111 1 4 1 1 1 write 54
## 369 186 1 4 2 2 2 write 62
## 370 98 1 4 1 1 3 write 60
## 371 119 1 4 1 1 1 write 57
## 372 13 1 1 2 1 3 write 46
## 373 51 1 3 3 1 1 write 36
## 374 26 1 2 3 1 2 write 59
## 375 36 1 3 1 1 1 write 49
## 376 135 1 4 1 1 2 write 60
## 377 59 1 4 2 1 2 write 67
## 378 78 1 4 2 1 2 write 54
## 379 64 1 4 3 1 3 write 52
## 380 63 1 4 1 1 1 write 65
## 381 79 1 4 2 1 2 write 62
## 382 193 1 4 2 2 2 write 49
## 383 92 1 4 3 1 1 write 67
## 384 160 1 4 2 1 2 write 65
## 385 32 1 2 3 1 3 write 67
## 386 23 1 2 1 1 2 write 65
## 387 158 1 4 2 1 1 write 54
## 388 25 1 2 2 1 1 write 44
## 389 188 1 4 3 2 2 write 62
## 390 52 1 3 1 1 2 write 46
## 391 124 1 4 1 1 3 write 54
## 392 175 1 4 3 2 1 write 57
## 393 184 1 4 2 2 3 write 52
## 394 30 1 2 3 1 2 write 59
## 395 179 1 4 2 2 2 write 65
## 396 31 1 2 2 2 1 write 59
## 397 145 1 4 2 1 3 write 46
## 398 187 1 4 2 2 1 write 41
## 399 118 1 4 2 1 1 write 62
## 400 137 1 4 3 1 2 write 65
## 401 70 0 4 1 1 1 math 41
## 402 121 1 4 2 1 3 math 53
## 403 86 0 4 3 1 1 math 54
## 404 141 0 4 3 1 3 math 47
## 405 172 0 4 2 1 2 math 57
## 406 113 0 4 2 1 2 math 51
## 407 50 0 3 2 1 1 math 42
## 408 11 0 1 2 1 2 math 45
## 409 84 0 4 2 1 1 math 54
## 410 48 0 3 2 1 2 math 52
## 411 75 0 4 2 1 3 math 51
## 412 60 0 4 2 1 2 math 51
## 413 95 0 4 3 1 2 math 71
## 414 104 0 4 3 1 2 math 57
## 415 38 0 3 1 1 2 math 50
## 416 115 0 4 1 1 1 math 43
## 417 76 0 4 3 1 2 math 51
## 418 195 0 4 2 2 1 math 60
## 419 114 0 4 3 1 2 math 62
## 420 85 0 4 2 1 1 math 57
## 421 167 0 4 2 1 1 math 35
## 422 143 0 4 2 1 3 math 75
## 423 41 0 3 2 1 2 math 45
## 424 20 0 1 3 1 2 math 57
## 425 12 0 1 2 1 3 math 45
## 426 53 0 3 2 1 3 math 46
## 427 154 0 4 3 1 2 math 66
## 428 178 0 4 2 2 3 math 57
## 429 196 0 4 3 2 2 math 49
## 430 29 0 2 1 1 1 math 49
## 431 126 0 4 2 1 1 math 57
## 432 103 0 4 3 1 2 math 64
## 433 192 0 4 3 2 2 math 63
## 434 150 0 4 2 1 3 math 57
## 435 199 0 4 3 2 2 math 50
## 436 144 0 4 3 1 1 math 58
## 437 200 0 4 2 2 2 math 75
## 438 80 0 4 3 1 2 math 68
## 439 16 0 1 1 1 3 math 44
## 440 153 0 4 2 1 3 math 40
## 441 176 0 4 2 2 2 math 41
## 442 177 0 4 2 2 2 math 62
## 443 168 0 4 2 1 2 math 57
## 444 40 0 3 1 1 1 math 43
## 445 62 0 4 3 1 1 math 48
## 446 169 0 4 1 1 1 math 63
## 447 49 0 3 3 1 3 math 39
## 448 136 0 4 2 1 2 math 70
## 449 189 0 4 2 2 2 math 63
## 450 7 0 1 2 1 2 math 59
## 451 27 0 2 2 1 2 math 61
## 452 128 0 4 3 1 2 math 38
## 453 21 0 1 2 1 1 math 61
## 454 183 0 4 2 2 2 math 49
## 455 132 0 4 2 1 2 math 73
## 456 15 0 1 3 1 3 math 44
## 457 67 0 4 1 1 3 math 42
## 458 22 0 1 2 1 3 math 39
## 459 185 0 4 2 2 2 math 55
## 460 9 0 1 2 1 3 math 52
## 461 181 0 4 2 2 2 math 45
## 462 170 0 4 3 1 2 math 61
## 463 134 0 4 1 1 1 math 39
## 464 108 0 4 2 1 1 math 41
## 465 197 0 4 3 2 2 math 50
## 466 140 0 4 2 1 3 math 40
## 467 171 0 4 2 1 2 math 60
## 468 107 0 4 1 1 3 math 47
## 469 81 0 4 1 1 2 math 59
## 470 18 0 1 2 1 3 math 49
## 471 155 0 4 2 1 1 math 46
## 472 97 0 4 3 1 2 math 58
## 473 68 0 4 2 1 2 math 71
## 474 157 0 4 2 1 1 math 58
## 475 56 0 4 2 1 3 math 46
## 476 5 0 1 1 1 2 math 43
## 477 159 0 4 3 1 2 math 54
## 478 123 0 4 3 1 1 math 56
## 479 164 0 4 2 1 3 math 46
## 480 14 0 1 3 1 2 math 54
## 481 127 0 4 3 1 2 math 57
## 482 165 0 4 1 1 3 math 54
## 483 174 0 4 2 2 2 math 71
## 484 3 0 1 1 1 2 math 48
## 485 58 0 4 2 1 3 math 40
## 486 146 0 4 3 1 2 math 64
## 487 102 0 4 3 1 2 math 51
## 488 117 0 4 3 1 3 math 39
## 489 133 0 4 2 1 3 math 40
## 490 94 0 4 3 1 2 math 61
## 491 24 0 2 2 1 2 math 66
## 492 149 0 4 1 1 1 math 49
## 493 82 1 4 3 1 2 math 65
## 494 8 1 1 1 1 2 math 52
## 495 129 1 4 1 1 1 math 46
## 496 173 1 4 1 1 1 math 61
## 497 57 1 4 2 1 2 math 72
## 498 100 1 4 3 1 2 math 71
## 499 1 1 1 1 1 3 math 40
## 500 194 1 4 3 2 2 math 69
## 501 88 1 4 3 1 2 math 64
## 502 99 1 4 3 1 1 math 56
## 503 47 1 3 1 1 2 math 49
## 504 120 1 4 3 1 2 math 54
## 505 166 1 4 2 1 2 math 53
## 506 65 1 4 2 1 2 math 66
## 507 101 1 4 3 1 2 math 67
## 508 89 1 4 1 1 3 math 40
## 509 54 1 3 1 2 1 math 46
## 510 180 1 4 3 2 2 math 69
## 511 162 1 4 2 1 3 math 40
## 512 4 1 1 1 1 2 math 41
## 513 131 1 4 3 1 2 math 57
## 514 125 1 4 1 1 2 math 58
## 515 34 1 1 3 2 2 math 57
## 516 106 1 4 2 1 3 math 37
## 517 130 1 4 3 1 1 math 55
## 518 93 1 4 3 1 2 math 62
## 519 163 1 4 1 1 2 math 64
## 520 37 1 3 1 1 3 math 40
## 521 35 1 1 1 2 1 math 50
## 522 87 1 4 2 1 1 math 46
## 523 73 1 4 2 1 2 math 53
## 524 151 1 4 2 1 3 math 52
## 525 44 1 3 1 1 3 math 45
## 526 152 1 4 3 1 2 math 56
## 527 105 1 4 2 1 2 math 45
## 528 28 1 2 2 1 1 math 54
## 529 91 1 4 3 1 3 math 56
## 530 45 1 3 1 1 3 math 41
## 531 116 1 4 2 1 2 math 54
## 532 33 1 2 1 1 2 math 72
## 533 66 1 4 2 1 3 math 56
## 534 72 1 4 2 1 3 math 47
## 535 77 1 4 1 1 2 math 49
## 536 61 1 4 3 1 2 math 60
## 537 190 1 4 2 2 2 math 54
## 538 42 1 3 2 1 3 math 55
## 539 2 1 1 2 1 3 math 33
## 540 55 1 3 2 2 2 math 49
## 541 19 1 1 1 1 1 math 43
## 542 90 1 4 3 1 2 math 50
## 543 142 1 4 2 1 3 math 52
## 544 17 1 1 2 1 2 math 48
## 545 122 1 4 2 1 2 math 58
## 546 191 1 4 3 2 2 math 43
## 547 83 1 4 2 1 3 math 41
## 548 182 1 4 2 2 2 math 43
## 549 6 1 1 1 1 2 math 46
## 550 46 1 3 1 1 2 math 44
## 551 43 1 3 1 1 2 math 43
## 552 96 1 4 3 1 2 math 61
## 553 138 1 4 2 1 3 math 40
## 554 10 1 1 2 1 1 math 49
## 555 71 1 4 2 1 1 math 56
## 556 139 1 4 2 1 2 math 61
## 557 110 1 4 2 1 3 math 50
## 558 148 1 4 2 1 3 math 51
## 559 109 1 4 2 1 1 math 42
## 560 39 1 3 3 1 2 math 67
## 561 147 1 4 1 1 2 math 53
## 562 74 1 4 2 1 2 math 50
## 563 198 1 4 3 2 2 math 51
## 564 161 1 4 1 1 2 math 72
## 565 112 1 4 2 1 2 math 48
## 566 69 1 4 1 1 3 math 40
## 567 156 1 4 2 1 2 math 53
## 568 111 1 4 1 1 1 math 39
## 569 186 1 4 2 2 2 math 63
## 570 98 1 4 1 1 3 math 51
## 571 119 1 4 1 1 1 math 45
## 572 13 1 1 2 1 3 math 39
## 573 51 1 3 3 1 1 math 42
## 574 26 1 2 3 1 2 math 62
## 575 36 1 3 1 1 1 math 44
## 576 135 1 4 1 1 2 math 65
## 577 59 1 4 2 1 2 math 63
## 578 78 1 4 2 1 2 math 54
## 579 64 1 4 3 1 3 math 45
## 580 63 1 4 1 1 1 math 60
## 581 79 1 4 2 1 2 math 49
## 582 193 1 4 2 2 2 math 48
## 583 92 1 4 3 1 1 math 57
## 584 160 1 4 2 1 2 math 55
## 585 32 1 2 3 1 3 math 66
## 586 23 1 2 1 1 2 math 64
## 587 158 1 4 2 1 1 math 55
## 588 25 1 2 2 1 1 math 42
## 589 188 1 4 3 2 2 math 56
## 590 52 1 3 1 1 2 math 53
## 591 124 1 4 1 1 3 math 41
## 592 175 1 4 3 2 1 math 42
## 593 184 1 4 2 2 3 math 53
## 594 30 1 2 3 1 2 math 42
## 595 179 1 4 2 2 2 math 60
## 596 31 1 2 2 2 1 math 52
## 597 145 1 4 2 1 3 math 38
## 598 187 1 4 2 2 1 math 57
## 599 118 1 4 2 1 1 math 58
## 600 137 1 4 3 1 2 math 65
## 601 70 0 4 1 1 1 science 47
## 602 121 1 4 2 1 3 science 63
## 603 86 0 4 3 1 1 science 58
## 604 141 0 4 3 1 3 science 53
## 605 172 0 4 2 1 2 science 53
## 606 113 0 4 2 1 2 science 63
## 607 50 0 3 2 1 1 science 53
## 608 11 0 1 2 1 2 science 39
## 609 84 0 4 2 1 1 science 58
## 610 48 0 3 2 1 2 science 50
## 611 75 0 4 2 1 3 science 53
## 612 60 0 4 2 1 2 science 63
## 613 95 0 4 3 1 2 science 61
## 614 104 0 4 3 1 2 science 55
## 615 38 0 3 1 1 2 science 31
## 616 115 0 4 1 1 1 science 50
## 617 76 0 4 3 1 2 science 50
## 618 195 0 4 2 2 1 science 58
## 619 114 0 4 3 1 2 science 55
## 620 85 0 4 2 1 1 science 53
## 621 167 0 4 2 1 1 science 66
## 622 143 0 4 2 1 3 science 72
## 623 41 0 3 2 1 2 science 55
## 624 20 0 1 3 1 2 science 61
## 625 12 0 1 2 1 3 science 39
## 626 53 0 3 2 1 3 science 39
## 627 154 0 4 3 1 2 science 61
## 628 178 0 4 2 2 3 science 58
## 629 196 0 4 3 2 2 science 39
## 630 29 0 2 1 1 1 science 55
## 631 126 0 4 2 1 1 science 47
## 632 103 0 4 3 1 2 science 64
## 633 192 0 4 3 2 2 science 66
## 634 150 0 4 2 1 3 science 72
## 635 199 0 4 3 2 2 science 61
## 636 144 0 4 3 1 1 science 61
## 637 200 0 4 2 2 2 science 66
## 638 80 0 4 3 1 2 science 66
## 639 16 0 1 1 1 3 science 36
## 640 153 0 4 2 1 3 science 39
## 641 176 0 4 2 2 2 science 42
## 642 177 0 4 2 2 2 science 58
## 643 168 0 4 2 1 2 science 55
## 644 40 0 3 1 1 1 science 50
## 645 62 0 4 3 1 1 science 63
## 646 169 0 4 1 1 1 science 69
## 647 49 0 3 3 1 3 science 49
## 648 136 0 4 2 1 2 science 63
## 649 189 0 4 2 2 2 science 53
## 650 7 0 1 2 1 2 science 47
## 651 27 0 2 2 1 2 science 57
## 652 128 0 4 3 1 2 science 47
## 653 21 0 1 2 1 1 science 50
## 654 183 0 4 2 2 2 science 55
## 655 132 0 4 2 1 2 science 69
## 656 15 0 1 3 1 3 science 26
## 657 67 0 4 1 1 3 science 33
## 658 22 0 1 2 1 3 science 56
## 659 185 0 4 2 2 2 science 58
## 660 9 0 1 2 1 3 science 44
## 661 181 0 4 2 2 2 science 58
## 662 170 0 4 3 1 2 science 69
## 663 134 0 4 1 1 1 science 34
## 664 108 0 4 2 1 1 science 36
## 665 197 0 4 3 2 2 science 36
## 666 140 0 4 2 1 3 science 50
## 667 171 0 4 2 1 2 science 55
## 668 107 0 4 1 1 3 science 42
## 669 81 0 4 1 1 2 science 65
## 670 18 0 1 2 1 3 science 44
## 671 155 0 4 2 1 1 science 39
## 672 97 0 4 3 1 2 science 58
## 673 68 0 4 2 1 2 science 63
## 674 157 0 4 2 1 1 science 74
## 675 56 0 4 2 1 3 science 58
## 676 5 0 1 1 1 2 science 45
## 677 159 0 4 3 1 2 science 49
## 678 123 0 4 3 1 1 science 63
## 679 164 0 4 2 1 3 science 39
## 680 14 0 1 3 1 2 science 42
## 681 127 0 4 3 1 2 science 55
## 682 165 0 4 1 1 3 science 61
## 683 174 0 4 2 2 2 science 66
## 684 3 0 1 1 1 2 science 63
## 685 58 0 4 2 1 3 science 44
## 686 146 0 4 3 1 2 science 63
## 687 102 0 4 3 1 2 science 53
## 688 117 0 4 3 1 3 science 42
## 689 133 0 4 2 1 3 science 34
## 690 94 0 4 3 1 2 science 61
## 691 24 0 2 2 1 2 science 47
## 692 149 0 4 1 1 1 science 66
## 693 82 1 4 3 1 2 science 69
## 694 8 1 1 1 1 2 science 44
## 695 129 1 4 1 1 1 science 47
## 696 173 1 4 1 1 1 science 63
## 697 57 1 4 2 1 2 science 66
## 698 100 1 4 3 1 2 science 69
## 699 1 1 1 1 1 3 science 39
## 700 194 1 4 3 2 2 science 61
## 701 88 1 4 3 1 2 science 69
## 702 99 1 4 3 1 1 science 66
## 703 47 1 3 1 1 2 science 33
## 704 120 1 4 3 1 2 science 50
## 705 166 1 4 2 1 2 science 61
## 706 65 1 4 2 1 2 science 42
## 707 101 1 4 3 1 2 science 50
## 708 89 1 4 1 1 3 science 51
## 709 54 1 3 1 2 1 science 50
## 710 180 1 4 3 2 2 science 58
## 711 162 1 4 2 1 3 science 61
## 712 4 1 1 1 1 2 science 39
## 713 131 1 4 3 1 2 science 46
## 714 125 1 4 1 1 2 science 59
## 715 34 1 1 3 2 2 science 55
## 716 106 1 4 2 1 3 science 42
## 717 130 1 4 3 1 1 science 55
## 718 93 1 4 3 1 2 science 58
## 719 163 1 4 1 1 2 science 58
## 720 37 1 3 1 1 3 science 39
## 721 35 1 1 1 2 1 science 50
## 722 87 1 4 2 1 1 science 50
## 723 73 1 4 2 1 2 science 39
## 724 151 1 4 2 1 3 science 48
## 725 44 1 3 1 1 3 science 34
## 726 152 1 4 3 1 2 science 58
## 727 105 1 4 2 1 2 science 44
## 728 28 1 2 2 1 1 science 50
## 729 91 1 4 3 1 3 science 47
## 730 45 1 3 1 1 3 science 29
## 731 116 1 4 2 1 2 science 50
## 732 33 1 2 1 1 2 science 54
## 733 66 1 4 2 1 3 science 50
## 734 72 1 4 2 1 3 science 47
## 735 77 1 4 1 1 2 science 44
## 736 61 1 4 3 1 2 science 67
## 737 190 1 4 2 2 2 science 58
## 738 42 1 3 2 1 3 science 44
## 739 2 1 1 2 1 3 science 42
## 740 55 1 3 2 2 2 science 44
## 741 19 1 1 1 1 1 science 44
## 742 90 1 4 3 1 2 science 50
## 743 142 1 4 2 1 3 science 39
## 744 17 1 1 2 1 2 science 44
## 745 122 1 4 2 1 2 science 53
## 746 191 1 4 3 2 2 science 48
## 747 83 1 4 2 1 3 science 55
## 748 182 1 4 2 2 2 science 44
## 749 6 1 1 1 1 2 science 40
## 750 46 1 3 1 1 2 science 34
## 751 43 1 3 1 1 2 science 42
## 752 96 1 4 3 1 2 science 58
## 753 138 1 4 2 1 3 science 50
## 754 10 1 1 2 1 1 science 53
## 755 71 1 4 2 1 1 science 58
## 756 139 1 4 2 1 2 science 55
## 757 110 1 4 2 1 3 science 54
## 758 148 1 4 2 1 3 science 47
## 759 109 1 4 2 1 1 science 42
## 760 39 1 3 3 1 2 science 61
## 761 147 1 4 1 1 2 science 53
## 762 74 1 4 2 1 2 science 51
## 763 198 1 4 3 2 2 science 63
## 764 161 1 4 1 1 2 science 61
## 765 112 1 4 2 1 2 science 55
## 766 69 1 4 1 1 3 science 40
## 767 156 1 4 2 1 2 science 61
## 768 111 1 4 1 1 1 science 47
## 769 186 1 4 2 2 2 science 55
## 770 98 1 4 1 1 3 science 53
## 771 119 1 4 1 1 1 science 50
## 772 13 1 1 2 1 3 science 47
## 773 51 1 3 3 1 1 science 31
## 774 26 1 2 3 1 2 science 61
## 775 36 1 3 1 1 1 science 35
## 776 135 1 4 1 1 2 science 54
## 777 59 1 4 2 1 2 science 55
## 778 78 1 4 2 1 2 science 53
## 779 64 1 4 3 1 3 science 58
## 780 63 1 4 1 1 1 science 56
## 781 79 1 4 2 1 2 science 50
## 782 193 1 4 2 2 2 science 39
## 783 92 1 4 3 1 1 science 63
## 784 160 1 4 2 1 2 science 50
## 785 32 1 2 3 1 3 science 66
## 786 23 1 2 1 1 2 science 58
## 787 158 1 4 2 1 1 science 53
## 788 25 1 2 2 1 1 science 42
## 789 188 1 4 3 2 2 science 55
## 790 52 1 3 1 1 2 science 53
## 791 124 1 4 1 1 3 science 42
## 792 175 1 4 3 2 1 science 50
## 793 184 1 4 2 2 3 science 55
## 794 30 1 2 3 1 2 science 34
## 795 179 1 4 2 2 2 science 50
## 796 31 1 2 2 2 1 science 42
## 797 145 1 4 2 1 3 science 36
## 798 187 1 4 2 2 1 science 55
## 799 118 1 4 2 1 1 science 58
## 800 137 1 4 3 1 2 science 53
## 801 70 0 4 1 1 1 socst 57
## 802 121 1 4 2 1 3 socst 61
## 803 86 0 4 3 1 1 socst 31
## 804 141 0 4 3 1 3 socst 56
## 805 172 0 4 2 1 2 socst 61
## 806 113 0 4 2 1 2 socst 61
## 807 50 0 3 2 1 1 socst 61
## 808 11 0 1 2 1 2 socst 36
## 809 84 0 4 2 1 1 socst 51
## 810 48 0 3 2 1 2 socst 51
## 811 75 0 4 2 1 3 socst 61
## 812 60 0 4 2 1 2 socst 61
## 813 95 0 4 3 1 2 socst 71
## 814 104 0 4 3 1 2 socst 46
## 815 38 0 3 1 1 2 socst 56
## 816 115 0 4 1 1 1 socst 56
## 817 76 0 4 3 1 2 socst 56
## 818 195 0 4 2 2 1 socst 56
## 819 114 0 4 3 1 2 socst 61
## 820 85 0 4 2 1 1 socst 46
## 821 167 0 4 2 1 1 socst 41
## 822 143 0 4 2 1 3 socst 66
## 823 41 0 3 2 1 2 socst 56
## 824 20 0 1 3 1 2 socst 61
## 825 12 0 1 2 1 3 socst 46
## 826 53 0 3 2 1 3 socst 31
## 827 154 0 4 3 1 2 socst 66
## 828 178 0 4 2 2 3 socst 46
## 829 196 0 4 3 2 2 socst 46
## 830 29 0 2 1 1 1 socst 41
## 831 126 0 4 2 1 1 socst 51
## 832 103 0 4 3 1 2 socst 61
## 833 192 0 4 3 2 2 socst 71
## 834 150 0 4 2 1 3 socst 31
## 835 199 0 4 3 2 2 socst 61
## 836 144 0 4 3 1 1 socst 66
## 837 200 0 4 2 2 2 socst 66
## 838 80 0 4 3 1 2 socst 66
## 839 16 0 1 1 1 3 socst 36
## 840 153 0 4 2 1 3 socst 51
## 841 176 0 4 2 2 2 socst 51
## 842 177 0 4 2 2 2 socst 51
## 843 168 0 4 2 1 2 socst 51
## 844 40 0 3 1 1 1 socst 41
## 845 62 0 4 3 1 1 socst 66
## 846 169 0 4 1 1 1 socst 46
## 847 49 0 3 3 1 3 socst 47
## 848 136 0 4 2 1 2 socst 51
## 849 189 0 4 2 2 2 socst 46
## 850 7 0 1 2 1 2 socst 51
## 851 27 0 2 2 1 2 socst 56
## 852 128 0 4 3 1 2 socst 41
## 853 21 0 1 2 1 1 socst 46
## 854 183 0 4 2 2 2 socst 71
## 855 132 0 4 2 1 2 socst 66
## 856 15 0 1 3 1 3 socst 42
## 857 67 0 4 1 1 3 socst 32
## 858 22 0 1 2 1 3 socst 46
## 859 185 0 4 2 2 2 socst 41
## 860 9 0 1 2 1 3 socst 51
## 861 181 0 4 2 2 2 socst 61
## 862 170 0 4 3 1 2 socst 66
## 863 134 0 4 1 1 1 socst 46
## 864 108 0 4 2 1 1 socst 36
## 865 197 0 4 3 2 2 socst 61
## 866 140 0 4 2 1 3 socst 26
## 867 171 0 4 2 1 2 socst 66
## 868 107 0 4 1 1 3 socst 26
## 869 81 0 4 1 1 2 socst 44
## 870 18 0 1 2 1 3 socst 36
## 871 155 0 4 2 1 1 socst 51
## 872 97 0 4 3 1 2 socst 61
## 873 68 0 4 2 1 2 socst 66
## 874 157 0 4 2 1 1 socst 66
## 875 56 0 4 2 1 3 socst 51
## 876 5 0 1 1 1 2 socst 31
## 877 159 0 4 3 1 2 socst 61
## 878 123 0 4 3 1 1 socst 66
## 879 164 0 4 2 1 3 socst 46
## 880 14 0 1 3 1 2 socst 56
## 881 127 0 4 3 1 2 socst 56
## 882 165 0 4 1 1 3 socst 36
## 883 174 0 4 2 2 2 socst 56
## 884 3 0 1 1 1 2 socst 56
## 885 58 0 4 2 1 3 socst 41
## 886 146 0 4 3 1 2 socst 66
## 887 102 0 4 3 1 2 socst 56
## 888 117 0 4 3 1 3 socst 56
## 889 133 0 4 2 1 3 socst 31
## 890 94 0 4 3 1 2 socst 56
## 891 24 0 2 2 1 2 socst 46
## 892 149 0 4 1 1 1 socst 46
## 893 82 1 4 3 1 2 socst 61
## 894 8 1 1 1 1 2 socst 48
## 895 129 1 4 1 1 1 socst 51
## 896 173 1 4 1 1 1 socst 51
## 897 57 1 4 2 1 2 socst 56
## 898 100 1 4 3 1 2 socst 71
## 899 1 1 1 1 1 3 socst 41
## 900 194 1 4 3 2 2 socst 61
## 901 88 1 4 3 1 2 socst 66
## 902 99 1 4 3 1 1 socst 61
## 903 47 1 3 1 1 2 socst 41
## 904 120 1 4 3 1 2 socst 51
## 905 166 1 4 2 1 2 socst 51
## 906 65 1 4 2 1 2 socst 56
## 907 101 1 4 3 1 2 socst 56
## 908 89 1 4 1 1 3 socst 33
## 909 54 1 3 1 2 1 socst 56
## 910 180 1 4 3 2 2 socst 71
## 911 162 1 4 2 1 3 socst 56
## 912 4 1 1 1 1 2 socst 51
## 913 131 1 4 3 1 2 socst 66
## 914 125 1 4 1 1 2 socst 56
## 915 34 1 1 3 2 2 socst 66
## 916 106 1 4 2 1 3 socst 41
## 917 130 1 4 3 1 1 socst 46
## 918 93 1 4 3 1 2 socst 66
## 919 163 1 4 1 1 2 socst 56
## 920 37 1 3 1 1 3 socst 51
## 921 35 1 1 1 2 1 socst 51
## 922 87 1 4 2 1 1 socst 56
## 923 73 1 4 2 1 2 socst 56
## 924 151 1 4 2 1 3 socst 46
## 925 44 1 3 1 1 3 socst 46
## 926 152 1 4 3 1 2 socst 61
## 927 105 1 4 2 1 2 socst 56
## 928 28 1 2 2 1 1 socst 41
## 929 91 1 4 3 1 3 socst 46
## 930 45 1 3 1 1 3 socst 26
## 931 116 1 4 2 1 2 socst 56
## 932 33 1 2 1 1 2 socst 56
## 933 66 1 4 2 1 3 socst 51
## 934 72 1 4 2 1 3 socst 46
## 935 77 1 4 1 1 2 socst 66
## 936 61 1 4 3 1 2 socst 66
## 937 190 1 4 2 2 2 socst 46
## 938 42 1 3 2 1 3 socst 56
## 939 2 1 1 2 1 3 socst 41
## 940 55 1 3 2 2 2 socst 61
## 941 19 1 1 1 1 1 socst 51
## 942 90 1 4 3 1 2 socst 52
## 943 142 1 4 2 1 3 socst 51
## 944 17 1 1 2 1 2 socst 41
## 945 122 1 4 2 1 2 socst 66
## 946 191 1 4 3 2 2 socst 61
## 947 83 1 4 2 1 3 socst 31
## 948 182 1 4 2 2 2 socst 51
## 949 6 1 1 1 1 2 socst 41
## 950 46 1 3 1 1 2 socst 41
## 951 43 1 3 1 1 2 socst 46
## 952 96 1 4 3 1 2 socst 56
## 953 138 1 4 2 1 3 socst 51
## 954 10 1 1 2 1 1 socst 61
## 955 71 1 4 2 1 1 socst 66
## 956 139 1 4 2 1 2 socst 71
## 957 110 1 4 2 1 3 socst 61
## 958 148 1 4 2 1 3 socst 61
## 959 109 1 4 2 1 1 socst 41
## 960 39 1 3 3 1 2 socst 66
## 961 147 1 4 1 1 2 socst 61
## 962 74 1 4 2 1 2 socst 58
## 963 198 1 4 3 2 2 socst 31
## 964 161 1 4 1 1 2 socst 61
## 965 112 1 4 2 1 2 socst 61
## 966 69 1 4 1 1 3 socst 31
## 967 156 1 4 2 1 2 socst 61
## 968 111 1 4 1 1 1 socst 36
## 969 186 1 4 2 2 2 socst 41
## 970 98 1 4 1 1 3 socst 37
## 971 119 1 4 1 1 1 socst 43
## 972 13 1 1 2 1 3 socst 61
## 973 51 1 3 3 1 1 socst 39
## 974 26 1 2 3 1 2 socst 51
## 975 36 1 3 1 1 1 socst 51
## 976 135 1 4 1 1 2 socst 66
## 977 59 1 4 2 1 2 socst 71
## 978 78 1 4 2 1 2 socst 41
## 979 64 1 4 3 1 3 socst 36
## 980 63 1 4 1 1 1 socst 51
## 981 79 1 4 2 1 2 socst 51
## 982 193 1 4 2 2 2 socst 51
## 983 92 1 4 3 1 1 socst 61
## 984 160 1 4 2 1 2 socst 61
## 985 32 1 2 3 1 3 socst 56
## 986 23 1 2 1 1 2 socst 71
## 987 158 1 4 2 1 1 socst 51
## 988 25 1 2 2 1 1 socst 36
## 989 188 1 4 3 2 2 socst 61
## 990 52 1 3 1 1 2 socst 66
## 991 124 1 4 1 1 3 socst 41
## 992 175 1 4 3 2 1 socst 41
## 993 184 1 4 2 2 3 socst 56
## 994 30 1 2 3 1 2 socst 51
## 995 179 1 4 2 2 2 socst 56
## 996 31 1 2 2 2 1 socst 56
## 997 145 1 4 2 1 3 socst 46
## 998 187 1 4 2 2 1 socst 52
## 999 118 1 4 2 1 1 socst 61
## 1000 137 1 4 3 1 2 socst 61
#Remark: Pay extra attention to the last 2 columns
head(hsb2_long)
## id female race ses schtyp prog variable value
## 1 70 0 4 1 1 1 read 57
## 2 121 1 4 2 1 3 read 68
## 3 86 0 4 3 1 1 read 44
## 4 141 0 4 3 1 3 read 63
## 5 172 0 4 2 1 2 read 47
## 6 113 0 4 2 1 2 read 44
tail(hsb2_long)
## id female race ses schtyp prog variable value
## 995 179 1 4 2 2 2 socst 56
## 996 31 1 2 2 2 1 socst 56
## 997 145 1 4 2 1 3 socst 46
## 998 187 1 4 2 2 1 socst 52
## 999 118 1 4 2 1 1 socst 61
## 1000 137 1 4 3 1 2 socst 61
# get thefrequency
table(hsb2_long$variable)
##
## read write math science socst
## 200 200 200 200 200
# the variables female, race, ses, schtyp, prog are stored as numbers
# for encoding purposes. However these variables are actually qualitative variables
# so we convert each from integer type to categorical type
# defining some variables to become factor variable
# we use another variable to preserve the file hsb2_long
data <- hsb2_long
data$ses = factor(data$ses, labels=c("low", "middle", "high"))
data$schtyp = factor(data$schtyp, labels=c("public", "private"))
data$prog = factor(data$prog, labels=c("general", "academic", "vocational"))
data$race = factor(data$race, labels=c("hispanic", "asian", "african-
amer","white"))
data$female = factor(data$female, labels=c("female", "male"))
# check data structure again. The former integer variables are now categorical variable
str(data)
## 'data.frame': 1000 obs. of 8 variables:
## $ id : num 70 121 86 141 172 113 50 11 84 48 ...
## $ female : Factor w/ 2 levels "female","male": 1 2 1 1 1 1 1 1 1 1 ...
## $ race : Factor w/ 4 levels "hispanic","asian",..: 4 4 4 4 4 4 3 1 4 3 ...
## $ ses : Factor w/ 3 levels "low","middle",..: 1 2 3 3 2 2 2 2 2 2 ...
## $ schtyp : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
## $ prog : Factor w/ 3 levels "general","academic",..: 1 3 1 3 2 2 1 2 1 2 ...
## $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ value : num 57 68 44 63 47 44 50 34 63 57 ...
# we compare student performance by using boxplots
library(gplots)
##
## Attaching package: 'gplots'
##
## The following object is masked from 'package:stats':
##
## lowess
# compute the average value by group using tapply() command
means <- round(tapply(data$value, data$variable, mean), digits=2)
# create boxplot by group
boxplot(data$value ~ data$variable, main= "Student Performance by Subject
(brown dot = mean score)",
xlab="Subject matter", ylab="Percentage Scores", col=rainbow(5))
# insert the average values
points(means, col="brown", pch=18)
# can also compute the median values
medians = round(tapply(data$value, data$variable, median), digits=2)
medians
## read write math science socst
## 50 54 52 53 52
points(medians, col="red", pch=18)
# Lab Exercise 9: How to plot categorical variables
library(ggplot2)

# we load variable names to memory to avoid the dollar notation
attach(hsb2_long)
# create the plot object p
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~race)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?

library(ggplot2)
attach(hsb2_long)
## The following objects are masked from hsb2_long (pos = 3):
##
## female, id, prog, race, schtyp, ses, value, variable
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~schtyp)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?

# Lab Exercise 10: Scatter Plots with marginal Distributions
# Advance Scatter plots using libraries
# install.packages("ggExtra")
# install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.1 ✔ stringr 1.5.0
## ✔ forcats 1.0.0 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggExtra)
# set theme appearance of grid background
theme_set(theme_bw(1))
# create X and Y vector
(xAxis <- rnorm(1000))
## [1] 0.0297457221 -0.3719067033 -0.8253756307 1.2635609301 0.3373823884
## [6] -1.1221804025 -1.2463666417 0.6475856235 1.0462736522 0.1527480433
## [11] -0.6534576853 1.4887153715 2.5621314625 1.5528798009 0.4994329011
## [16] 0.0948725504 -0.1323002499 0.4523541675 1.2768456677 0.6987960709
## [21] 0.0417965938 1.6388258527 1.4461354553 1.0818587624 0.0544531075
## [26] 0.1074881178 3.2339407154 1.8234381284 -3.2454524858 -1.9548676897
## [31] -0.1481428193 -0.6954619085 -0.8007918073 -0.3908060212 -1.8754739715
## [36] 1.2584700185 1.3151973251 0.5317531269 -0.0580682687 0.6921051899
## [41] 0.2346195712 -0.8610615238 0.6633136609 0.6744063999 0.3269978108
## [46] -0.4877755023 -0.1137583627 2.6781180839 0.1278014106 -0.3655744141
## [51] -0.4882098827 2.1734367878 -0.5429270303 -0.0193129758 0.3712298181
## [56] 0.0458684303 0.4391368022 0.5887800685 -0.1299347125 0.5530494818
## [61] 0.5919736062 1.3471604490 0.3072489895 -0.3194096380 -0.6597028712
## [66] 0.7702126840 0.3277050136 -0.9209661583 -0.4250160318 -0.7106530330
## [71] 0.9478641981 1.1902588180 1.1128440764 0.4792808503 -0.6179437288
## [76] -0.8940206173 0.4394460577 1.7830676794 0.6673078420 0.8616651994
## [81] 0.2115773632 0.1174122692 -0.5348682957 -1.2609639858 0.3004198304
## [86] 0.8909041637 -0.6307066462 -1.1581841792 -0.3813005073 -0.6356241906
## [91] 1.7560205216 0.3748407752 -1.0016321722 0.8815161214 -0.4446169157
## [96] 0.8056973043 0.9596901829 0.8839995274 1.1058517812 -1.3385581906
## [101] 0.2915704470 2.0975267880 2.4509721113 0.1523230095 -0.8194487876
## [106] -0.7872714077 0.4300525068 2.6854367340 0.7053059859 1.4962929491
## [111] 0.3158209939 -0.2913716149 1.2130750140 -1.2368420390 0.8569946197
## [116] 0.2882919879 -0.1584598250 -1.5852201440 -1.2602463461 -0.8132881969
## [121] 1.7349570309 -1.3992372867 -0.6953358783 1.0476741407 1.0244923691
## [126] 1.6643829979 -0.7463045863 -0.9935095546 0.6770156484 -0.8655686195
## [131] -0.1308094442 -0.6526466899 -0.9539715941 0.5201950445 0.0618129340
## [136] 0.4789391045 -0.7170856005 1.2520437364 -0.7848649740 0.0717970452
## [141] -1.4215403554 0.3497119775 1.1787481713 -0.3455071408 -0.1528148662
## [146] -0.8737248206 -2.1281153683 -0.8114387539 -1.6834010981 0.7467304858
## [151] -0.8531826868 0.9022617113 0.2724357033 1.3399059299 1.0002050319
## [156] 1.2897714746 -0.2337223301 -0.3529319491 -0.0254069604 -0.1415272495
## [161] 1.9534852377 0.7952436697 1.7059509124 0.2287902451 -0.7197580072
## [166] 1.4320970016 -0.4978682028 0.4033766157 -2.6827907193 -0.6434684961
## [171] 0.2104551201 0.1814535056 0.6256250418 -0.8334662839 -3.2866558340
## [176] -0.1914934496 0.0739430164 1.4013357109 0.4105214421 0.8348844985
## [181] 0.8303169205 1.4810686147 1.5778752152 0.2925599109 0.8528775091
## [186] 0.9956945843 -0.4423267967 1.0819348440 0.7509834580 1.2144061117
## [191] -0.6269285829 -1.9956967214 1.3999964670 -1.0847765252 -0.6366000027
## [196] -0.5343268251 0.0251600175 1.0198586086 -1.9443437091 0.6835100483
## [201] -0.5528511459 -0.6162332787 -0.6576578874 0.0815784655 -0.8171453347
## [206] 1.1364162684 -0.9335120173 0.4429067723 -0.3416493123 -0.6595571092
## [211] -1.3576045662 -0.1557524431 -1.0016997979 -0.5858578885 0.6424769480
## [216] -0.1446774168 0.6413738382 1.2383236686 -0.4187591588 -1.0799796455
## [221] -0.2213393487 0.9521837707 -1.7438350977 0.5400997653 1.1348809726
## [226] 0.4580609373 -0.3531589272 -1.7750748404 0.3808376441 0.1994831970
## [231] 2.0226426827 1.6038290968 0.1313310503 -1.7277859104 -0.3819201738
## [236] 1.9496984806 1.1765250763 -1.3226663181 -0.1918995827 1.9321220005
## [241] -0.5479718485 -0.5162434903 0.6466880213 0.5474881045 1.4852350735
## [246] 0.4599635112 -1.2623146455 1.0102853943 0.1850491089 -0.8903080334
## [251] 0.2763383093 -1.0220096042 1.1534258222 -0.7475686779 -0.9788482946
## [256] 1.3982609353 -1.3545032848 0.0508031229 -0.3559652436 1.8741142624
## [261] -1.2061940744 -0.6637800434 0.4488764355 0.3030192950 1.3982851122
## [266] -0.2512757324 0.5091259813 -0.6001630079 0.2581386892 -0.2329848448
## [271] 1.1489735461 0.5410224450 -0.8741434013 1.0738074060 -0.6522022046
## [276] -0.9285015744 0.7542558450 -0.2571674906 1.4037325119 1.0375238472
## [281] -0.2136570705 0.1853265992 0.1367506063 0.6520719678 2.1692158518
## [286] 1.3490746000 0.4583375324 -1.3220937126 0.1703010627 -0.0554655676
## [291] 0.2614838201 -1.7973645401 0.0384140595 -0.5096118249 -1.2379034206
## [296] -0.3713795580 2.0223192487 -0.6831552790 -0.7054738944 0.8583198419
## [301] -0.5101694671 -2.0772583556 -0.8092578543 0.7106423353 -1.4629320060
## [306] -1.1191629995 -1.3426143607 -0.9688817416 -0.4201186485 0.0849011625
## [311] -0.5009813782 0.5147757125 -0.2512468984 0.8567017527 0.0954278366
## [316] 1.2643845003 -0.5942554966 -0.1959233348 0.8031506208 -2.1043710184
## [321] -0.3513860160 1.5757064583 -1.1412941099 -0.0347549640 0.1347892449
## [326] 0.1820817426 1.8624937573 -0.2947744839 0.2065919606 -1.3272411922
## [331] 1.1415769922 0.7668875238 0.1615193508 -1.3263229136 -0.0769360389
## [336] -0.1828639582 0.6385818443 -1.7151803535 0.4288619325 0.1191084710
## [341] 0.6700526906 0.2790120515 0.2756173916 -0.1502085874 0.4331693172
## [346] 1.1467919103 -1.0165315629 1.1901396094 0.8015312079 0.0005762223
## [351] 2.8416201059 0.0935774062 -1.4909674779 0.5108198901 1.3321489205
## [356] 1.2695250294 -0.1738973419 0.2662572892 -0.3889410945 1.2288827984
## [361] -0.3381186163 -0.2380601220 1.0429621369 0.9803586578 1.3509120593
## [366] -0.7383224784 -0.4854716874 2.5997581769 -1.0815692092 -0.1471275718
## [371] -0.1600268250 -0.5704367848 -0.9198855770 -0.7636672908 1.4153589000
## [376] -0.1659504121 0.5639701711 0.8302977937 0.8173706018 0.1629736719
## [381] -1.5437672226 1.8359009049 -0.0632389876 -0.5539449771 0.9306801528
## [386] 0.4280427344 0.1520541167 -0.6252512522 0.2760306576 -0.5689200104
## [391] 1.2699471743 -0.3633696736 1.3456736697 -0.0522560763 -0.5662884605
## [396] 0.2091842034 -0.7015440325 -0.8046725672 1.3408945290 0.7954213419
## [401] -0.9010721323 0.8619327704 -0.2175228967 0.9659447097 -0.5372789740
## [406] -0.9546615639 -0.6797564966 -1.9018391496 1.6192149852 0.5472612225
## [411] -0.6144420252 1.1888269385 0.5635015544 0.4941279351 1.5312793554
## [416] -0.3020416968 -0.8869475881 0.4751195671 0.7773538511 -0.4089110935
## [421] 0.4281784664 2.0147695821 -0.7697458582 0.2758818202 0.2196724627
## [426] 1.0329571938 -0.8180375092 -0.2362989896 -1.2189605054 -2.1308951576
## [431] 1.0323978957 -0.7860113016 0.4428930284 0.2834588576 0.6802378303
## [436] -1.2289552681 -1.0900406038 2.5966592694 -1.5084017499 -0.9899890909
## [441] 0.3408482172 -0.6781674916 1.3610992777 -0.0210812558 1.0544831482
## [446] 0.3895570468 -0.4363310935 0.2837655650 0.0863493076 2.5997731258
## [451] -0.0011795042 -2.5988743468 -1.2031173728 -1.1261898237 -0.2134853681
## [456] -1.8113182752 -0.3400631182 -1.0931491380 -0.4946962242 0.8942886211
## [461] -0.1596610463 0.1857733330 -1.0956333200 -0.2902149167 -1.6670120006
## [466] -0.6129941763 0.7183107447 0.7351411024 -0.3281944261 -0.7839329164
## [471] 0.5422309355 -1.0422092173 -0.6276356705 1.1562746523 -1.0416456911
## [476] 0.2033987850 0.0202967311 0.1175921262 0.5521406806 -0.1238682333
## [481] -0.5617541845 -0.2866909545 -0.8359714681 0.3890531537 0.4523446737
## [486] 0.0931218427 0.0190845718 0.9280798721 -0.9874708752 0.8783012278
## [491] 0.6375443912 0.6467993809 -0.5677967838 0.1599924919 0.3417400395
## [496] 0.5774724337 -1.2805535592 0.6900678257 0.4480056317 0.4769246725
## [501] -0.5103118726 0.7551541478 0.7522938691 -0.1958805916 1.0059900750
## [506] 0.1900092866 -0.2499413794 -0.8676335234 1.4228207331 -0.2656096563
## [511] -0.2561761877 0.1743264763 -0.9633970303 -0.9358733832 -0.2153810986
## [516] 0.2402580386 0.1204239625 -0.8141156532 -0.6868357684 -0.7231393496
## [521] -0.6764966187 -0.7176467980 0.5779342896 0.9957480922 -0.0386231676
## [526] -1.7077338635 -1.0723290572 -0.4566252874 -0.5014118220 -1.6812829298
## [531] 0.8963215567 -0.6811605984 -0.6822936553 -1.1768724534 -1.0504688042
## [536] 0.7412883015 -1.1055011654 1.0777936831 -0.2176385345 -0.1563741014
## [541] -0.9383919626 -2.0691509909 0.4129131415 -0.5002915365 -1.1520533293
## [546] 0.7502276950 -0.0159827483 0.4418007043 -1.7671544898 -1.1886650133
## [551] 0.5468990408 1.1789110925 0.3119105528 0.0320808944 -0.5386678752
## [556] -0.6651075227 0.6680940772 0.3845416500 2.4254537112 0.4185386061
## [561] -0.3251533967 0.3859831799 1.7631980880 0.1305918683 0.6274930407
## [566] -0.1630011408 -1.4783170037 -1.6496447308 -0.1247818164 0.0135423654
## [571] 0.3921813355 2.0814343037 -0.3567735748 -1.5747662625 0.2267419106
## [576] 0.3630650998 -1.6970907102 -1.4002838168 -0.7451661069 -0.7884760724
## [581] -0.7337431960 1.1149351186 0.6246632377 -0.4208283521 -0.0915037871
## [586] -0.7235204869 -0.5494415578 0.4224614928 2.6998457919 -1.9868075514
## [591] 0.7640852126 -0.8708582515 -0.1925863419 1.3026112360 -2.6308698377
## [596] -0.1827368551 -2.5155085625 0.5409627272 -0.0715402364 0.2782962569
## [601] -0.2415786741 0.7577619957 -0.2001982408 -0.6578067619 -0.1947296522
## [606] 0.5166947393 1.8450558818 1.2083777089 -0.3832953331 -0.5899266732
## [611] -0.2367193575 0.1320895838 -1.1943478977 -0.1435304511 -0.7595091218
## [616] -0.8476480906 0.5547168586 -1.3211332473 1.2340623425 1.1723823030
## [621] 1.3731175868 1.1379608864 -1.5905774585 0.1789986817 0.4731962955
## [626] -1.6002061336 0.7325575942 -0.6977242626 0.8800582890 -0.3028542113
## [631] -0.5737616821 0.4292194936 0.3628705552 -1.6565033629 -1.5387774487
## [636] 0.7678755282 -1.4654691672 -1.5813663734 -0.7575978718 0.4655437514
## [641] -0.8436281236 -0.3006566746 -0.5174593437 0.7633806412 0.8183168425
## [646] 1.7776842797 0.9144274051 1.2454977872 0.6546916633 0.4648268447
## [651] -0.2243081006 0.3659407346 0.3910939630 0.7383422903 0.4482501930
## [656] 0.6125614051 -0.0985846665 0.5365952806 0.2282276364 -2.6934540057
## [661] 0.3927495104 -1.5331429097 0.3969422139 -0.2560736925 0.5973491979
## [666] 0.5799516753 0.0340022550 -1.3705439507 0.7796662237 1.3527227187
## [671] 0.8880785587 0.4281518747 0.8131003051 0.9514390215 -0.2029615117
## [676] -1.7667811032 0.0516614393 -1.0366619417 0.8693987508 0.9394040445
## [681] 0.2538333669 -0.3675027883 0.0109160205 -0.7277246889 -0.3239529641
## [686] -0.5564472117 1.4464204507 -1.0310062722 0.2602291299 -0.6380003046
## [691] 0.9575259657 -0.6210657048 -0.3857114253 -0.3856911746 -1.4581458731
## [696] -0.7502569402 -1.1340671516 -3.0388001691 -1.5373962817 0.4889541443
## [701] -1.1519935035 0.3791254663 -0.4141287636 1.6749196623 0.0628685597
## [706] 0.9038242126 -0.0099023019 -0.6442807000 2.0975446250 -0.7725449796
## [711] 1.5771951108 0.3979039102 -1.6970415653 0.2535416039 0.1265786375
## [716] 0.2035679537 -0.3778597280 1.1509146882 -0.0602493287 -0.8263212624
## [721] 0.8761536200 0.1918654509 0.5348178766 0.6083988019 -0.4185915200
## [726] 0.6997370166 0.1231148384 1.0838257647 0.1439278046 -0.0471785283
## [731] -0.4565876386 0.9803712607 -1.4154048344 0.3569650564 3.0928633289
## [736] 0.6061368545 -0.8468732328 0.0833718451 -2.2887629438 -1.7820875112
## [741] 1.7080953977 0.2706446745 -1.8567387645 -0.1542795611 -1.5654347877
## [746] -0.7850431414 1.2903500047 -1.3805939354 -0.0187458037 1.9228706924
## [751] -0.4730253561 -0.9719429129 1.3006055581 0.2005076726 0.5652685458
## [756] 0.5558317357 -0.4765681503 0.5476065594 0.3085675840 -0.5541490755
## [761] -1.2552239409 -0.2559452912 -0.1359679495 -1.4033261291 -1.3164641901
## [766] 0.9179817436 -2.2426068872 1.3040162462 1.2552004530 1.1566747740
## [771] 0.9794294313 -0.0497125682 -0.2697065594 -0.9755739772 -0.1374296268
## [776] 0.5459667194 -1.3904980762 0.8396296728 -0.6646680879 -0.8375020993
## [781] 0.7640428809 -2.0124963104 0.7595413493 -0.6578196216 -0.5583651012
## [786] 1.7021310938 -2.1196033392 0.6206077285 -1.0619905347 -0.7030054091
## [791] -0.5309383037 -0.7672069485 0.1931049686 -1.7334763004 0.4143746928
## [796] 0.7209046114 0.2945504691 0.8161347519 -1.0038830181 1.7016408921
## [801] 1.2577022189 1.9260521635 0.1662076754 -1.7577495264 0.6703969429
## [806] -2.1051744017 -0.1667474744 0.0594817727 0.0941378187 0.3543524670
## [811] 0.6269898006 1.0048186730 -0.4769985695 -0.3251766059 -0.5173528620
## [816] -0.4036362353 -0.1551973066 -1.0505020557 -0.0172511929 -0.6919528967
## [821] -0.6448005916 -1.1982603120 -0.9742627991 -0.5993928782 0.9301630581
## [826] -1.2898350836 1.6008091211 0.2915624462 1.4523207364 -0.5389507846
## [831] -0.8963846845 -1.2566753874 1.1631139186 0.2150311787 -0.4459107398
## [836] -0.6777855052 -0.8017529425 0.2954133649 -0.3836601844 0.0342056412
## [841] 0.0550615927 2.6609255614 -0.4417095556 -0.3088007134 -0.6732679582
## [846] -1.3328456295 0.1550246863 -0.7126725320 -0.2103545785 -0.1403886692
## [851] -0.8215777522 -1.2391128403 -0.1465631137 0.4646454770 -0.4522039176
## [856] -0.4375279621 1.6101006014 0.6123861320 -1.3688133574 -1.2244759987
## [861] -0.0322167807 0.2452736495 -0.2469359395 -0.5110601252 -0.4677808825
## [866] -1.0064426915 -0.2748848620 0.1953934872 -0.0606274237 1.5655562888
## [871] 0.6184544484 -0.2990100585 -0.3143566908 -0.7065443872 -0.2037041013
## [876] -1.2895126264 -2.0992743534 0.0124892358 -2.1224452478 1.1393488979
## [881] 0.6879020058 -0.3691033942 -0.6172458888 -1.4996393879 0.2595915139
## [886] 1.3158683091 0.3486132658 0.3398511201 1.0036176314 0.6349044194
## [891] 0.8060742293 -0.7846271708 -1.1550594687 2.1942048994 -0.5963683397
## [896] 0.7546089242 -0.2034354331 -0.4577825019 0.0542870940 0.1590032818
## [901] -1.2113694840 -1.5519424440 -1.3176355257 -0.8022102232 -0.9820196646
## [906] -1.0603902851 -0.4592565251 -1.0464125597 0.4960222822 -1.3693016781
## [911] 0.6615997304 -0.7617800862 0.1655881799 -2.2249045183 -0.9505599853
## [916] -2.4214269169 -0.9147266438 -0.6629722189 -0.9377096007 -0.4965909589
## [921] -0.0534838030 -0.3532319983 -1.0151665209 -1.1587899601 0.2747119836
## [926] 1.6666740704 1.2278629737 -0.2042248009 0.6013494335 0.5511320483
## [931] -0.5579131916 -0.7296543666 0.1774073474 0.0002128264 -0.2026117538
## [936] 0.5113188002 0.3024781680 0.7554330439 -0.3747357267 0.5411469038
## [941] -0.7177320424 -1.0012487218 -1.2199443454 -0.3418202159 2.5526970476
## [946] -0.3443462193 -0.1216373336 1.0536224918 0.4925280066 -1.4238895891
## [951] 0.1276215981 -1.2614858224 0.4449606766 -0.5571041217 -0.8896232860
## [956] -0.1757594582 3.3304936723 -1.5019112649 -1.7893983933 -0.6615357369
## [961] -0.6867815944 1.9066274096 -1.5856863006 -1.3105004204 -0.5981638880
## [966] -0.2792472009 0.3610765637 -0.0291916455 -0.9654784549 0.9216795983
## [971] -0.0634337931 -0.5164548949 2.1105840222 0.6073370371 -0.3054983594
## [976] 0.2459192201 -0.5665018687 0.1203742216 -0.7718147519 -0.9040384209
## [981] -1.1253513692 0.2595276588 0.2444850367 -0.0007143723 1.2971856249
## [986] 0.9383303305 -0.1643244314 -2.1390283857 -0.1057298581 0.6932183281
## [991] -0.2577201448 0.8853583672 -1.6570018606 -0.3205469796 -0.1897882330
## [996] 0.3445636956 -2.4838691184 -0.0950728115 2.0734309450 0.7004286628
yAxis <- rnorm(1000) + xAxis + 10
yAxis
## [1] 9.453977 9.239074 8.934578 12.525743 9.509183 9.284195 8.685609
## [8] 10.270069 11.451555 10.495430 9.532087 11.051496 12.743650 13.741138
## [15] 10.267638 10.099549 10.117929 11.631696 9.729594 8.741232 9.945405
## [22] 10.908883 11.670314 9.433225 8.747644 9.799313 13.151943 13.609822
## [29] 5.681295 7.955493 11.249553 10.535224 9.250472 10.561307 7.244991
## [36] 11.222024 12.749457 11.434454 9.936051 11.302762 12.024915 10.602074
## [43] 10.144157 11.189969 10.720416 10.515124 8.094872 11.555110 10.255558
## [50] 9.538774 8.715178 12.185025 10.507931 8.258384 11.140384 10.690920
## [57] 9.876167 10.669613 10.662628 9.608914 11.903545 12.574498 9.556155
## [64] 8.174616 12.161662 9.921142 10.430268 10.370481 8.788717 9.125051
## [71] 9.933326 12.232248 12.181600 8.042256 8.592068 10.188963 12.626654
## [78] 11.715015 11.808902 9.991671 9.864414 9.765506 9.670371 8.015212
## [85] 11.190050 11.032440 8.660235 8.293803 8.573428 11.332472 10.538030
## [92] 8.960662 7.177706 12.120763 9.275724 12.223843 10.798274 10.250420
## [99] 12.396547 8.011546 9.243631 13.087319 10.814846 9.630633 8.573007
## [106] 9.508982 11.159354 13.036523 12.082295 11.416104 12.186637 7.363956
## [113] 10.535066 8.742677 9.464906 9.793261 9.190397 9.444054 8.432466
## [120] 8.640899 11.090482 7.005171 10.077834 12.128834 12.556016 10.735983
## [127] 8.581836 11.483329 11.098689 8.914656 10.187653 10.111956 10.271029
## [134] 9.761257 10.178292 12.799087 8.747296 11.769882 9.334794 9.658767
## [141] 9.268787 10.373545 11.307271 9.698254 9.128445 7.686615 7.620257
## [148] 7.572256 6.307194 9.589956 7.467497 10.996517 11.528833 10.780836
## [155] 10.932635 11.749219 10.610544 9.718818 12.076556 9.909437 13.183351
## [162] 7.442172 10.376130 9.903405 9.129734 10.495736 9.132305 11.870084
## [169] 7.976982 9.477272 11.408120 8.455681 10.559582 9.763914 6.893826
## [176] 8.795818 9.495852 10.566155 8.745284 10.729021 11.041582 11.612691
## [183] 10.738843 11.553614 9.482287 10.567418 9.362975 11.531980 10.234234
## [190] 10.231721 9.733713 8.045294 12.786436 9.357128 10.750265 10.488705
## [197] 10.117537 10.405390 7.256452 11.648672 10.596191 9.402079 9.666902
## [204] 10.591137 8.580359 10.147043 9.192565 8.524973 8.304412 9.218174
## [211] 8.838642 8.789215 7.969412 8.522022 11.637406 10.113470 8.893417
## [218] 10.754529 9.233649 9.594366 10.351329 10.743913 7.927042 10.115025
## [225] 12.148059 12.179157 10.784021 8.212278 11.130464 10.364592 11.620614
## [232] 11.339242 9.341435 7.195250 8.330650 12.351507 10.481267 7.932837
## [239] 10.812078 11.614247 8.539142 10.459865 9.918622 7.753849 12.180473
## [246] 10.570968 9.545812 11.518425 8.645588 10.420645 9.769995 8.232035
## [253] 12.456708 7.623977 7.578276 11.092797 7.729065 10.649937 10.356220
## [260] 12.949696 7.918587 10.271219 11.220810 9.575969 13.428994 8.884329
## [267] 10.289314 10.265825 9.604150 10.213750 11.257015 11.573971 9.683439
## [274] 11.965759 9.154427 8.349757 11.649629 9.183719 9.904275 11.108445
## [281] 9.791304 12.507152 10.853708 10.328175 12.991986 12.037280 8.488311
## [288] 9.956862 12.215851 10.496268 9.795027 8.579310 10.969953 11.214230
## [295] 9.015577 7.568631 11.142255 11.199421 8.160060 10.121936 9.716368
## [302] 8.639236 9.222355 10.168601 9.710971 10.210685 8.223630 8.402594
## [309] 8.941203 10.087638 10.416331 8.006993 10.609145 10.902514 8.891210
## [316] 11.644846 9.864319 10.981086 10.470505 5.970141 10.132353 12.066213
## [323] 7.646080 9.845150 8.855918 8.810322 11.953430 10.578748 9.120276
## [330] 10.321347 9.935359 10.443771 9.427451 8.969488 9.683240 10.133429
## [337] 11.478430 8.905310 9.197546 10.263742 11.240898 11.918584 10.976689
## [344] 10.148683 9.344365 11.351561 8.258376 10.436985 10.259799 11.756580
## [351] 13.231096 8.611064 8.485799 11.234891 11.811525 11.193468 10.566011
## [358] 10.199050 11.671322 10.382145 10.646544 9.143901 11.631043 10.792654
## [365] 11.247553 9.968890 9.061755 13.487286 10.872045 10.759334 11.265467
## [372] 10.187659 9.613908 9.293601 10.920138 8.465347 12.485995 11.444308
## [379] 8.952600 8.319204 8.783507 11.644908 10.805600 9.460759 12.243261
## [386] 9.648155 9.710594 10.355361 9.429137 9.311973 9.456671 9.792069
## [393] 11.331636 10.296542 9.273401 9.495275 9.312412 7.903524 12.740962
## [400] 11.292401 8.496637 10.238764 9.387828 9.989543 10.484603 8.117885
## [407] 8.598078 7.881863 11.817668 9.188350 10.454189 11.017408 9.203277
## [414] 11.790521 10.580694 9.151308 9.508735 9.953474 11.648079 9.766623
## [421] 9.746793 14.125984 9.062812 9.093786 11.514893 9.251347 10.089108
## [428] 10.346711 8.864413 7.476873 11.051503 9.872299 10.572560 9.870005
## [435] 9.420738 8.929287 7.354173 12.395216 8.180989 8.515345 9.787178
## [442] 7.541471 10.765931 11.657514 10.602468 10.729973 10.585160 12.232231
## [449] 10.286677 11.508160 9.346587 6.900095 7.833641 9.336389 9.299367
## [456] 9.006955 9.079644 8.323343 7.671516 12.635052 9.895812 10.157234
## [463] 10.731041 9.033175 8.321139 8.599102 10.424110 11.224493 10.810104
## [470] 8.538251 9.421635 7.545463 9.855759 9.389395 9.771780 11.764845
## [477] 10.313209 11.519728 11.532286 10.298180 9.102949 10.673277 9.507400
## [484] 10.027527 9.001736 9.748892 10.511648 11.203580 7.736921 12.055085
## [491] 11.187460 8.629239 10.565413 9.482929 10.460369 10.882234 9.011925
## [498] 9.802983 9.317664 10.674292 8.914051 10.687780 10.848717 10.142867
## [505] 10.526016 11.269865 10.196727 7.831304 9.573548 8.929114 9.833303
## [512] 10.437599 9.426122 9.570107 9.777722 11.269118 11.504992 9.632226
## [519] 8.915231 9.242460 8.617729 10.402351 9.646076 10.828696 9.138549
## [526] 9.307227 8.301201 9.790534 10.016987 9.362249 10.515228 9.971570
## [533] 8.462087 9.542522 11.303971 11.975821 8.292499 11.429558 10.920586
## [540] 10.181982 7.050046 7.467770 10.692255 8.709334 7.817622 10.265599
## [547] 11.538511 10.180593 6.810624 7.450217 11.305160 12.299671 11.731279
## [554] 11.323876 9.613083 8.218513 9.460680 9.287316 10.928254 10.934533
## [561] 9.739560 9.321227 12.305381 8.617101 7.825448 9.505827 10.183059
## [568] 9.214365 9.484299 10.031861 9.308477 12.994322 8.517365 6.195398
## [575] 11.745982 11.557786 8.615114 9.079472 7.669773 9.679420 10.442340
## [582] 10.104407 10.633507 7.885585 8.775698 8.712617 8.159045 9.237422
## [589] 13.157305 8.133054 10.626233 9.668621 8.893848 10.271972 6.151951
## [596] 8.004368 5.573782 11.276755 11.628538 11.221920 9.912229 9.979735
## [603] 8.881402 11.885333 10.615009 11.223574 12.496979 11.047250 10.004565
## [610] 6.783518 9.578117 9.560775 10.064334 9.780033 8.260277 9.585861
## [617] 10.713068 10.213374 8.866621 11.724391 11.944886 12.154821 9.300528
## [624] 9.884967 9.917218 8.730692 10.068817 9.044606 11.085177 8.520640
## [631] 9.248731 8.892292 10.196532 9.578561 8.089182 11.866728 8.425290
## [638] 8.705251 10.152008 10.528637 7.924505 9.515210 10.656964 10.074095
## [645] 9.773296 12.653464 10.740055 10.780509 10.039008 10.901971 10.102928
## [652] 9.791358 10.503048 9.041625 11.559882 8.162128 11.348592 10.655467
## [659] 8.269740 5.636452 10.458425 8.763986 9.276993 8.272660 10.842370
## [666] 10.435161 10.639479 9.535979 11.809626 12.340023 10.218518 10.705843
## [673] 9.755214 11.588213 8.664631 8.662769 10.730605 7.845545 11.229735
## [680] 10.336399 9.418976 7.775643 10.684369 9.240709 9.259642 10.044383
## [687] 12.283522 9.105747 11.074378 9.199947 10.907456 10.599504 10.741537
## [694] 10.933206 10.352066 8.421155 8.577236 6.937556 6.714388 9.196153
## [701] 8.050341 11.007279 9.169395 11.121235 9.712279 10.946698 10.725676
## [708] 8.221735 12.125425 8.328009 13.335515 9.995661 8.714171 9.991026
## [715] 8.994569 10.526351 9.630893 9.710638 11.018728 11.000993 9.928009
## [722] 10.619520 10.555067 10.716664 8.773580 9.202677 9.287867 10.782624
## [729] 12.749107 9.701834 10.034987 10.599686 9.463782 8.932511 13.900336
## [736] 10.636148 9.416227 10.753809 6.820454 7.081683 11.016251 10.322426
## [743] 8.423540 9.886447 7.404879 9.221767 11.548995 9.661386 10.528383
## [750] 12.647914 10.185613 10.126399 12.123633 11.960577 10.946945 10.502471
## [757] 9.525026 11.511243 10.027917 8.781929 8.850079 7.454801 8.657842
## [764] 9.103546 9.894381 11.474208 7.045449 11.624869 9.739154 11.176716
## [771] 11.791820 9.562302 10.261262 10.093164 8.646884 10.880643 10.458081
## [778] 9.874506 9.316668 9.452255 11.575891 9.865737 11.234724 8.323238
## [785] 10.568493 12.253681 7.164357 10.830505 10.046062 10.156462 8.984396
## [792] 7.066213 10.255289 10.473874 9.056138 11.349230 10.191731 10.155980
## [799] 9.365147 12.023196 12.762360 9.847179 9.047819 9.619459 10.961039
## [806] 8.833970 10.160492 9.247590 11.482467 12.751812 10.036136 10.862830
## [813] 8.879963 11.192393 10.308868 10.538003 9.977676 9.030002 9.171539
## [820] 10.469054 8.793721 8.363003 9.946520 10.131828 9.792111 8.009001
## [827] 10.832898 8.063563 10.223027 10.356820 8.879845 8.694306 10.587912
## [834] 11.640776 9.270999 11.847172 8.771181 10.374984 10.625844 11.466886
## [841] 9.588701 10.591316 9.123177 9.713419 8.412168 8.212848 10.099760
## [848] 10.753719 9.896123 10.166165 9.239637 9.672952 10.506769 10.119877
## [855] 9.322932 9.251234 10.542353 10.237556 7.545981 7.569029 9.129448
## [862] 8.193194 10.388631 9.100610 9.028805 8.817724 9.664374 10.823007
## [869] 9.952578 12.309893 9.995596 9.706025 10.620885 7.990322 9.681915
## [876] 8.390979 6.592356 11.475712 6.905249 12.864397 9.447940 8.705479
## [883] 8.704129 8.422429 9.575632 9.348573 9.751189 11.269724 10.915746
## [890] 10.129732 10.498727 9.102381 8.197206 12.687056 9.523146 12.486343
## [897] 9.486853 9.369335 10.269033 10.387574 8.640959 8.392967 7.929035
## [904] 10.247707 10.144272 9.000007 8.316906 9.848845 10.813193 8.092104
## [911] 11.338022 7.771764 11.076424 8.046193 8.284352 7.710484 10.320974
## [918] 9.459052 9.001695 7.919460 10.052615 8.935708 8.034828 9.513697
## [925] 9.796135 12.150492 11.364774 8.896390 9.840744 11.170569 9.259643
## [932] 9.729197 8.629687 10.316767 8.244609 10.962467 11.748269 11.834186
## [939] 10.522091 11.089672 9.474423 8.052357 10.064427 8.814902 11.959787
## [946] 9.464402 10.454899 10.581217 11.706605 9.916064 9.858317 8.810747
## [953] 8.834629 9.920361 10.123302 10.234505 15.680570 9.903128 8.738286
## [960] 8.765967 9.405496 11.863345 8.361876 9.616801 8.817522 10.529861
## [967] 9.752964 9.888208 9.483509 11.197902 9.209518 8.639374 10.742357
## [974] 11.803449 10.696162 8.098121 9.638224 8.691978 9.492734 9.779748
## [981] 8.530997 10.891975 10.316937 7.929715 9.531347 9.880865 12.012456
## [988] 7.606808 9.258915 13.449103 10.412024 10.757834 7.289370 11.512605
## [995] 8.174937 9.579570 8.351182 9.490471 11.656934 10.362739
# create groups for different values of X
(group <- rep(1,1000))
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1
# a vector consisting of 1000 elements
group[xAxis > -1.5] <- 2
group[xAxis > -.5] <- 3
group[xAxis > .5] <- 4
group[xAxis > 1.5] <- 5
group
## [1] 3 3 2 4 3 2 2 4 4 3 2 4 5 5 3 3 3 3 4 4 3 5 4 4 3 3 5 5 1 1 3 2 2 3 1 4 4
## [38] 4 3 4 3 2 4 4 3 3 3 5 3 3 3 5 2 3 3 3 3 4 3 4 4 4 3 3 2 4 3 2 3 2 4 4 4 3
## [75] 2 2 3 5 4 4 3 3 2 2 3 4 2 2 3 2 5 3 2 4 3 4 4 4 4 2 3 5 5 3 2 2 3 5 4 4 3
## [112] 3 4 2 4 3 3 1 2 2 5 2 2 4 4 5 2 2 4 2 3 2 2 4 3 3 2 4 2 3 2 3 4 3 3 2 1 2
## [149] 1 4 2 4 3 4 4 4 3 3 3 3 5 4 5 3 2 4 3 3 1 2 3 3 4 2 1 3 3 4 3 4 4 4 5 3 4
## [186] 4 3 4 4 4 2 1 4 2 2 2 3 4 1 4 2 2 2 3 2 4 2 3 3 2 2 3 2 2 4 3 4 4 3 2 3 4
## [223] 1 4 4 3 3 1 3 3 5 5 3 1 3 5 4 2 3 5 2 2 4 4 4 3 2 4 3 2 3 2 4 2 2 4 2 3 3
## [260] 5 2 2 3 3 4 3 4 2 3 3 4 4 2 4 2 2 4 3 4 4 3 3 3 4 5 4 3 2 3 3 3 1 3 2 2 3
## [297] 5 2 2 4 2 1 2 4 2 2 2 2 3 3 2 4 3 4 3 4 2 3 4 1 3 5 2 3 3 3 5 3 3 2 4 4 3
## [334] 2 3 3 4 1 3 3 4 3 3 3 3 4 2 4 4 3 5 3 2 4 4 4 3 3 3 4 3 3 4 4 4 2 3 5 2 3
## [371] 3 2 2 2 4 3 4 4 4 3 1 5 3 2 4 3 3 2 3 2 4 3 4 3 2 3 2 2 4 4 2 4 3 4 2 2 2
## [408] 1 5 4 2 4 4 3 5 3 2 3 4 3 3 5 2 3 3 4 2 3 2 1 4 2 3 3 4 2 2 5 1 2 3 2 4 3
## [445] 4 3 3 3 3 5 3 1 2 2 3 1 3 2 3 4 3 3 2 3 1 2 4 4 3 2 4 2 2 4 2 3 3 3 4 3 2
## [482] 3 2 3 3 3 3 4 2 4 4 4 2 3 3 4 2 4 3 3 2 4 4 3 4 3 3 2 4 3 3 3 2 2 3 3 3 2
## [519] 2 2 2 2 4 4 3 1 2 3 2 1 4 2 2 2 2 4 2 4 3 3 2 1 3 2 2 4 3 3 1 2 4 4 3 3 2
## [556] 2 4 3 5 3 3 3 5 3 4 3 2 1 3 3 3 5 3 1 3 3 1 2 2 2 2 4 4 3 3 2 2 3 5 1 4 2
## [593] 3 4 1 3 1 4 3 3 3 4 3 2 3 4 5 4 3 2 3 3 2 3 2 2 4 2 4 4 4 4 1 3 3 1 4 2 4
## [630] 3 2 3 3 1 1 4 2 1 2 3 2 3 2 4 4 5 4 4 4 3 3 3 3 4 3 4 3 4 3 1 3 1 3 3 4 4
## [667] 3 2 4 4 4 3 4 4 3 1 3 2 4 4 3 3 3 2 3 2 4 2 3 2 4 2 3 3 2 2 2 1 1 3 2 3 3
## [704] 5 3 4 3 2 5 2 5 3 1 3 3 3 3 4 3 2 4 3 4 4 3 4 3 4 3 3 3 4 2 3 5 4 2 3 1 1
## [741] 5 3 1 3 1 2 4 2 3 5 3 2 4 3 4 4 3 4 3 2 2 3 3 2 2 4 1 4 4 4 4 3 3 2 3 4 2
## [778] 4 2 2 4 1 4 2 2 5 1 4 2 2 2 2 3 1 3 4 3 4 2 5 4 5 3 1 4 1 3 3 3 3 4 4 3 3
## [815] 2 3 3 2 3 2 2 2 2 2 4 2 5 3 4 2 2 2 4 3 3 2 2 3 3 3 3 5 3 3 2 2 3 2 3 3 2
## [852] 2 3 3 3 3 5 4 2 2 3 3 3 2 3 2 3 3 3 5 4 3 3 2 3 2 1 3 1 4 4 3 2 2 3 4 3 3
## [889] 4 4 4 2 2 5 2 4 3 3 3 3 2 1 2 2 2 2 3 2 3 2 4 2 3 1 2 1 2 2 2 3 3 3 2 2 3
## [926] 5 4 3 4 4 2 2 3 3 3 4 3 4 3 4 2 2 2 3 5 3 3 4 3 2 3 2 3 2 2 3 5 1 1 2 2 5
## [963] 1 2 2 3 3 3 2 4 3 2 5 4 3 3 2 3 2 2 2 3 3 3 4 4 3 1 3 4 3 4 1 3 3 3 1 3 5
## [1000] 4
# create sample dataframe by joining variables
sample_data <- data.frame(xAxis,yAxis,group)
sample_data
## xAxis yAxis group
## 1 0.0297457221 9.453977 3
## 2 -0.3719067033 9.239074 3
## 3 -0.8253756307 8.934578 2
## 4 1.2635609301 12.525743 4
## 5 0.3373823884 9.509183 3
## 6 -1.1221804025 9.284195 2
## 7 -1.2463666417 8.685609 2
## 8 0.6475856235 10.270069 4
## 9 1.0462736522 11.451555 4
## 10 0.1527480433 10.495430 3
## 11 -0.6534576853 9.532087 2
## 12 1.4887153715 11.051496 4
## 13 2.5621314625 12.743650 5
## 14 1.5528798009 13.741138 5
## 15 0.4994329011 10.267638 3
## 16 0.0948725504 10.099549 3
## 17 -0.1323002499 10.117929 3
## 18 0.4523541675 11.631696 3
## 19 1.2768456677 9.729594 4
## 20 0.6987960709 8.741232 4
## 21 0.0417965938 9.945405 3
## 22 1.6388258527 10.908883 5
## 23 1.4461354553 11.670314 4
## 24 1.0818587624 9.433225 4
## 25 0.0544531075 8.747644 3
## 26 0.1074881178 9.799313 3
## 27 3.2339407154 13.151943 5
## 28 1.8234381284 13.609822 5
## 29 -3.2454524858 5.681295 1
## 30 -1.9548676897 7.955493 1
## 31 -0.1481428193 11.249553 3
## 32 -0.6954619085 10.535224 2
## 33 -0.8007918073 9.250472 2
## 34 -0.3908060212 10.561307 3
## 35 -1.8754739715 7.244991 1
## 36 1.2584700185 11.222024 4
## 37 1.3151973251 12.749457 4
## 38 0.5317531269 11.434454 4
## 39 -0.0580682687 9.936051 3
## 40 0.6921051899 11.302762 4
## 41 0.2346195712 12.024915 3
## 42 -0.8610615238 10.602074 2
## 43 0.6633136609 10.144157 4
## 44 0.6744063999 11.189969 4
## 45 0.3269978108 10.720416 3
## 46 -0.4877755023 10.515124 3
## 47 -0.1137583627 8.094872 3
## 48 2.6781180839 11.555110 5
## 49 0.1278014106 10.255558 3
## 50 -0.3655744141 9.538774 3
## 51 -0.4882098827 8.715178 3
## 52 2.1734367878 12.185025 5
## 53 -0.5429270303 10.507931 2
## 54 -0.0193129758 8.258384 3
## 55 0.3712298181 11.140384 3
## 56 0.0458684303 10.690920 3
## 57 0.4391368022 9.876167 3
## 58 0.5887800685 10.669613 4
## 59 -0.1299347125 10.662628 3
## 60 0.5530494818 9.608914 4
## 61 0.5919736062 11.903545 4
## 62 1.3471604490 12.574498 4
## 63 0.3072489895 9.556155 3
## 64 -0.3194096380 8.174616 3
## 65 -0.6597028712 12.161662 2
## 66 0.7702126840 9.921142 4
## 67 0.3277050136 10.430268 3
## 68 -0.9209661583 10.370481 2
## 69 -0.4250160318 8.788717 3
## 70 -0.7106530330 9.125051 2
## 71 0.9478641981 9.933326 4
## 72 1.1902588180 12.232248 4
## 73 1.1128440764 12.181600 4
## 74 0.4792808503 8.042256 3
## 75 -0.6179437288 8.592068 2
## 76 -0.8940206173 10.188963 2
## 77 0.4394460577 12.626654 3
## 78 1.7830676794 11.715015 5
## 79 0.6673078420 11.808902 4
## 80 0.8616651994 9.991671 4
## 81 0.2115773632 9.864414 3
## 82 0.1174122692 9.765506 3
## 83 -0.5348682957 9.670371 2
## 84 -1.2609639858 8.015212 2
## 85 0.3004198304 11.190050 3
## 86 0.8909041637 11.032440 4
## 87 -0.6307066462 8.660235 2
## 88 -1.1581841792 8.293803 2
## 89 -0.3813005073 8.573428 3
## 90 -0.6356241906 11.332472 2
## 91 1.7560205216 10.538030 5
## 92 0.3748407752 8.960662 3
## 93 -1.0016321722 7.177706 2
## 94 0.8815161214 12.120763 4
## 95 -0.4446169157 9.275724 3
## 96 0.8056973043 12.223843 4
## 97 0.9596901829 10.798274 4
## 98 0.8839995274 10.250420 4
## 99 1.1058517812 12.396547 4
## 100 -1.3385581906 8.011546 2
## 101 0.2915704470 9.243631 3
## 102 2.0975267880 13.087319 5
## 103 2.4509721113 10.814846 5
## 104 0.1523230095 9.630633 3
## 105 -0.8194487876 8.573007 2
## 106 -0.7872714077 9.508982 2
## 107 0.4300525068 11.159354 3
## 108 2.6854367340 13.036523 5
## 109 0.7053059859 12.082295 4
## 110 1.4962929491 11.416104 4
## 111 0.3158209939 12.186637 3
## 112 -0.2913716149 7.363956 3
## 113 1.2130750140 10.535066 4
## 114 -1.2368420390 8.742677 2
## 115 0.8569946197 9.464906 4
## 116 0.2882919879 9.793261 3
## 117 -0.1584598250 9.190397 3
## 118 -1.5852201440 9.444054 1
## 119 -1.2602463461 8.432466 2
## 120 -0.8132881969 8.640899 2
## 121 1.7349570309 11.090482 5
## 122 -1.3992372867 7.005171 2
## 123 -0.6953358783 10.077834 2
## 124 1.0476741407 12.128834 4
## 125 1.0244923691 12.556016 4
## 126 1.6643829979 10.735983 5
## 127 -0.7463045863 8.581836 2
## 128 -0.9935095546 11.483329 2
## 129 0.6770156484 11.098689 4
## 130 -0.8655686195 8.914656 2
## 131 -0.1308094442 10.187653 3
## 132 -0.6526466899 10.111956 2
## 133 -0.9539715941 10.271029 2
## 134 0.5201950445 9.761257 4
## 135 0.0618129340 10.178292 3
## 136 0.4789391045 12.799087 3
## 137 -0.7170856005 8.747296 2
## 138 1.2520437364 11.769882 4
## 139 -0.7848649740 9.334794 2
## 140 0.0717970452 9.658767 3
## 141 -1.4215403554 9.268787 2
## 142 0.3497119775 10.373545 3
## 143 1.1787481713 11.307271 4
## 144 -0.3455071408 9.698254 3
## 145 -0.1528148662 9.128445 3
## 146 -0.8737248206 7.686615 2
## 147 -2.1281153683 7.620257 1
## 148 -0.8114387539 7.572256 2
## 149 -1.6834010981 6.307194 1
## 150 0.7467304858 9.589956 4
## 151 -0.8531826868 7.467497 2
## 152 0.9022617113 10.996517 4
## 153 0.2724357033 11.528833 3
## 154 1.3399059299 10.780836 4
## 155 1.0002050319 10.932635 4
## 156 1.2897714746 11.749219 4
## 157 -0.2337223301 10.610544 3
## 158 -0.3529319491 9.718818 3
## 159 -0.0254069604 12.076556 3
## 160 -0.1415272495 9.909437 3
## 161 1.9534852377 13.183351 5
## 162 0.7952436697 7.442172 4
## 163 1.7059509124 10.376130 5
## 164 0.2287902451 9.903405 3
## 165 -0.7197580072 9.129734 2
## 166 1.4320970016 10.495736 4
## 167 -0.4978682028 9.132305 3
## 168 0.4033766157 11.870084 3
## 169 -2.6827907193 7.976982 1
## 170 -0.6434684961 9.477272 2
## 171 0.2104551201 11.408120 3
## 172 0.1814535056 8.455681 3
## 173 0.6256250418 10.559582 4
## 174 -0.8334662839 9.763914 2
## 175 -3.2866558340 6.893826 1
## 176 -0.1914934496 8.795818 3
## 177 0.0739430164 9.495852 3
## 178 1.4013357109 10.566155 4
## 179 0.4105214421 8.745284 3
## 180 0.8348844985 10.729021 4
## 181 0.8303169205 11.041582 4
## 182 1.4810686147 11.612691 4
## 183 1.5778752152 10.738843 5
## 184 0.2925599109 11.553614 3
## 185 0.8528775091 9.482287 4
## 186 0.9956945843 10.567418 4
## 187 -0.4423267967 9.362975 3
## 188 1.0819348440 11.531980 4
## 189 0.7509834580 10.234234 4
## 190 1.2144061117 10.231721 4
## 191 -0.6269285829 9.733713 2
## 192 -1.9956967214 8.045294 1
## 193 1.3999964670 12.786436 4
## 194 -1.0847765252 9.357128 2
## 195 -0.6366000027 10.750265 2
## 196 -0.5343268251 10.488705 2
## 197 0.0251600175 10.117537 3
## 198 1.0198586086 10.405390 4
## 199 -1.9443437091 7.256452 1
## 200 0.6835100483 11.648672 4
## 201 -0.5528511459 10.596191 2
## 202 -0.6162332787 9.402079 2
## 203 -0.6576578874 9.666902 2
## 204 0.0815784655 10.591137 3
## 205 -0.8171453347 8.580359 2
## 206 1.1364162684 10.147043 4
## 207 -0.9335120173 9.192565 2
## 208 0.4429067723 8.524973 3
## 209 -0.3416493123 8.304412 3
## 210 -0.6595571092 9.218174 2
## 211 -1.3576045662 8.838642 2
## 212 -0.1557524431 8.789215 3
## 213 -1.0016997979 7.969412 2
## 214 -0.5858578885 8.522022 2
## 215 0.6424769480 11.637406 4
## 216 -0.1446774168 10.113470 3
## 217 0.6413738382 8.893417 4
## 218 1.2383236686 10.754529 4
## 219 -0.4187591588 9.233649 3
## 220 -1.0799796455 9.594366 2
## 221 -0.2213393487 10.351329 3
## 222 0.9521837707 10.743913 4
## 223 -1.7438350977 7.927042 1
## 224 0.5400997653 10.115025 4
## 225 1.1348809726 12.148059 4
## 226 0.4580609373 12.179157 3
## 227 -0.3531589272 10.784021 3
## 228 -1.7750748404 8.212278 1
## 229 0.3808376441 11.130464 3
## 230 0.1994831970 10.364592 3
## 231 2.0226426827 11.620614 5
## 232 1.6038290968 11.339242 5
## 233 0.1313310503 9.341435 3
## 234 -1.7277859104 7.195250 1
## 235 -0.3819201738 8.330650 3
## 236 1.9496984806 12.351507 5
## 237 1.1765250763 10.481267 4
## 238 -1.3226663181 7.932837 2
## 239 -0.1918995827 10.812078 3
## 240 1.9321220005 11.614247 5
## 241 -0.5479718485 8.539142 2
## 242 -0.5162434903 10.459865 2
## 243 0.6466880213 9.918622 4
## 244 0.5474881045 7.753849 4
## 245 1.4852350735 12.180473 4
## 246 0.4599635112 10.570968 3
## 247 -1.2623146455 9.545812 2
## 248 1.0102853943 11.518425 4
## 249 0.1850491089 8.645588 3
## 250 -0.8903080334 10.420645 2
## 251 0.2763383093 9.769995 3
## 252 -1.0220096042 8.232035 2
## 253 1.1534258222 12.456708 4
## 254 -0.7475686779 7.623977 2
## 255 -0.9788482946 7.578276 2
## 256 1.3982609353 11.092797 4
## 257 -1.3545032848 7.729065 2
## 258 0.0508031229 10.649937 3
## 259 -0.3559652436 10.356220 3
## 260 1.8741142624 12.949696 5
## 261 -1.2061940744 7.918587 2
## 262 -0.6637800434 10.271219 2
## 263 0.4488764355 11.220810 3
## 264 0.3030192950 9.575969 3
## 265 1.3982851122 13.428994 4
## 266 -0.2512757324 8.884329 3
## 267 0.5091259813 10.289314 4
## 268 -0.6001630079 10.265825 2
## 269 0.2581386892 9.604150 3
## 270 -0.2329848448 10.213750 3
## 271 1.1489735461 11.257015 4
## 272 0.5410224450 11.573971 4
## 273 -0.8741434013 9.683439 2
## 274 1.0738074060 11.965759 4
## 275 -0.6522022046 9.154427 2
## 276 -0.9285015744 8.349757 2
## 277 0.7542558450 11.649629 4
## 278 -0.2571674906 9.183719 3
## 279 1.4037325119 9.904275 4
## 280 1.0375238472 11.108445 4
## 281 -0.2136570705 9.791304 3
## 282 0.1853265992 12.507152 3
## 283 0.1367506063 10.853708 3
## 284 0.6520719678 10.328175 4
## 285 2.1692158518 12.991986 5
## 286 1.3490746000 12.037280 4
## 287 0.4583375324 8.488311 3
## 288 -1.3220937126 9.956862 2
## 289 0.1703010627 12.215851 3
## 290 -0.0554655676 10.496268 3
## 291 0.2614838201 9.795027 3
## 292 -1.7973645401 8.579310 1
## 293 0.0384140595 10.969953 3
## 294 -0.5096118249 11.214230 2
## 295 -1.2379034206 9.015577 2
## 296 -0.3713795580 7.568631 3
## 297 2.0223192487 11.142255 5
## 298 -0.6831552790 11.199421 2
## 299 -0.7054738944 8.160060 2
## 300 0.8583198419 10.121936 4
## 301 -0.5101694671 9.716368 2
## 302 -2.0772583556 8.639236 1
## 303 -0.8092578543 9.222355 2
## 304 0.7106423353 10.168601 4
## 305 -1.4629320060 9.710971 2
## 306 -1.1191629995 10.210685 2
## 307 -1.3426143607 8.223630 2
## 308 -0.9688817416 8.402594 2
## 309 -0.4201186485 8.941203 3
## 310 0.0849011625 10.087638 3
## 311 -0.5009813782 10.416331 2
## 312 0.5147757125 8.006993 4
## 313 -0.2512468984 10.609145 3
## 314 0.8567017527 10.902514 4
## 315 0.0954278366 8.891210 3
## 316 1.2643845003 11.644846 4
## 317 -0.5942554966 9.864319 2
## 318 -0.1959233348 10.981086 3
## 319 0.8031506208 10.470505 4
## 320 -2.1043710184 5.970141 1
## 321 -0.3513860160 10.132353 3
## 322 1.5757064583 12.066213 5
## 323 -1.1412941099 7.646080 2
## 324 -0.0347549640 9.845150 3
## 325 0.1347892449 8.855918 3
## 326 0.1820817426 8.810322 3
## 327 1.8624937573 11.953430 5
## 328 -0.2947744839 10.578748 3
## 329 0.2065919606 9.120276 3
## 330 -1.3272411922 10.321347 2
## 331 1.1415769922 9.935359 4
## 332 0.7668875238 10.443771 4
## 333 0.1615193508 9.427451 3
## 334 -1.3263229136 8.969488 2
## 335 -0.0769360389 9.683240 3
## 336 -0.1828639582 10.133429 3
## 337 0.6385818443 11.478430 4
## 338 -1.7151803535 8.905310 1
## 339 0.4288619325 9.197546 3
## 340 0.1191084710 10.263742 3
## 341 0.6700526906 11.240898 4
## 342 0.2790120515 11.918584 3
## 343 0.2756173916 10.976689 3
## 344 -0.1502085874 10.148683 3
## 345 0.4331693172 9.344365 3
## 346 1.1467919103 11.351561 4
## 347 -1.0165315629 8.258376 2
## 348 1.1901396094 10.436985 4
## 349 0.8015312079 10.259799 4
## 350 0.0005762223 11.756580 3
## 351 2.8416201059 13.231096 5
## 352 0.0935774062 8.611064 3
## 353 -1.4909674779 8.485799 2
## 354 0.5108198901 11.234891 4
## 355 1.3321489205 11.811525 4
## 356 1.2695250294 11.193468 4
## 357 -0.1738973419 10.566011 3
## 358 0.2662572892 10.199050 3
## 359 -0.3889410945 11.671322 3
## 360 1.2288827984 10.382145 4
## 361 -0.3381186163 10.646544 3
## 362 -0.2380601220 9.143901 3
## 363 1.0429621369 11.631043 4
## 364 0.9803586578 10.792654 4
## 365 1.3509120593 11.247553 4
## 366 -0.7383224784 9.968890 2
## 367 -0.4854716874 9.061755 3
## 368 2.5997581769 13.487286 5
## 369 -1.0815692092 10.872045 2
## 370 -0.1471275718 10.759334 3
## 371 -0.1600268250 11.265467 3
## 372 -0.5704367848 10.187659 2
## 373 -0.9198855770 9.613908 2
## 374 -0.7636672908 9.293601 2
## 375 1.4153589000 10.920138 4
## 376 -0.1659504121 8.465347 3
## 377 0.5639701711 12.485995 4
## 378 0.8302977937 11.444308 4
## 379 0.8173706018 8.952600 4
## 380 0.1629736719 8.319204 3
## 381 -1.5437672226 8.783507 1
## 382 1.8359009049 11.644908 5
## 383 -0.0632389876 10.805600 3
## 384 -0.5539449771 9.460759 2
## 385 0.9306801528 12.243261 4
## 386 0.4280427344 9.648155 3
## 387 0.1520541167 9.710594 3
## 388 -0.6252512522 10.355361 2
## 389 0.2760306576 9.429137 3
## 390 -0.5689200104 9.311973 2
## 391 1.2699471743 9.456671 4
## 392 -0.3633696736 9.792069 3
## 393 1.3456736697 11.331636 4
## 394 -0.0522560763 10.296542 3
## 395 -0.5662884605 9.273401 2
## 396 0.2091842034 9.495275 3
## 397 -0.7015440325 9.312412 2
## 398 -0.8046725672 7.903524 2
## 399 1.3408945290 12.740962 4
## 400 0.7954213419 11.292401 4
## 401 -0.9010721323 8.496637 2
## 402 0.8619327704 10.238764 4
## 403 -0.2175228967 9.387828 3
## 404 0.9659447097 9.989543 4
## 405 -0.5372789740 10.484603 2
## 406 -0.9546615639 8.117885 2
## 407 -0.6797564966 8.598078 2
## 408 -1.9018391496 7.881863 1
## 409 1.6192149852 11.817668 5
## 410 0.5472612225 9.188350 4
## 411 -0.6144420252 10.454189 2
## 412 1.1888269385 11.017408 4
## 413 0.5635015544 9.203277 4
## 414 0.4941279351 11.790521 3
## 415 1.5312793554 10.580694 5
## 416 -0.3020416968 9.151308 3
## 417 -0.8869475881 9.508735 2
## 418 0.4751195671 9.953474 3
## 419 0.7773538511 11.648079 4
## 420 -0.4089110935 9.766623 3
## 421 0.4281784664 9.746793 3
## 422 2.0147695821 14.125984 5
## 423 -0.7697458582 9.062812 2
## 424 0.2758818202 9.093786 3
## 425 0.2196724627 11.514893 3
## 426 1.0329571938 9.251347 4
## 427 -0.8180375092 10.089108 2
## 428 -0.2362989896 10.346711 3
## 429 -1.2189605054 8.864413 2
## 430 -2.1308951576 7.476873 1
## 431 1.0323978957 11.051503 4
## 432 -0.7860113016 9.872299 2
## 433 0.4428930284 10.572560 3
## 434 0.2834588576 9.870005 3
## 435 0.6802378303 9.420738 4
## 436 -1.2289552681 8.929287 2
## 437 -1.0900406038 7.354173 2
## 438 2.5966592694 12.395216 5
## 439 -1.5084017499 8.180989 1
## 440 -0.9899890909 8.515345 2
## 441 0.3408482172 9.787178 3
## 442 -0.6781674916 7.541471 2
## 443 1.3610992777 10.765931 4
## 444 -0.0210812558 11.657514 3
## 445 1.0544831482 10.602468 4
## 446 0.3895570468 10.729973 3
## 447 -0.4363310935 10.585160 3
## 448 0.2837655650 12.232231 3
## 449 0.0863493076 10.286677 3
## 450 2.5997731258 11.508160 5
## 451 -0.0011795042 9.346587 3
## 452 -2.5988743468 6.900095 1
## 453 -1.2031173728 7.833641 2
## 454 -1.1261898237 9.336389 2
## 455 -0.2134853681 9.299367 3
## 456 -1.8113182752 9.006955 1
## 457 -0.3400631182 9.079644 3
## 458 -1.0931491380 8.323343 2
## 459 -0.4946962242 7.671516 3
## 460 0.8942886211 12.635052 4
## 461 -0.1596610463 9.895812 3
## 462 0.1857733330 10.157234 3
## 463 -1.0956333200 10.731041 2
## 464 -0.2902149167 9.033175 3
## 465 -1.6670120006 8.321139 1
## 466 -0.6129941763 8.599102 2
## 467 0.7183107447 10.424110 4
## 468 0.7351411024 11.224493 4
## 469 -0.3281944261 10.810104 3
## 470 -0.7839329164 8.538251 2
## 471 0.5422309355 9.421635 4
## 472 -1.0422092173 7.545463 2
## 473 -0.6276356705 9.855759 2
## 474 1.1562746523 9.389395 4
## 475 -1.0416456911 9.771780 2
## 476 0.2033987850 11.764845 3
## 477 0.0202967311 10.313209 3
## 478 0.1175921262 11.519728 3
## 479 0.5521406806 11.532286 4
## 480 -0.1238682333 10.298180 3
## 481 -0.5617541845 9.102949 2
## 482 -0.2866909545 10.673277 3
## 483 -0.8359714681 9.507400 2
## 484 0.3890531537 10.027527 3
## 485 0.4523446737 9.001736 3
## 486 0.0931218427 9.748892 3
## 487 0.0190845718 10.511648 3
## 488 0.9280798721 11.203580 4
## 489 -0.9874708752 7.736921 2
## 490 0.8783012278 12.055085 4
## 491 0.6375443912 11.187460 4
## 492 0.6467993809 8.629239 4
## 493 -0.5677967838 10.565413 2
## 494 0.1599924919 9.482929 3
## 495 0.3417400395 10.460369 3
## 496 0.5774724337 10.882234 4
## 497 -1.2805535592 9.011925 2
## 498 0.6900678257 9.802983 4
## 499 0.4480056317 9.317664 3
## 500 0.4769246725 10.674292 3
## 501 -0.5103118726 8.914051 2
## 502 0.7551541478 10.687780 4
## 503 0.7522938691 10.848717 4
## 504 -0.1958805916 10.142867 3
## 505 1.0059900750 10.526016 4
## 506 0.1900092866 11.269865 3
## 507 -0.2499413794 10.196727 3
## 508 -0.8676335234 7.831304 2
## 509 1.4228207331 9.573548 4
## 510 -0.2656096563 8.929114 3
## 511 -0.2561761877 9.833303 3
## 512 0.1743264763 10.437599 3
## 513 -0.9633970303 9.426122 2
## 514 -0.9358733832 9.570107 2
## 515 -0.2153810986 9.777722 3
## 516 0.2402580386 11.269118 3
## 517 0.1204239625 11.504992 3
## 518 -0.8141156532 9.632226 2
## 519 -0.6868357684 8.915231 2
## 520 -0.7231393496 9.242460 2
## 521 -0.6764966187 8.617729 2
## 522 -0.7176467980 10.402351 2
## 523 0.5779342896 9.646076 4
## 524 0.9957480922 10.828696 4
## 525 -0.0386231676 9.138549 3
## 526 -1.7077338635 9.307227 1
## 527 -1.0723290572 8.301201 2
## 528 -0.4566252874 9.790534 3
## 529 -0.5014118220 10.016987 2
## 530 -1.6812829298 9.362249 1
## 531 0.8963215567 10.515228 4
## 532 -0.6811605984 9.971570 2
## 533 -0.6822936553 8.462087 2
## 534 -1.1768724534 9.542522 2
## 535 -1.0504688042 11.303971 2
## 536 0.7412883015 11.975821 4
## 537 -1.1055011654 8.292499 2
## 538 1.0777936831 11.429558 4
## 539 -0.2176385345 10.920586 3
## 540 -0.1563741014 10.181982 3
## 541 -0.9383919626 7.050046 2
## 542 -2.0691509909 7.467770 1
## 543 0.4129131415 10.692255 3
## 544 -0.5002915365 8.709334 2
## 545 -1.1520533293 7.817622 2
## 546 0.7502276950 10.265599 4
## 547 -0.0159827483 11.538511 3
## 548 0.4418007043 10.180593 3
## 549 -1.7671544898 6.810624 1
## 550 -1.1886650133 7.450217 2
## 551 0.5468990408 11.305160 4
## 552 1.1789110925 12.299671 4
## 553 0.3119105528 11.731279 3
## 554 0.0320808944 11.323876 3
## 555 -0.5386678752 9.613083 2
## 556 -0.6651075227 8.218513 2
## 557 0.6680940772 9.460680 4
## 558 0.3845416500 9.287316 3
## 559 2.4254537112 10.928254 5
## 560 0.4185386061 10.934533 3
## 561 -0.3251533967 9.739560 3
## 562 0.3859831799 9.321227 3
## 563 1.7631980880 12.305381 5
## 564 0.1305918683 8.617101 3
## 565 0.6274930407 7.825448 4
## 566 -0.1630011408 9.505827 3
## 567 -1.4783170037 10.183059 2
## 568 -1.6496447308 9.214365 1
## 569 -0.1247818164 9.484299 3
## 570 0.0135423654 10.031861 3
## 571 0.3921813355 9.308477 3
## 572 2.0814343037 12.994322 5
## 573 -0.3567735748 8.517365 3
## 574 -1.5747662625 6.195398 1
## 575 0.2267419106 11.745982 3
## 576 0.3630650998 11.557786 3
## 577 -1.6970907102 8.615114 1
## 578 -1.4002838168 9.079472 2
## 579 -0.7451661069 7.669773 2
## 580 -0.7884760724 9.679420 2
## 581 -0.7337431960 10.442340 2
## 582 1.1149351186 10.104407 4
## 583 0.6246632377 10.633507 4
## 584 -0.4208283521 7.885585 3
## 585 -0.0915037871 8.775698 3
## 586 -0.7235204869 8.712617 2
## 587 -0.5494415578 8.159045 2
## 588 0.4224614928 9.237422 3
## 589 2.6998457919 13.157305 5
## 590 -1.9868075514 8.133054 1
## 591 0.7640852126 10.626233 4
## 592 -0.8708582515 9.668621 2
## 593 -0.1925863419 8.893848 3
## 594 1.3026112360 10.271972 4
## 595 -2.6308698377 6.151951 1
## 596 -0.1827368551 8.004368 3
## 597 -2.5155085625 5.573782 1
## 598 0.5409627272 11.276755 4
## 599 -0.0715402364 11.628538 3
## 600 0.2782962569 11.221920 3
## 601 -0.2415786741 9.912229 3
## 602 0.7577619957 9.979735 4
## 603 -0.2001982408 8.881402 3
## 604 -0.6578067619 11.885333 2
## 605 -0.1947296522 10.615009 3
## 606 0.5166947393 11.223574 4
## 607 1.8450558818 12.496979 5
## 608 1.2083777089 11.047250 4
## 609 -0.3832953331 10.004565 3
## 610 -0.5899266732 6.783518 2
## 611 -0.2367193575 9.578117 3
## 612 0.1320895838 9.560775 3
## 613 -1.1943478977 10.064334 2
## 614 -0.1435304511 9.780033 3
## 615 -0.7595091218 8.260277 2
## 616 -0.8476480906 9.585861 2
## 617 0.5547168586 10.713068 4
## 618 -1.3211332473 10.213374 2
## 619 1.2340623425 8.866621 4
## 620 1.1723823030 11.724391 4
## 621 1.3731175868 11.944886 4
## 622 1.1379608864 12.154821 4
## 623 -1.5905774585 9.300528 1
## 624 0.1789986817 9.884967 3
## 625 0.4731962955 9.917218 3
## 626 -1.6002061336 8.730692 1
## 627 0.7325575942 10.068817 4
## 628 -0.6977242626 9.044606 2
## 629 0.8800582890 11.085177 4
## 630 -0.3028542113 8.520640 3
## 631 -0.5737616821 9.248731 2
## 632 0.4292194936 8.892292 3
## 633 0.3628705552 10.196532 3
## 634 -1.6565033629 9.578561 1
## 635 -1.5387774487 8.089182 1
## 636 0.7678755282 11.866728 4
## 637 -1.4654691672 8.425290 2
## 638 -1.5813663734 8.705251 1
## 639 -0.7575978718 10.152008 2
## 640 0.4655437514 10.528637 3
## 641 -0.8436281236 7.924505 2
## 642 -0.3006566746 9.515210 3
## 643 -0.5174593437 10.656964 2
## 644 0.7633806412 10.074095 4
## 645 0.8183168425 9.773296 4
## 646 1.7776842797 12.653464 5
## 647 0.9144274051 10.740055 4
## 648 1.2454977872 10.780509 4
## 649 0.6546916633 10.039008 4
## 650 0.4648268447 10.901971 3
## 651 -0.2243081006 10.102928 3
## 652 0.3659407346 9.791358 3
## 653 0.3910939630 10.503048 3
## 654 0.7383422903 9.041625 4
## 655 0.4482501930 11.559882 3
## 656 0.6125614051 8.162128 4
## 657 -0.0985846665 11.348592 3
## 658 0.5365952806 10.655467 4
## 659 0.2282276364 8.269740 3
## 660 -2.6934540057 5.636452 1
## 661 0.3927495104 10.458425 3
## 662 -1.5331429097 8.763986 1
## 663 0.3969422139 9.276993 3
## 664 -0.2560736925 8.272660 3
## 665 0.5973491979 10.842370 4
## 666 0.5799516753 10.435161 4
## 667 0.0340022550 10.639479 3
## 668 -1.3705439507 9.535979 2
## 669 0.7796662237 11.809626 4
## 670 1.3527227187 12.340023 4
## 671 0.8880785587 10.218518 4
## 672 0.4281518747 10.705843 3
## 673 0.8131003051 9.755214 4
## 674 0.9514390215 11.588213 4
## 675 -0.2029615117 8.664631 3
## 676 -1.7667811032 8.662769 1
## 677 0.0516614393 10.730605 3
## 678 -1.0366619417 7.845545 2
## 679 0.8693987508 11.229735 4
## 680 0.9394040445 10.336399 4
## 681 0.2538333669 9.418976 3
## 682 -0.3675027883 7.775643 3
## 683 0.0109160205 10.684369 3
## 684 -0.7277246889 9.240709 2
## 685 -0.3239529641 9.259642 3
## 686 -0.5564472117 10.044383 2
## 687 1.4464204507 12.283522 4
## 688 -1.0310062722 9.105747 2
## 689 0.2602291299 11.074378 3
## 690 -0.6380003046 9.199947 2
## 691 0.9575259657 10.907456 4
## 692 -0.6210657048 10.599504 2
## 693 -0.3857114253 10.741537 3
## 694 -0.3856911746 10.933206 3
## 695 -1.4581458731 10.352066 2
## 696 -0.7502569402 8.421155 2
## 697 -1.1340671516 8.577236 2
## 698 -3.0388001691 6.937556 1
## 699 -1.5373962817 6.714388 1
## 700 0.4889541443 9.196153 3
## 701 -1.1519935035 8.050341 2
## 702 0.3791254663 11.007279 3
## 703 -0.4141287636 9.169395 3
## 704 1.6749196623 11.121235 5
## 705 0.0628685597 9.712279 3
## 706 0.9038242126 10.946698 4
## 707 -0.0099023019 10.725676 3
## 708 -0.6442807000 8.221735 2
## 709 2.0975446250 12.125425 5
## 710 -0.7725449796 8.328009 2
## 711 1.5771951108 13.335515 5
## 712 0.3979039102 9.995661 3
## 713 -1.6970415653 8.714171 1
## 714 0.2535416039 9.991026 3
## 715 0.1265786375 8.994569 3
## 716 0.2035679537 10.526351 3
## 717 -0.3778597280 9.630893 3
## 718 1.1509146882 9.710638 4
## 719 -0.0602493287 11.018728 3
## 720 -0.8263212624 11.000993 2
## 721 0.8761536200 9.928009 4
## 722 0.1918654509 10.619520 3
## 723 0.5348178766 10.555067 4
## 724 0.6083988019 10.716664 4
## 725 -0.4185915200 8.773580 3
## 726 0.6997370166 9.202677 4
## 727 0.1231148384 9.287867 3
## 728 1.0838257647 10.782624 4
## 729 0.1439278046 12.749107 3
## 730 -0.0471785283 9.701834 3
## 731 -0.4565876386 10.034987 3
## 732 0.9803712607 10.599686 4
## 733 -1.4154048344 9.463782 2
## 734 0.3569650564 8.932511 3
## 735 3.0928633289 13.900336 5
## 736 0.6061368545 10.636148 4
## 737 -0.8468732328 9.416227 2
## 738 0.0833718451 10.753809 3
## 739 -2.2887629438 6.820454 1
## 740 -1.7820875112 7.081683 1
## 741 1.7080953977 11.016251 5
## 742 0.2706446745 10.322426 3
## 743 -1.8567387645 8.423540 1
## 744 -0.1542795611 9.886447 3
## 745 -1.5654347877 7.404879 1
## 746 -0.7850431414 9.221767 2
## 747 1.2903500047 11.548995 4
## 748 -1.3805939354 9.661386 2
## 749 -0.0187458037 10.528383 3
## 750 1.9228706924 12.647914 5
## 751 -0.4730253561 10.185613 3
## 752 -0.9719429129 10.126399 2
## 753 1.3006055581 12.123633 4
## 754 0.2005076726 11.960577 3
## 755 0.5652685458 10.946945 4
## 756 0.5558317357 10.502471 4
## 757 -0.4765681503 9.525026 3
## 758 0.5476065594 11.511243 4
## 759 0.3085675840 10.027917 3
## 760 -0.5541490755 8.781929 2
## 761 -1.2552239409 8.850079 2
## 762 -0.2559452912 7.454801 3
## 763 -0.1359679495 8.657842 3
## 764 -1.4033261291 9.103546 2
## 765 -1.3164641901 9.894381 2
## 766 0.9179817436 11.474208 4
## 767 -2.2426068872 7.045449 1
## 768 1.3040162462 11.624869 4
## 769 1.2552004530 9.739154 4
## 770 1.1566747740 11.176716 4
## 771 0.9794294313 11.791820 4
## 772 -0.0497125682 9.562302 3
## 773 -0.2697065594 10.261262 3
## 774 -0.9755739772 10.093164 2
## 775 -0.1374296268 8.646884 3
## 776 0.5459667194 10.880643 4
## 777 -1.3904980762 10.458081 2
## 778 0.8396296728 9.874506 4
## 779 -0.6646680879 9.316668 2
## 780 -0.8375020993 9.452255 2
## 781 0.7640428809 11.575891 4
## 782 -2.0124963104 9.865737 1
## 783 0.7595413493 11.234724 4
## 784 -0.6578196216 8.323238 2
## 785 -0.5583651012 10.568493 2
## 786 1.7021310938 12.253681 5
## 787 -2.1196033392 7.164357 1
## 788 0.6206077285 10.830505 4
## 789 -1.0619905347 10.046062 2
## 790 -0.7030054091 10.156462 2
## 791 -0.5309383037 8.984396 2
## 792 -0.7672069485 7.066213 2
## 793 0.1931049686 10.255289 3
## 794 -1.7334763004 10.473874 1
## 795 0.4143746928 9.056138 3
## 796 0.7209046114 11.349230 4
## 797 0.2945504691 10.191731 3
## 798 0.8161347519 10.155980 4
## 799 -1.0038830181 9.365147 2
## 800 1.7016408921 12.023196 5
## 801 1.2577022189 12.762360 4
## 802 1.9260521635 9.847179 5
## 803 0.1662076754 9.047819 3
## 804 -1.7577495264 9.619459 1
## 805 0.6703969429 10.961039 4
## 806 -2.1051744017 8.833970 1
## 807 -0.1667474744 10.160492 3
## 808 0.0594817727 9.247590 3
## 809 0.0941378187 11.482467 3
## 810 0.3543524670 12.751812 3
## 811 0.6269898006 10.036136 4
## 812 1.0048186730 10.862830 4
## 813 -0.4769985695 8.879963 3
## 814 -0.3251766059 11.192393 3
## 815 -0.5173528620 10.308868 2
## 816 -0.4036362353 10.538003 3
## 817 -0.1551973066 9.977676 3
## 818 -1.0505020557 9.030002 2
## 819 -0.0172511929 9.171539 3
## 820 -0.6919528967 10.469054 2
## 821 -0.6448005916 8.793721 2
## 822 -1.1982603120 8.363003 2
## 823 -0.9742627991 9.946520 2
## 824 -0.5993928782 10.131828 2
## 825 0.9301630581 9.792111 4
## 826 -1.2898350836 8.009001 2
## 827 1.6008091211 10.832898 5
## 828 0.2915624462 8.063563 3
## 829 1.4523207364 10.223027 4
## 830 -0.5389507846 10.356820 2
## 831 -0.8963846845 8.879845 2
## 832 -1.2566753874 8.694306 2
## 833 1.1631139186 10.587912 4
## 834 0.2150311787 11.640776 3
## 835 -0.4459107398 9.270999 3
## 836 -0.6777855052 11.847172 2
## 837 -0.8017529425 8.771181 2
## 838 0.2954133649 10.374984 3
## 839 -0.3836601844 10.625844 3
## 840 0.0342056412 11.466886 3
## 841 0.0550615927 9.588701 3
## 842 2.6609255614 10.591316 5
## 843 -0.4417095556 9.123177 3
## 844 -0.3088007134 9.713419 3
## 845 -0.6732679582 8.412168 2
## 846 -1.3328456295 8.212848 2
## 847 0.1550246863 10.099760 3
## 848 -0.7126725320 10.753719 2
## 849 -0.2103545785 9.896123 3
## 850 -0.1403886692 10.166165 3
## 851 -0.8215777522 9.239637 2
## 852 -1.2391128403 9.672952 2
## 853 -0.1465631137 10.506769 3
## 854 0.4646454770 10.119877 3
## 855 -0.4522039176 9.322932 3
## 856 -0.4375279621 9.251234 3
## 857 1.6101006014 10.542353 5
## 858 0.6123861320 10.237556 4
## 859 -1.3688133574 7.545981 2
## 860 -1.2244759987 7.569029 2
## 861 -0.0322167807 9.129448 3
## 862 0.2452736495 8.193194 3
## 863 -0.2469359395 10.388631 3
## 864 -0.5110601252 9.100610 2
## 865 -0.4677808825 9.028805 3
## 866 -1.0064426915 8.817724 2
## 867 -0.2748848620 9.664374 3
## 868 0.1953934872 10.823007 3
## 869 -0.0606274237 9.952578 3
## 870 1.5655562888 12.309893 5
## 871 0.6184544484 9.995596 4
## 872 -0.2990100585 9.706025 3
## 873 -0.3143566908 10.620885 3
## 874 -0.7065443872 7.990322 2
## 875 -0.2037041013 9.681915 3
## 876 -1.2895126264 8.390979 2
## 877 -2.0992743534 6.592356 1
## 878 0.0124892358 11.475712 3
## 879 -2.1224452478 6.905249 1
## 880 1.1393488979 12.864397 4
## 881 0.6879020058 9.447940 4
## 882 -0.3691033942 8.705479 3
## 883 -0.6172458888 8.704129 2
## 884 -1.4996393879 8.422429 2
## 885 0.2595915139 9.575632 3
## 886 1.3158683091 9.348573 4
## 887 0.3486132658 9.751189 3
## 888 0.3398511201 11.269724 3
## 889 1.0036176314 10.915746 4
## 890 0.6349044194 10.129732 4
## 891 0.8060742293 10.498727 4
## 892 -0.7846271708 9.102381 2
## 893 -1.1550594687 8.197206 2
## 894 2.1942048994 12.687056 5
## 895 -0.5963683397 9.523146 2
## 896 0.7546089242 12.486343 4
## 897 -0.2034354331 9.486853 3
## 898 -0.4577825019 9.369335 3
## 899 0.0542870940 10.269033 3
## 900 0.1590032818 10.387574 3
## 901 -1.2113694840 8.640959 2
## 902 -1.5519424440 8.392967 1
## 903 -1.3176355257 7.929035 2
## 904 -0.8022102232 10.247707 2
## 905 -0.9820196646 10.144272 2
## 906 -1.0603902851 9.000007 2
## 907 -0.4592565251 8.316906 3
## 908 -1.0464125597 9.848845 2
## 909 0.4960222822 10.813193 3
## 910 -1.3693016781 8.092104 2
## 911 0.6615997304 11.338022 4
## 912 -0.7617800862 7.771764 2
## 913 0.1655881799 11.076424 3
## 914 -2.2249045183 8.046193 1
## 915 -0.9505599853 8.284352 2
## 916 -2.4214269169 7.710484 1
## 917 -0.9147266438 10.320974 2
## 918 -0.6629722189 9.459052 2
## 919 -0.9377096007 9.001695 2
## 920 -0.4965909589 7.919460 3
## 921 -0.0534838030 10.052615 3
## 922 -0.3532319983 8.935708 3
## 923 -1.0151665209 8.034828 2
## 924 -1.1587899601 9.513697 2
## 925 0.2747119836 9.796135 3
## 926 1.6666740704 12.150492 5
## 927 1.2278629737 11.364774 4
## 928 -0.2042248009 8.896390 3
## 929 0.6013494335 9.840744 4
## 930 0.5511320483 11.170569 4
## 931 -0.5579131916 9.259643 2
## 932 -0.7296543666 9.729197 2
## 933 0.1774073474 8.629687 3
## 934 0.0002128264 10.316767 3
## 935 -0.2026117538 8.244609 3
## 936 0.5113188002 10.962467 4
## 937 0.3024781680 11.748269 3
## 938 0.7554330439 11.834186 4
## 939 -0.3747357267 10.522091 3
## 940 0.5411469038 11.089672 4
## 941 -0.7177320424 9.474423 2
## 942 -1.0012487218 8.052357 2
## 943 -1.2199443454 10.064427 2
## 944 -0.3418202159 8.814902 3
## 945 2.5526970476 11.959787 5
## 946 -0.3443462193 9.464402 3
## 947 -0.1216373336 10.454899 3
## 948 1.0536224918 10.581217 4
## 949 0.4925280066 11.706605 3
## 950 -1.4238895891 9.916064 2
## 951 0.1276215981 9.858317 3
## 952 -1.2614858224 8.810747 2
## 953 0.4449606766 8.834629 3
## 954 -0.5571041217 9.920361 2
## 955 -0.8896232860 10.123302 2
## 956 -0.1757594582 10.234505 3
## 957 3.3304936723 15.680570 5
## 958 -1.5019112649 9.903128 1
## 959 -1.7893983933 8.738286 1
## 960 -0.6615357369 8.765967 2
## 961 -0.6867815944 9.405496 2
## 962 1.9066274096 11.863345 5
## 963 -1.5856863006 8.361876 1
## 964 -1.3105004204 9.616801 2
## 965 -0.5981638880 8.817522 2
## 966 -0.2792472009 10.529861 3
## 967 0.3610765637 9.752964 3
## 968 -0.0291916455 9.888208 3
## 969 -0.9654784549 9.483509 2
## 970 0.9216795983 11.197902 4
## 971 -0.0634337931 9.209518 3
## 972 -0.5164548949 8.639374 2
## 973 2.1105840222 10.742357 5
## 974 0.6073370371 11.803449 4
## 975 -0.3054983594 10.696162 3
## 976 0.2459192201 8.098121 3
## 977 -0.5665018687 9.638224 2
## 978 0.1203742216 8.691978 3
## 979 -0.7718147519 9.492734 2
## 980 -0.9040384209 9.779748 2
## 981 -1.1253513692 8.530997 2
## 982 0.2595276588 10.891975 3
## 983 0.2444850367 10.316937 3
## 984 -0.0007143723 7.929715 3
## 985 1.2971856249 9.531347 4
## 986 0.9383303305 9.880865 4
## 987 -0.1643244314 12.012456 3
## 988 -2.1390283857 7.606808 1
## 989 -0.1057298581 9.258915 3
## 990 0.6932183281 13.449103 4
## 991 -0.2577201448 10.412024 3
## 992 0.8853583672 10.757834 4
## 993 -1.6570018606 7.289370 1
## 994 -0.3205469796 11.512605 3
## 995 -0.1897882330 8.174937 3
## 996 0.3445636956 9.579570 3
## 997 -2.4838691184 8.351182 1
## 998 -0.0950728115 9.490471 3
## 999 2.0734309450 11.656934 5
## 1000 0.7004286628 10.362739 4
# creates plot object using ggplot
plot <- ggplot(sample_data, aes(x = xAxis, y= yAxis, col = as.factor(group)))+
geom_point()+theme(legend.position = "none")
# Display plot
plot
# Insert marginal ditribution using marginal function
ggMarginal(plot,type= 'histogram',groupColour=TRUE,groupFill=TRUE)
