# Mindanao State University
# General Santos City
# A0 Basic Graphs Using R
# Submitted by: Davy D. Dongosa, 1-BSMATH
# Mat108

# Lab Exercise 1: How to create Lines in with different styles in R
# Step 1: Create Data
x <-1:10 # Create example data
y <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9) # using the c() function to create an array

# Step 2: Plot the line graph using the base plot() command
plot(x, y, type ="l")

# Step 3: Add Main Title & Change Axis Labels
plot(x, y, type = "l",
     main = "Hello: This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values")

# Step 4: Add color to the line using the col command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     col = "red")

# Step 5: Modify Thickness of Line using lwd command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=7,
     col = "green")

# Step 6: Add points to line graph by changing the type command
plot(x, y, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# Step 6: Add points to line graph by changing the type command
plot(x, y, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# Lab Exercise 2: How to create Lines in with different styles in R
# Step1: Assign values for different lines. We enclose the entire
# line with parenthesis symbol to force R to display the results instantly
# set the same value for the x variable
(x <- 1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
# set different values for y variables
(y1 <-c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9))
##  [1] 3 1 5 2 3 8 4 7 6 9
# set different values for y variables
(y2<-c(5, 1, 4, 6, 2, 3, 7, 8, 2, 8))
##  [1] 5 1 4 6 2 3 7 8 2 8
# set different values for y variables
(y3 <-c(3, 3, 3, 3, 4, 4, 5, 5, 7, 7))
##  [1] 3 3 3 3 4 4 5 5 7 7
# Plot first the pair x and y1.
plot(x, y1, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
# then Add the two lines (for x,y2) and (x,y3)
lines(x, y2, type ="b", col ="red",lwd=3)
lines(x, y3, type ="b", col = "green",lwd=3)
# Add legend to the plot
legend("topleft",
       legend = c("Line y1", "Line y2","Line y3"),
       col = c("black","red", "green"),
       lty = 1)

# Step 2: Create Different Point Symbol for Each
# Line using the pch command
plot(x, y1, type ="b",pch = 16,
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
lines(x, y2, type = "b", col ="red",lwd=3, pch = 15)
lines(x, y3, type = "b", col = "green",lwd=3, pch = 8)
# Add legend
legend("topleft",
       legend = c("Line y1", "Line y2", "Line y3"),
       col = c("black", "red", "green"),
       lty = 1)

# Lab Exercise 3: Create Line graph without x values
Pupils <-c(3.55 ,3.54 ,3.53 ,3.61 ,3.65 ,3.63 ,3.61
           ,3.61 ,3.59 ,3.63 ,3.59 ,3.63 ,3.62 ,3.62
           ,3.59 ,3.63 ,3.62 ,3.65 ,3.65)
# get number of elements of Pupils
length(Pupils)
## [1] 19
# Display the elements of Pupils
Pupils
##  [1] 3.55 3.54 3.53 3.61 3.65 3.63 3.61 3.61 3.59 3.63 3.59 3.63 3.62 3.62 3.59
## [16] 3.63 3.62 3.65 3.65
# You can obtain the plot without x values
plot(Pupils, type = 'o')

# Lab Exercise 4: How to Create vertical, horizontal lines
# We will use buit-in cars dataset in R
# display the cars dataset
cars
##    speed dist
## 1      4    2
## 2      4   10
## 3      7    4
## 4      7   22
## 5      8   16
## 6      9   10
## 7     10   18
## 8     10   26
## 9     10   34
## 10    11   17
## 11    11   28
## 12    12   14
## 13    12   20
## 14    12   24
## 15    12   28
## 16    13   26
## 17    13   34
## 18    13   34
## 19    13   46
## 20    14   26
## 21    14   36
## 22    14   60
## 23    14   80
## 24    15   20
## 25    15   26
## 26    15   54
## 27    16   32
## 28    16   40
## 29    17   32
## 30    17   40
## 31    17   50
## 32    18   42
## 33    18   56
## 34    18   76
## 35    18   84
## 36    19   36
## 37    19   46
## 38    19   68
## 39    20   32
## 40    20   48
## 41    20   52
## 42    20   56
## 43    20   64
## 44    22   66
## 45    23   54
## 46    24   70
## 47    24   92
## 48    24   93
## 49    24  120
## 50    25   85
# get the number of rows and columns using dim() command
dim(cars)
## [1] 50  2
# display the variable names of the cars dataset
names(cars)
## [1] "speed" "dist"
# display only the first column of the dataset
cars$speed # using the column name
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
cars[,1] # using the column number
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
# Remarks: the following commands will give you the same result
plot(cars,) # using the comma after the name

plot(cars[,1],cars[,2]) # using the column index 1 and 2

attach(cars); plot(speed,dist) # using the attach command to load the variables

plot(cars$speed,cars$dist) # using the dollar notation

# combine all 4 plots using the par() command
par(mfrow = c(2,2)) # set a 2x2 plot output
plot(cars,) # using the comma after the name
plot(cars[,1],cars[,2]) # using the column index 1 and 2
attach(cars); plot(speed,dist) # using the attach command to load the variables
## The following objects are masked from cars (pos = 3):
## 
##     dist, speed
plot(cars$speed,cars$dist) # using the dollar notation

par(mfrow = c(1,1)) # reset to default plot setting
# Problem: Create vertical lines using the v command
plot(cars)
abline(v = 15, col = "darkgreen",lwd=3) # vertical line
abline(v = 10, col = "blue",lwd=3) # vertical line
# Problem: Create horizontal lines using the h command
abline(h = 80, col = "darkgreen",lwd=3) # vertical line
abline(h = 20, col = "blue",lwd=3) # vertical line

# Create more lines simultaneously, using a vector of values
plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2), # line thickness
       lty = c(2,2,2)) # dashed lines

plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2)) # line thickness and solid lines

# create horizontal lines
plot(cars)
abline(h = 60, col = "red",lty = 1, lwd = 3)
abline(h = 100, col = "red",lty = 2, lwd = 3)
abline(h = 20, col = "red",lty = 3, lwd = 3)

# Lab Exercise 5: How to Plot data by group
# We will use buit-in iris dataset in R
# this dataset is a collection of 4 species of flowers with different
# sepal length and width and also with different petal length and width
dim(iris) # iris dataset has 150 rows and 5 columns
## [1] 150   5
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"
# two different commands to get the frequency table
table(iris$Species) # refer to the dataset by variable name
## 
##     setosa versicolor  virginica 
##         50         50         50
table(iris[,5]) # refer to the dataset by column number
## 
##     setosa versicolor  virginica 
##         50         50         50
# get summary of all columns
summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 
#create scatterplot of sepal width vs. sepal length
plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=19)#create scatterplot of sepal width vs. sepal length
plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=19)

plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=1)

# another way to retrieve columns of data
PL <-iris$Petal.Length
PW <- iris$Petal.Width
plot(PL, PW)

# add color by species
plot(PL, PW, col = iris$Species, main= "My Plot")
# draw a line along with the distribution of points
# using the abline and lm commands
abline(lm(PW ~ PL))
# add text annotation
text(5, 0.5, "Regression Line")
legend("topleft", # specify the location of the legend
       levels(iris$Species), # specify the levels of species
       pch = 1:3, # specify three symbols used for the three species
       col = 1:3 # specify three colors for the three species
)

# Lab Exercise 6: Generate advance scatter plot
pairs(iris, col = rainbow(3)[iris$Species]) # set colors by species

# How to filter data for each flower
(Versicolor <- subset(iris, Species == "versicolor"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
(Setosa <- subset(iris, Species == "setosa"))
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## 11          5.4         3.7          1.5         0.2  setosa
## 12          4.8         3.4          1.6         0.2  setosa
## 13          4.8         3.0          1.4         0.1  setosa
## 14          4.3         3.0          1.1         0.1  setosa
## 15          5.8         4.0          1.2         0.2  setosa
## 16          5.7         4.4          1.5         0.4  setosa
## 17          5.4         3.9          1.3         0.4  setosa
## 18          5.1         3.5          1.4         0.3  setosa
## 19          5.7         3.8          1.7         0.3  setosa
## 20          5.1         3.8          1.5         0.3  setosa
## 21          5.4         3.4          1.7         0.2  setosa
## 22          5.1         3.7          1.5         0.4  setosa
## 23          4.6         3.6          1.0         0.2  setosa
## 24          5.1         3.3          1.7         0.5  setosa
## 25          4.8         3.4          1.9         0.2  setosa
## 26          5.0         3.0          1.6         0.2  setosa
## 27          5.0         3.4          1.6         0.4  setosa
## 28          5.2         3.5          1.5         0.2  setosa
## 29          5.2         3.4          1.4         0.2  setosa
## 30          4.7         3.2          1.6         0.2  setosa
## 31          4.8         3.1          1.6         0.2  setosa
## 32          5.4         3.4          1.5         0.4  setosa
## 33          5.2         4.1          1.5         0.1  setosa
## 34          5.5         4.2          1.4         0.2  setosa
## 35          4.9         3.1          1.5         0.2  setosa
## 36          5.0         3.2          1.2         0.2  setosa
## 37          5.5         3.5          1.3         0.2  setosa
## 38          4.9         3.6          1.4         0.1  setosa
## 39          4.4         3.0          1.3         0.2  setosa
## 40          5.1         3.4          1.5         0.2  setosa
## 41          5.0         3.5          1.3         0.3  setosa
## 42          4.5         2.3          1.3         0.3  setosa
## 43          4.4         3.2          1.3         0.2  setosa
## 44          5.0         3.5          1.6         0.6  setosa
## 45          5.1         3.8          1.9         0.4  setosa
## 46          4.8         3.0          1.4         0.3  setosa
## 47          5.1         3.8          1.6         0.2  setosa
## 48          4.6         3.2          1.4         0.2  setosa
## 49          5.3         3.7          1.5         0.2  setosa
## 50          5.0         3.3          1.4         0.2  setosa
(Virginica <- subset(iris, Species == "virginica"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 101          6.3         3.3          6.0         2.5 virginica
## 102          5.8         2.7          5.1         1.9 virginica
## 103          7.1         3.0          5.9         2.1 virginica
## 104          6.3         2.9          5.6         1.8 virginica
## 105          6.5         3.0          5.8         2.2 virginica
## 106          7.6         3.0          6.6         2.1 virginica
## 107          4.9         2.5          4.5         1.7 virginica
## 108          7.3         2.9          6.3         1.8 virginica
## 109          6.7         2.5          5.8         1.8 virginica
## 110          7.2         3.6          6.1         2.5 virginica
## 111          6.5         3.2          5.1         2.0 virginica
## 112          6.4         2.7          5.3         1.9 virginica
## 113          6.8         3.0          5.5         2.1 virginica
## 114          5.7         2.5          5.0         2.0 virginica
## 115          5.8         2.8          5.1         2.4 virginica
## 116          6.4         3.2          5.3         2.3 virginica
## 117          6.5         3.0          5.5         1.8 virginica
## 118          7.7         3.8          6.7         2.2 virginica
## 119          7.7         2.6          6.9         2.3 virginica
## 120          6.0         2.2          5.0         1.5 virginica
## 121          6.9         3.2          5.7         2.3 virginica
## 122          5.6         2.8          4.9         2.0 virginica
## 123          7.7         2.8          6.7         2.0 virginica
## 124          6.3         2.7          4.9         1.8 virginica
## 125          6.7         3.3          5.7         2.1 virginica
## 126          7.2         3.2          6.0         1.8 virginica
## 127          6.2         2.8          4.8         1.8 virginica
## 128          6.1         3.0          4.9         1.8 virginica
## 129          6.4         2.8          5.6         2.1 virginica
## 130          7.2         3.0          5.8         1.6 virginica
## 131          7.4         2.8          6.1         1.9 virginica
## 132          7.9         3.8          6.4         2.0 virginica
## 133          6.4         2.8          5.6         2.2 virginica
## 134          6.3         2.8          5.1         1.5 virginica
## 135          6.1         2.6          5.6         1.4 virginica
## 136          7.7         3.0          6.1         2.3 virginica
## 137          6.3         3.4          5.6         2.4 virginica
## 138          6.4         3.1          5.5         1.8 virginica
## 139          6.0         3.0          4.8         1.8 virginica
## 140          6.9         3.1          5.4         2.1 virginica
## 141          6.7         3.1          5.6         2.4 virginica
## 142          6.9         3.1          5.1         2.3 virginica
## 143          5.8         2.7          5.1         1.9 virginica
## 144          6.8         3.2          5.9         2.3 virginica
## 145          6.7         3.3          5.7         2.5 virginica
## 146          6.7         3.0          5.2         2.3 virginica
## 147          6.3         2.5          5.0         1.9 virginica
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
# Draw boxplot for each type of flower
boxplot(Versicolor[,1:4], main="Versicolor, Rainbow Palette",ylim =
          c(0,8),las=2, col=rainbow(4))

boxplot(Setosa[,1:4], main="Setosa, Heat color Palette",ylim = c(0,8),las=2,
        col=heat.colors(4))

boxplot(Virginica[,1:4], main="Virginica, Topo colors Palette",ylim =
          c(0,8),las=2, col=topo.colors(4))

# Lab Exercise 7: How to load external datasets
# From a local directory
# the folder that contains the file should be specified completely
# using the forward slash symbol instead of the backward splash
library(readr)
cancer <- read_csv("Cancer.csv")
## Rows: 173 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): country, continent
## dbl (15): incomeperperson, alcconsumption, armedforcesrate, breastcancer, co...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dim(cancer)
## [1] 173  17
names(cancer)
##  [1] "country"            "incomeperperson"    "alcconsumption"    
##  [4] "armedforcesrate"    "breastcancer"       "co2emissions"      
##  [7] "femaleemployrate"   "hivrate"            "internetuserate"   
## [10] "lifeexpectancy"     "oilperperson"       "polityscore"       
## [13] "relectricperperson" "suicideper100th"    "employrate"        
## [16] "urbanrate"          "continent"
# compute mean value for every continent
(means <- round(tapply(cancer$breastcancer, cancer$continent, mean),
                digits=2))
##    AF    AS    EE LATAM NORAM    OC    WE 
## 24.02 24.51 49.44 36.70 71.73 45.80 74.80
# draw boxplot per continent
boxplot(cancer$breastcancer ~ cancer$continent, main= "Breast cancer by
continent (brown dot = mean value)", xlab="continents", ylab="new
cases per 100,00 residents", col=rainbow(7))
# insert the mean value using brown dot
points(means, col="brown", pch=18)

# Lab Exercise 8: How to load external datasets and change data layout
library(readr)
hsb2 <- read_csv("hsb2.csv")
## New names:
## Rows: 200 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (12): ...1, id, female, race, ses, schtyp, prog, read, write, math, scie...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
# display only the top 6 rows
head(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1    70      0     4     1      1     1    57    52    41      47    57
## 2     2   121      1     4     2      1     3    68    59    53      63    61
## 3     3    86      0     4     3      1     1    44    33    54      58    31
## 4     4   141      0     4     3      1     3    63    44    47      53    56
## 5     5   172      0     4     2      1     2    47    52    57      53    61
## 6     6   113      0     4     2      1     2    44    52    51      63    61
# display only the last 6 rows
tail(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1   195   179      1     4     2      2     2    47    65    60      50    56
## 2   196    31      1     2     2      2     1    55    59    52      42    56
## 3   197   145      1     4     2      1     3    42    46    38      36    46
## 4   198   187      1     4     2      2     1    57    41    57      55    52
## 5   199   118      1     4     2      1     1    55    62    58      58    61
## 6   200   137      1     4     3      1     2    63    65    65      53    61
# delete redundant first column (run only once)
(hsb2 <- hsb2[-1])
## # A tibble: 200 × 11
##       id female  race   ses schtyp  prog  read write  math science socst
##    <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    70      0     4     1      1     1    57    52    41      47    57
##  2   121      1     4     2      1     3    68    59    53      63    61
##  3    86      0     4     3      1     1    44    33    54      58    31
##  4   141      0     4     3      1     3    63    44    47      53    56
##  5   172      0     4     2      1     2    47    52    57      53    61
##  6   113      0     4     2      1     2    44    52    51      63    61
##  7    50      0     3     2      1     1    50    59    42      53    61
##  8    11      0     1     2      1     2    34    46    45      39    36
##  9    84      0     4     2      1     1    63    57    54      58    51
## 10    48      0     3     2      1     2    57    55    52      50    51
## # ℹ 190 more rows
# Remarks
# hsb2 dataset consists of 200 selected random samples from senior
# high school students in the US.
# We want to compare the student performance across different subjects

# change data layout by grouping different subjects
# into one column using melt() command. Install first reshape2 package
# install.packages("reshape2")

library(reshape2)
(hsb2_long <- melt(hsb2, measure.vars =
                     c("read","write","math","science","socst")))
##       id female race ses schtyp prog variable value
## 1     70      0    4   1      1    1     read    57
## 2    121      1    4   2      1    3     read    68
## 3     86      0    4   3      1    1     read    44
## 4    141      0    4   3      1    3     read    63
## 5    172      0    4   2      1    2     read    47
## 6    113      0    4   2      1    2     read    44
## 7     50      0    3   2      1    1     read    50
## 8     11      0    1   2      1    2     read    34
## 9     84      0    4   2      1    1     read    63
## 10    48      0    3   2      1    2     read    57
## 11    75      0    4   2      1    3     read    60
## 12    60      0    4   2      1    2     read    57
## 13    95      0    4   3      1    2     read    73
## 14   104      0    4   3      1    2     read    54
## 15    38      0    3   1      1    2     read    45
## 16   115      0    4   1      1    1     read    42
## 17    76      0    4   3      1    2     read    47
## 18   195      0    4   2      2    1     read    57
## 19   114      0    4   3      1    2     read    68
## 20    85      0    4   2      1    1     read    55
## 21   167      0    4   2      1    1     read    63
## 22   143      0    4   2      1    3     read    63
## 23    41      0    3   2      1    2     read    50
## 24    20      0    1   3      1    2     read    60
## 25    12      0    1   2      1    3     read    37
## 26    53      0    3   2      1    3     read    34
## 27   154      0    4   3      1    2     read    65
## 28   178      0    4   2      2    3     read    47
## 29   196      0    4   3      2    2     read    44
## 30    29      0    2   1      1    1     read    52
## 31   126      0    4   2      1    1     read    42
## 32   103      0    4   3      1    2     read    76
## 33   192      0    4   3      2    2     read    65
## 34   150      0    4   2      1    3     read    42
## 35   199      0    4   3      2    2     read    52
## 36   144      0    4   3      1    1     read    60
## 37   200      0    4   2      2    2     read    68
## 38    80      0    4   3      1    2     read    65
## 39    16      0    1   1      1    3     read    47
## 40   153      0    4   2      1    3     read    39
## 41   176      0    4   2      2    2     read    47
## 42   177      0    4   2      2    2     read    55
## 43   168      0    4   2      1    2     read    52
## 44    40      0    3   1      1    1     read    42
## 45    62      0    4   3      1    1     read    65
## 46   169      0    4   1      1    1     read    55
## 47    49      0    3   3      1    3     read    50
## 48   136      0    4   2      1    2     read    65
## 49   189      0    4   2      2    2     read    47
## 50     7      0    1   2      1    2     read    57
## 51    27      0    2   2      1    2     read    53
## 52   128      0    4   3      1    2     read    39
## 53    21      0    1   2      1    1     read    44
## 54   183      0    4   2      2    2     read    63
## 55   132      0    4   2      1    2     read    73
## 56    15      0    1   3      1    3     read    39
## 57    67      0    4   1      1    3     read    37
## 58    22      0    1   2      1    3     read    42
## 59   185      0    4   2      2    2     read    63
## 60     9      0    1   2      1    3     read    48
## 61   181      0    4   2      2    2     read    50
## 62   170      0    4   3      1    2     read    47
## 63   134      0    4   1      1    1     read    44
## 64   108      0    4   2      1    1     read    34
## 65   197      0    4   3      2    2     read    50
## 66   140      0    4   2      1    3     read    44
## 67   171      0    4   2      1    2     read    60
## 68   107      0    4   1      1    3     read    47
## 69    81      0    4   1      1    2     read    63
## 70    18      0    1   2      1    3     read    50
## 71   155      0    4   2      1    1     read    44
## 72    97      0    4   3      1    2     read    60
## 73    68      0    4   2      1    2     read    73
## 74   157      0    4   2      1    1     read    68
## 75    56      0    4   2      1    3     read    55
## 76     5      0    1   1      1    2     read    47
## 77   159      0    4   3      1    2     read    55
## 78   123      0    4   3      1    1     read    68
## 79   164      0    4   2      1    3     read    31
## 80    14      0    1   3      1    2     read    47
## 81   127      0    4   3      1    2     read    63
## 82   165      0    4   1      1    3     read    36
## 83   174      0    4   2      2    2     read    68
## 84     3      0    1   1      1    2     read    63
## 85    58      0    4   2      1    3     read    55
## 86   146      0    4   3      1    2     read    55
## 87   102      0    4   3      1    2     read    52
## 88   117      0    4   3      1    3     read    34
## 89   133      0    4   2      1    3     read    50
## 90    94      0    4   3      1    2     read    55
## 91    24      0    2   2      1    2     read    52
## 92   149      0    4   1      1    1     read    63
## 93    82      1    4   3      1    2     read    68
## 94     8      1    1   1      1    2     read    39
## 95   129      1    4   1      1    1     read    44
## 96   173      1    4   1      1    1     read    50
## 97    57      1    4   2      1    2     read    71
## 98   100      1    4   3      1    2     read    63
## 99     1      1    1   1      1    3     read    34
## 100  194      1    4   3      2    2     read    63
## 101   88      1    4   3      1    2     read    68
## 102   99      1    4   3      1    1     read    47
## 103   47      1    3   1      1    2     read    47
## 104  120      1    4   3      1    2     read    63
## 105  166      1    4   2      1    2     read    52
## 106   65      1    4   2      1    2     read    55
## 107  101      1    4   3      1    2     read    60
## 108   89      1    4   1      1    3     read    35
## 109   54      1    3   1      2    1     read    47
## 110  180      1    4   3      2    2     read    71
## 111  162      1    4   2      1    3     read    57
## 112    4      1    1   1      1    2     read    44
## 113  131      1    4   3      1    2     read    65
## 114  125      1    4   1      1    2     read    68
## 115   34      1    1   3      2    2     read    73
## 116  106      1    4   2      1    3     read    36
## 117  130      1    4   3      1    1     read    43
## 118   93      1    4   3      1    2     read    73
## 119  163      1    4   1      1    2     read    52
## 120   37      1    3   1      1    3     read    41
## 121   35      1    1   1      2    1     read    60
## 122   87      1    4   2      1    1     read    50
## 123   73      1    4   2      1    2     read    50
## 124  151      1    4   2      1    3     read    47
## 125   44      1    3   1      1    3     read    47
## 126  152      1    4   3      1    2     read    55
## 127  105      1    4   2      1    2     read    50
## 128   28      1    2   2      1    1     read    39
## 129   91      1    4   3      1    3     read    50
## 130   45      1    3   1      1    3     read    34
## 131  116      1    4   2      1    2     read    57
## 132   33      1    2   1      1    2     read    57
## 133   66      1    4   2      1    3     read    68
## 134   72      1    4   2      1    3     read    42
## 135   77      1    4   1      1    2     read    61
## 136   61      1    4   3      1    2     read    76
## 137  190      1    4   2      2    2     read    47
## 138   42      1    3   2      1    3     read    46
## 139    2      1    1   2      1    3     read    39
## 140   55      1    3   2      2    2     read    52
## 141   19      1    1   1      1    1     read    28
## 142   90      1    4   3      1    2     read    42
## 143  142      1    4   2      1    3     read    47
## 144   17      1    1   2      1    2     read    47
## 145  122      1    4   2      1    2     read    52
## 146  191      1    4   3      2    2     read    47
## 147   83      1    4   2      1    3     read    50
## 148  182      1    4   2      2    2     read    44
## 149    6      1    1   1      1    2     read    47
## 150   46      1    3   1      1    2     read    45
## 151   43      1    3   1      1    2     read    47
## 152   96      1    4   3      1    2     read    65
## 153  138      1    4   2      1    3     read    43
## 154   10      1    1   2      1    1     read    47
## 155   71      1    4   2      1    1     read    57
## 156  139      1    4   2      1    2     read    68
## 157  110      1    4   2      1    3     read    52
## 158  148      1    4   2      1    3     read    42
## 159  109      1    4   2      1    1     read    42
## 160   39      1    3   3      1    2     read    66
## 161  147      1    4   1      1    2     read    47
## 162   74      1    4   2      1    2     read    57
## 163  198      1    4   3      2    2     read    47
## 164  161      1    4   1      1    2     read    57
## 165  112      1    4   2      1    2     read    52
## 166   69      1    4   1      1    3     read    44
## 167  156      1    4   2      1    2     read    50
## 168  111      1    4   1      1    1     read    39
## 169  186      1    4   2      2    2     read    57
## 170   98      1    4   1      1    3     read    57
## 171  119      1    4   1      1    1     read    42
## 172   13      1    1   2      1    3     read    47
## 173   51      1    3   3      1    1     read    42
## 174   26      1    2   3      1    2     read    60
## 175   36      1    3   1      1    1     read    44
## 176  135      1    4   1      1    2     read    63
## 177   59      1    4   2      1    2     read    65
## 178   78      1    4   2      1    2     read    39
## 179   64      1    4   3      1    3     read    50
## 180   63      1    4   1      1    1     read    52
## 181   79      1    4   2      1    2     read    60
## 182  193      1    4   2      2    2     read    44
## 183   92      1    4   3      1    1     read    52
## 184  160      1    4   2      1    2     read    55
## 185   32      1    2   3      1    3     read    50
## 186   23      1    2   1      1    2     read    65
## 187  158      1    4   2      1    1     read    52
## 188   25      1    2   2      1    1     read    47
## 189  188      1    4   3      2    2     read    63
## 190   52      1    3   1      1    2     read    50
## 191  124      1    4   1      1    3     read    42
## 192  175      1    4   3      2    1     read    36
## 193  184      1    4   2      2    3     read    50
## 194   30      1    2   3      1    2     read    41
## 195  179      1    4   2      2    2     read    47
## 196   31      1    2   2      2    1     read    55
## 197  145      1    4   2      1    3     read    42
## 198  187      1    4   2      2    1     read    57
## 199  118      1    4   2      1    1     read    55
## 200  137      1    4   3      1    2     read    63
## 201   70      0    4   1      1    1    write    52
## 202  121      1    4   2      1    3    write    59
## 203   86      0    4   3      1    1    write    33
## 204  141      0    4   3      1    3    write    44
## 205  172      0    4   2      1    2    write    52
## 206  113      0    4   2      1    2    write    52
## 207   50      0    3   2      1    1    write    59
## 208   11      0    1   2      1    2    write    46
## 209   84      0    4   2      1    1    write    57
## 210   48      0    3   2      1    2    write    55
## 211   75      0    4   2      1    3    write    46
## 212   60      0    4   2      1    2    write    65
## 213   95      0    4   3      1    2    write    60
## 214  104      0    4   3      1    2    write    63
## 215   38      0    3   1      1    2    write    57
## 216  115      0    4   1      1    1    write    49
## 217   76      0    4   3      1    2    write    52
## 218  195      0    4   2      2    1    write    57
## 219  114      0    4   3      1    2    write    65
## 220   85      0    4   2      1    1    write    39
## 221  167      0    4   2      1    1    write    49
## 222  143      0    4   2      1    3    write    63
## 223   41      0    3   2      1    2    write    40
## 224   20      0    1   3      1    2    write    52
## 225   12      0    1   2      1    3    write    44
## 226   53      0    3   2      1    3    write    37
## 227  154      0    4   3      1    2    write    65
## 228  178      0    4   2      2    3    write    57
## 229  196      0    4   3      2    2    write    38
## 230   29      0    2   1      1    1    write    44
## 231  126      0    4   2      1    1    write    31
## 232  103      0    4   3      1    2    write    52
## 233  192      0    4   3      2    2    write    67
## 234  150      0    4   2      1    3    write    41
## 235  199      0    4   3      2    2    write    59
## 236  144      0    4   3      1    1    write    65
## 237  200      0    4   2      2    2    write    54
## 238   80      0    4   3      1    2    write    62
## 239   16      0    1   1      1    3    write    31
## 240  153      0    4   2      1    3    write    31
## 241  176      0    4   2      2    2    write    47
## 242  177      0    4   2      2    2    write    59
## 243  168      0    4   2      1    2    write    54
## 244   40      0    3   1      1    1    write    41
## 245   62      0    4   3      1    1    write    65
## 246  169      0    4   1      1    1    write    59
## 247   49      0    3   3      1    3    write    40
## 248  136      0    4   2      1    2    write    59
## 249  189      0    4   2      2    2    write    59
## 250    7      0    1   2      1    2    write    54
## 251   27      0    2   2      1    2    write    61
## 252  128      0    4   3      1    2    write    33
## 253   21      0    1   2      1    1    write    44
## 254  183      0    4   2      2    2    write    59
## 255  132      0    4   2      1    2    write    62
## 256   15      0    1   3      1    3    write    39
## 257   67      0    4   1      1    3    write    37
## 258   22      0    1   2      1    3    write    39
## 259  185      0    4   2      2    2    write    57
## 260    9      0    1   2      1    3    write    49
## 261  181      0    4   2      2    2    write    46
## 262  170      0    4   3      1    2    write    62
## 263  134      0    4   1      1    1    write    44
## 264  108      0    4   2      1    1    write    33
## 265  197      0    4   3      2    2    write    42
## 266  140      0    4   2      1    3    write    41
## 267  171      0    4   2      1    2    write    54
## 268  107      0    4   1      1    3    write    39
## 269   81      0    4   1      1    2    write    43
## 270   18      0    1   2      1    3    write    33
## 271  155      0    4   2      1    1    write    44
## 272   97      0    4   3      1    2    write    54
## 273   68      0    4   2      1    2    write    67
## 274  157      0    4   2      1    1    write    59
## 275   56      0    4   2      1    3    write    45
## 276    5      0    1   1      1    2    write    40
## 277  159      0    4   3      1    2    write    61
## 278  123      0    4   3      1    1    write    59
## 279  164      0    4   2      1    3    write    36
## 280   14      0    1   3      1    2    write    41
## 281  127      0    4   3      1    2    write    59
## 282  165      0    4   1      1    3    write    49
## 283  174      0    4   2      2    2    write    59
## 284    3      0    1   1      1    2    write    65
## 285   58      0    4   2      1    3    write    41
## 286  146      0    4   3      1    2    write    62
## 287  102      0    4   3      1    2    write    41
## 288  117      0    4   3      1    3    write    49
## 289  133      0    4   2      1    3    write    31
## 290   94      0    4   3      1    2    write    49
## 291   24      0    2   2      1    2    write    62
## 292  149      0    4   1      1    1    write    49
## 293   82      1    4   3      1    2    write    62
## 294    8      1    1   1      1    2    write    44
## 295  129      1    4   1      1    1    write    44
## 296  173      1    4   1      1    1    write    62
## 297   57      1    4   2      1    2    write    65
## 298  100      1    4   3      1    2    write    65
## 299    1      1    1   1      1    3    write    44
## 300  194      1    4   3      2    2    write    63
## 301   88      1    4   3      1    2    write    60
## 302   99      1    4   3      1    1    write    59
## 303   47      1    3   1      1    2    write    46
## 304  120      1    4   3      1    2    write    52
## 305  166      1    4   2      1    2    write    59
## 306   65      1    4   2      1    2    write    54
## 307  101      1    4   3      1    2    write    62
## 308   89      1    4   1      1    3    write    35
## 309   54      1    3   1      2    1    write    54
## 310  180      1    4   3      2    2    write    65
## 311  162      1    4   2      1    3    write    52
## 312    4      1    1   1      1    2    write    50
## 313  131      1    4   3      1    2    write    59
## 314  125      1    4   1      1    2    write    65
## 315   34      1    1   3      2    2    write    61
## 316  106      1    4   2      1    3    write    44
## 317  130      1    4   3      1    1    write    54
## 318   93      1    4   3      1    2    write    67
## 319  163      1    4   1      1    2    write    57
## 320   37      1    3   1      1    3    write    47
## 321   35      1    1   1      2    1    write    54
## 322   87      1    4   2      1    1    write    52
## 323   73      1    4   2      1    2    write    52
## 324  151      1    4   2      1    3    write    46
## 325   44      1    3   1      1    3    write    62
## 326  152      1    4   3      1    2    write    57
## 327  105      1    4   2      1    2    write    41
## 328   28      1    2   2      1    1    write    53
## 329   91      1    4   3      1    3    write    49
## 330   45      1    3   1      1    3    write    35
## 331  116      1    4   2      1    2    write    59
## 332   33      1    2   1      1    2    write    65
## 333   66      1    4   2      1    3    write    62
## 334   72      1    4   2      1    3    write    54
## 335   77      1    4   1      1    2    write    59
## 336   61      1    4   3      1    2    write    63
## 337  190      1    4   2      2    2    write    59
## 338   42      1    3   2      1    3    write    52
## 339    2      1    1   2      1    3    write    41
## 340   55      1    3   2      2    2    write    49
## 341   19      1    1   1      1    1    write    46
## 342   90      1    4   3      1    2    write    54
## 343  142      1    4   2      1    3    write    42
## 344   17      1    1   2      1    2    write    57
## 345  122      1    4   2      1    2    write    59
## 346  191      1    4   3      2    2    write    52
## 347   83      1    4   2      1    3    write    62
## 348  182      1    4   2      2    2    write    52
## 349    6      1    1   1      1    2    write    41
## 350   46      1    3   1      1    2    write    55
## 351   43      1    3   1      1    2    write    37
## 352   96      1    4   3      1    2    write    54
## 353  138      1    4   2      1    3    write    57
## 354   10      1    1   2      1    1    write    54
## 355   71      1    4   2      1    1    write    62
## 356  139      1    4   2      1    2    write    59
## 357  110      1    4   2      1    3    write    55
## 358  148      1    4   2      1    3    write    57
## 359  109      1    4   2      1    1    write    39
## 360   39      1    3   3      1    2    write    67
## 361  147      1    4   1      1    2    write    62
## 362   74      1    4   2      1    2    write    50
## 363  198      1    4   3      2    2    write    61
## 364  161      1    4   1      1    2    write    62
## 365  112      1    4   2      1    2    write    59
## 366   69      1    4   1      1    3    write    44
## 367  156      1    4   2      1    2    write    59
## 368  111      1    4   1      1    1    write    54
## 369  186      1    4   2      2    2    write    62
## 370   98      1    4   1      1    3    write    60
## 371  119      1    4   1      1    1    write    57
## 372   13      1    1   2      1    3    write    46
## 373   51      1    3   3      1    1    write    36
## 374   26      1    2   3      1    2    write    59
## 375   36      1    3   1      1    1    write    49
## 376  135      1    4   1      1    2    write    60
## 377   59      1    4   2      1    2    write    67
## 378   78      1    4   2      1    2    write    54
## 379   64      1    4   3      1    3    write    52
## 380   63      1    4   1      1    1    write    65
## 381   79      1    4   2      1    2    write    62
## 382  193      1    4   2      2    2    write    49
## 383   92      1    4   3      1    1    write    67
## 384  160      1    4   2      1    2    write    65
## 385   32      1    2   3      1    3    write    67
## 386   23      1    2   1      1    2    write    65
## 387  158      1    4   2      1    1    write    54
## 388   25      1    2   2      1    1    write    44
## 389  188      1    4   3      2    2    write    62
## 390   52      1    3   1      1    2    write    46
## 391  124      1    4   1      1    3    write    54
## 392  175      1    4   3      2    1    write    57
## 393  184      1    4   2      2    3    write    52
## 394   30      1    2   3      1    2    write    59
## 395  179      1    4   2      2    2    write    65
## 396   31      1    2   2      2    1    write    59
## 397  145      1    4   2      1    3    write    46
## 398  187      1    4   2      2    1    write    41
## 399  118      1    4   2      1    1    write    62
## 400  137      1    4   3      1    2    write    65
## 401   70      0    4   1      1    1     math    41
## 402  121      1    4   2      1    3     math    53
## 403   86      0    4   3      1    1     math    54
## 404  141      0    4   3      1    3     math    47
## 405  172      0    4   2      1    2     math    57
## 406  113      0    4   2      1    2     math    51
## 407   50      0    3   2      1    1     math    42
## 408   11      0    1   2      1    2     math    45
## 409   84      0    4   2      1    1     math    54
## 410   48      0    3   2      1    2     math    52
## 411   75      0    4   2      1    3     math    51
## 412   60      0    4   2      1    2     math    51
## 413   95      0    4   3      1    2     math    71
## 414  104      0    4   3      1    2     math    57
## 415   38      0    3   1      1    2     math    50
## 416  115      0    4   1      1    1     math    43
## 417   76      0    4   3      1    2     math    51
## 418  195      0    4   2      2    1     math    60
## 419  114      0    4   3      1    2     math    62
## 420   85      0    4   2      1    1     math    57
## 421  167      0    4   2      1    1     math    35
## 422  143      0    4   2      1    3     math    75
## 423   41      0    3   2      1    2     math    45
## 424   20      0    1   3      1    2     math    57
## 425   12      0    1   2      1    3     math    45
## 426   53      0    3   2      1    3     math    46
## 427  154      0    4   3      1    2     math    66
## 428  178      0    4   2      2    3     math    57
## 429  196      0    4   3      2    2     math    49
## 430   29      0    2   1      1    1     math    49
## 431  126      0    4   2      1    1     math    57
## 432  103      0    4   3      1    2     math    64
## 433  192      0    4   3      2    2     math    63
## 434  150      0    4   2      1    3     math    57
## 435  199      0    4   3      2    2     math    50
## 436  144      0    4   3      1    1     math    58
## 437  200      0    4   2      2    2     math    75
## 438   80      0    4   3      1    2     math    68
## 439   16      0    1   1      1    3     math    44
## 440  153      0    4   2      1    3     math    40
## 441  176      0    4   2      2    2     math    41
## 442  177      0    4   2      2    2     math    62
## 443  168      0    4   2      1    2     math    57
## 444   40      0    3   1      1    1     math    43
## 445   62      0    4   3      1    1     math    48
## 446  169      0    4   1      1    1     math    63
## 447   49      0    3   3      1    3     math    39
## 448  136      0    4   2      1    2     math    70
## 449  189      0    4   2      2    2     math    63
## 450    7      0    1   2      1    2     math    59
## 451   27      0    2   2      1    2     math    61
## 452  128      0    4   3      1    2     math    38
## 453   21      0    1   2      1    1     math    61
## 454  183      0    4   2      2    2     math    49
## 455  132      0    4   2      1    2     math    73
## 456   15      0    1   3      1    3     math    44
## 457   67      0    4   1      1    3     math    42
## 458   22      0    1   2      1    3     math    39
## 459  185      0    4   2      2    2     math    55
## 460    9      0    1   2      1    3     math    52
## 461  181      0    4   2      2    2     math    45
## 462  170      0    4   3      1    2     math    61
## 463  134      0    4   1      1    1     math    39
## 464  108      0    4   2      1    1     math    41
## 465  197      0    4   3      2    2     math    50
## 466  140      0    4   2      1    3     math    40
## 467  171      0    4   2      1    2     math    60
## 468  107      0    4   1      1    3     math    47
## 469   81      0    4   1      1    2     math    59
## 470   18      0    1   2      1    3     math    49
## 471  155      0    4   2      1    1     math    46
## 472   97      0    4   3      1    2     math    58
## 473   68      0    4   2      1    2     math    71
## 474  157      0    4   2      1    1     math    58
## 475   56      0    4   2      1    3     math    46
## 476    5      0    1   1      1    2     math    43
## 477  159      0    4   3      1    2     math    54
## 478  123      0    4   3      1    1     math    56
## 479  164      0    4   2      1    3     math    46
## 480   14      0    1   3      1    2     math    54
## 481  127      0    4   3      1    2     math    57
## 482  165      0    4   1      1    3     math    54
## 483  174      0    4   2      2    2     math    71
## 484    3      0    1   1      1    2     math    48
## 485   58      0    4   2      1    3     math    40
## 486  146      0    4   3      1    2     math    64
## 487  102      0    4   3      1    2     math    51
## 488  117      0    4   3      1    3     math    39
## 489  133      0    4   2      1    3     math    40
## 490   94      0    4   3      1    2     math    61
## 491   24      0    2   2      1    2     math    66
## 492  149      0    4   1      1    1     math    49
## 493   82      1    4   3      1    2     math    65
## 494    8      1    1   1      1    2     math    52
## 495  129      1    4   1      1    1     math    46
## 496  173      1    4   1      1    1     math    61
## 497   57      1    4   2      1    2     math    72
## 498  100      1    4   3      1    2     math    71
## 499    1      1    1   1      1    3     math    40
## 500  194      1    4   3      2    2     math    69
## 501   88      1    4   3      1    2     math    64
## 502   99      1    4   3      1    1     math    56
## 503   47      1    3   1      1    2     math    49
## 504  120      1    4   3      1    2     math    54
## 505  166      1    4   2      1    2     math    53
## 506   65      1    4   2      1    2     math    66
## 507  101      1    4   3      1    2     math    67
## 508   89      1    4   1      1    3     math    40
## 509   54      1    3   1      2    1     math    46
## 510  180      1    4   3      2    2     math    69
## 511  162      1    4   2      1    3     math    40
## 512    4      1    1   1      1    2     math    41
## 513  131      1    4   3      1    2     math    57
## 514  125      1    4   1      1    2     math    58
## 515   34      1    1   3      2    2     math    57
## 516  106      1    4   2      1    3     math    37
## 517  130      1    4   3      1    1     math    55
## 518   93      1    4   3      1    2     math    62
## 519  163      1    4   1      1    2     math    64
## 520   37      1    3   1      1    3     math    40
## 521   35      1    1   1      2    1     math    50
## 522   87      1    4   2      1    1     math    46
## 523   73      1    4   2      1    2     math    53
## 524  151      1    4   2      1    3     math    52
## 525   44      1    3   1      1    3     math    45
## 526  152      1    4   3      1    2     math    56
## 527  105      1    4   2      1    2     math    45
## 528   28      1    2   2      1    1     math    54
## 529   91      1    4   3      1    3     math    56
## 530   45      1    3   1      1    3     math    41
## 531  116      1    4   2      1    2     math    54
## 532   33      1    2   1      1    2     math    72
## 533   66      1    4   2      1    3     math    56
## 534   72      1    4   2      1    3     math    47
## 535   77      1    4   1      1    2     math    49
## 536   61      1    4   3      1    2     math    60
## 537  190      1    4   2      2    2     math    54
## 538   42      1    3   2      1    3     math    55
## 539    2      1    1   2      1    3     math    33
## 540   55      1    3   2      2    2     math    49
## 541   19      1    1   1      1    1     math    43
## 542   90      1    4   3      1    2     math    50
## 543  142      1    4   2      1    3     math    52
## 544   17      1    1   2      1    2     math    48
## 545  122      1    4   2      1    2     math    58
## 546  191      1    4   3      2    2     math    43
## 547   83      1    4   2      1    3     math    41
## 548  182      1    4   2      2    2     math    43
## 549    6      1    1   1      1    2     math    46
## 550   46      1    3   1      1    2     math    44
## 551   43      1    3   1      1    2     math    43
## 552   96      1    4   3      1    2     math    61
## 553  138      1    4   2      1    3     math    40
## 554   10      1    1   2      1    1     math    49
## 555   71      1    4   2      1    1     math    56
## 556  139      1    4   2      1    2     math    61
## 557  110      1    4   2      1    3     math    50
## 558  148      1    4   2      1    3     math    51
## 559  109      1    4   2      1    1     math    42
## 560   39      1    3   3      1    2     math    67
## 561  147      1    4   1      1    2     math    53
## 562   74      1    4   2      1    2     math    50
## 563  198      1    4   3      2    2     math    51
## 564  161      1    4   1      1    2     math    72
## 565  112      1    4   2      1    2     math    48
## 566   69      1    4   1      1    3     math    40
## 567  156      1    4   2      1    2     math    53
## 568  111      1    4   1      1    1     math    39
## 569  186      1    4   2      2    2     math    63
## 570   98      1    4   1      1    3     math    51
## 571  119      1    4   1      1    1     math    45
## 572   13      1    1   2      1    3     math    39
## 573   51      1    3   3      1    1     math    42
## 574   26      1    2   3      1    2     math    62
## 575   36      1    3   1      1    1     math    44
## 576  135      1    4   1      1    2     math    65
## 577   59      1    4   2      1    2     math    63
## 578   78      1    4   2      1    2     math    54
## 579   64      1    4   3      1    3     math    45
## 580   63      1    4   1      1    1     math    60
## 581   79      1    4   2      1    2     math    49
## 582  193      1    4   2      2    2     math    48
## 583   92      1    4   3      1    1     math    57
## 584  160      1    4   2      1    2     math    55
## 585   32      1    2   3      1    3     math    66
## 586   23      1    2   1      1    2     math    64
## 587  158      1    4   2      1    1     math    55
## 588   25      1    2   2      1    1     math    42
## 589  188      1    4   3      2    2     math    56
## 590   52      1    3   1      1    2     math    53
## 591  124      1    4   1      1    3     math    41
## 592  175      1    4   3      2    1     math    42
## 593  184      1    4   2      2    3     math    53
## 594   30      1    2   3      1    2     math    42
## 595  179      1    4   2      2    2     math    60
## 596   31      1    2   2      2    1     math    52
## 597  145      1    4   2      1    3     math    38
## 598  187      1    4   2      2    1     math    57
## 599  118      1    4   2      1    1     math    58
## 600  137      1    4   3      1    2     math    65
## 601   70      0    4   1      1    1  science    47
## 602  121      1    4   2      1    3  science    63
## 603   86      0    4   3      1    1  science    58
## 604  141      0    4   3      1    3  science    53
## 605  172      0    4   2      1    2  science    53
## 606  113      0    4   2      1    2  science    63
## 607   50      0    3   2      1    1  science    53
## 608   11      0    1   2      1    2  science    39
## 609   84      0    4   2      1    1  science    58
## 610   48      0    3   2      1    2  science    50
## 611   75      0    4   2      1    3  science    53
## 612   60      0    4   2      1    2  science    63
## 613   95      0    4   3      1    2  science    61
## 614  104      0    4   3      1    2  science    55
## 615   38      0    3   1      1    2  science    31
## 616  115      0    4   1      1    1  science    50
## 617   76      0    4   3      1    2  science    50
## 618  195      0    4   2      2    1  science    58
## 619  114      0    4   3      1    2  science    55
## 620   85      0    4   2      1    1  science    53
## 621  167      0    4   2      1    1  science    66
## 622  143      0    4   2      1    3  science    72
## 623   41      0    3   2      1    2  science    55
## 624   20      0    1   3      1    2  science    61
## 625   12      0    1   2      1    3  science    39
## 626   53      0    3   2      1    3  science    39
## 627  154      0    4   3      1    2  science    61
## 628  178      0    4   2      2    3  science    58
## 629  196      0    4   3      2    2  science    39
## 630   29      0    2   1      1    1  science    55
## 631  126      0    4   2      1    1  science    47
## 632  103      0    4   3      1    2  science    64
## 633  192      0    4   3      2    2  science    66
## 634  150      0    4   2      1    3  science    72
## 635  199      0    4   3      2    2  science    61
## 636  144      0    4   3      1    1  science    61
## 637  200      0    4   2      2    2  science    66
## 638   80      0    4   3      1    2  science    66
## 639   16      0    1   1      1    3  science    36
## 640  153      0    4   2      1    3  science    39
## 641  176      0    4   2      2    2  science    42
## 642  177      0    4   2      2    2  science    58
## 643  168      0    4   2      1    2  science    55
## 644   40      0    3   1      1    1  science    50
## 645   62      0    4   3      1    1  science    63
## 646  169      0    4   1      1    1  science    69
## 647   49      0    3   3      1    3  science    49
## 648  136      0    4   2      1    2  science    63
## 649  189      0    4   2      2    2  science    53
## 650    7      0    1   2      1    2  science    47
## 651   27      0    2   2      1    2  science    57
## 652  128      0    4   3      1    2  science    47
## 653   21      0    1   2      1    1  science    50
## 654  183      0    4   2      2    2  science    55
## 655  132      0    4   2      1    2  science    69
## 656   15      0    1   3      1    3  science    26
## 657   67      0    4   1      1    3  science    33
## 658   22      0    1   2      1    3  science    56
## 659  185      0    4   2      2    2  science    58
## 660    9      0    1   2      1    3  science    44
## 661  181      0    4   2      2    2  science    58
## 662  170      0    4   3      1    2  science    69
## 663  134      0    4   1      1    1  science    34
## 664  108      0    4   2      1    1  science    36
## 665  197      0    4   3      2    2  science    36
## 666  140      0    4   2      1    3  science    50
## 667  171      0    4   2      1    2  science    55
## 668  107      0    4   1      1    3  science    42
## 669   81      0    4   1      1    2  science    65
## 670   18      0    1   2      1    3  science    44
## 671  155      0    4   2      1    1  science    39
## 672   97      0    4   3      1    2  science    58
## 673   68      0    4   2      1    2  science    63
## 674  157      0    4   2      1    1  science    74
## 675   56      0    4   2      1    3  science    58
## 676    5      0    1   1      1    2  science    45
## 677  159      0    4   3      1    2  science    49
## 678  123      0    4   3      1    1  science    63
## 679  164      0    4   2      1    3  science    39
## 680   14      0    1   3      1    2  science    42
## 681  127      0    4   3      1    2  science    55
## 682  165      0    4   1      1    3  science    61
## 683  174      0    4   2      2    2  science    66
## 684    3      0    1   1      1    2  science    63
## 685   58      0    4   2      1    3  science    44
## 686  146      0    4   3      1    2  science    63
## 687  102      0    4   3      1    2  science    53
## 688  117      0    4   3      1    3  science    42
## 689  133      0    4   2      1    3  science    34
## 690   94      0    4   3      1    2  science    61
## 691   24      0    2   2      1    2  science    47
## 692  149      0    4   1      1    1  science    66
## 693   82      1    4   3      1    2  science    69
## 694    8      1    1   1      1    2  science    44
## 695  129      1    4   1      1    1  science    47
## 696  173      1    4   1      1    1  science    63
## 697   57      1    4   2      1    2  science    66
## 698  100      1    4   3      1    2  science    69
## 699    1      1    1   1      1    3  science    39
## 700  194      1    4   3      2    2  science    61
## 701   88      1    4   3      1    2  science    69
## 702   99      1    4   3      1    1  science    66
## 703   47      1    3   1      1    2  science    33
## 704  120      1    4   3      1    2  science    50
## 705  166      1    4   2      1    2  science    61
## 706   65      1    4   2      1    2  science    42
## 707  101      1    4   3      1    2  science    50
## 708   89      1    4   1      1    3  science    51
## 709   54      1    3   1      2    1  science    50
## 710  180      1    4   3      2    2  science    58
## 711  162      1    4   2      1    3  science    61
## 712    4      1    1   1      1    2  science    39
## 713  131      1    4   3      1    2  science    46
## 714  125      1    4   1      1    2  science    59
## 715   34      1    1   3      2    2  science    55
## 716  106      1    4   2      1    3  science    42
## 717  130      1    4   3      1    1  science    55
## 718   93      1    4   3      1    2  science    58
## 719  163      1    4   1      1    2  science    58
## 720   37      1    3   1      1    3  science    39
## 721   35      1    1   1      2    1  science    50
## 722   87      1    4   2      1    1  science    50
## 723   73      1    4   2      1    2  science    39
## 724  151      1    4   2      1    3  science    48
## 725   44      1    3   1      1    3  science    34
## 726  152      1    4   3      1    2  science    58
## 727  105      1    4   2      1    2  science    44
## 728   28      1    2   2      1    1  science    50
## 729   91      1    4   3      1    3  science    47
## 730   45      1    3   1      1    3  science    29
## 731  116      1    4   2      1    2  science    50
## 732   33      1    2   1      1    2  science    54
## 733   66      1    4   2      1    3  science    50
## 734   72      1    4   2      1    3  science    47
## 735   77      1    4   1      1    2  science    44
## 736   61      1    4   3      1    2  science    67
## 737  190      1    4   2      2    2  science    58
## 738   42      1    3   2      1    3  science    44
## 739    2      1    1   2      1    3  science    42
## 740   55      1    3   2      2    2  science    44
## 741   19      1    1   1      1    1  science    44
## 742   90      1    4   3      1    2  science    50
## 743  142      1    4   2      1    3  science    39
## 744   17      1    1   2      1    2  science    44
## 745  122      1    4   2      1    2  science    53
## 746  191      1    4   3      2    2  science    48
## 747   83      1    4   2      1    3  science    55
## 748  182      1    4   2      2    2  science    44
## 749    6      1    1   1      1    2  science    40
## 750   46      1    3   1      1    2  science    34
## 751   43      1    3   1      1    2  science    42
## 752   96      1    4   3      1    2  science    58
## 753  138      1    4   2      1    3  science    50
## 754   10      1    1   2      1    1  science    53
## 755   71      1    4   2      1    1  science    58
## 756  139      1    4   2      1    2  science    55
## 757  110      1    4   2      1    3  science    54
## 758  148      1    4   2      1    3  science    47
## 759  109      1    4   2      1    1  science    42
## 760   39      1    3   3      1    2  science    61
## 761  147      1    4   1      1    2  science    53
## 762   74      1    4   2      1    2  science    51
## 763  198      1    4   3      2    2  science    63
## 764  161      1    4   1      1    2  science    61
## 765  112      1    4   2      1    2  science    55
## 766   69      1    4   1      1    3  science    40
## 767  156      1    4   2      1    2  science    61
## 768  111      1    4   1      1    1  science    47
## 769  186      1    4   2      2    2  science    55
## 770   98      1    4   1      1    3  science    53
## 771  119      1    4   1      1    1  science    50
## 772   13      1    1   2      1    3  science    47
## 773   51      1    3   3      1    1  science    31
## 774   26      1    2   3      1    2  science    61
## 775   36      1    3   1      1    1  science    35
## 776  135      1    4   1      1    2  science    54
## 777   59      1    4   2      1    2  science    55
## 778   78      1    4   2      1    2  science    53
## 779   64      1    4   3      1    3  science    58
## 780   63      1    4   1      1    1  science    56
## 781   79      1    4   2      1    2  science    50
## 782  193      1    4   2      2    2  science    39
## 783   92      1    4   3      1    1  science    63
## 784  160      1    4   2      1    2  science    50
## 785   32      1    2   3      1    3  science    66
## 786   23      1    2   1      1    2  science    58
## 787  158      1    4   2      1    1  science    53
## 788   25      1    2   2      1    1  science    42
## 789  188      1    4   3      2    2  science    55
## 790   52      1    3   1      1    2  science    53
## 791  124      1    4   1      1    3  science    42
## 792  175      1    4   3      2    1  science    50
## 793  184      1    4   2      2    3  science    55
## 794   30      1    2   3      1    2  science    34
## 795  179      1    4   2      2    2  science    50
## 796   31      1    2   2      2    1  science    42
## 797  145      1    4   2      1    3  science    36
## 798  187      1    4   2      2    1  science    55
## 799  118      1    4   2      1    1  science    58
## 800  137      1    4   3      1    2  science    53
## 801   70      0    4   1      1    1    socst    57
## 802  121      1    4   2      1    3    socst    61
## 803   86      0    4   3      1    1    socst    31
## 804  141      0    4   3      1    3    socst    56
## 805  172      0    4   2      1    2    socst    61
## 806  113      0    4   2      1    2    socst    61
## 807   50      0    3   2      1    1    socst    61
## 808   11      0    1   2      1    2    socst    36
## 809   84      0    4   2      1    1    socst    51
## 810   48      0    3   2      1    2    socst    51
## 811   75      0    4   2      1    3    socst    61
## 812   60      0    4   2      1    2    socst    61
## 813   95      0    4   3      1    2    socst    71
## 814  104      0    4   3      1    2    socst    46
## 815   38      0    3   1      1    2    socst    56
## 816  115      0    4   1      1    1    socst    56
## 817   76      0    4   3      1    2    socst    56
## 818  195      0    4   2      2    1    socst    56
## 819  114      0    4   3      1    2    socst    61
## 820   85      0    4   2      1    1    socst    46
## 821  167      0    4   2      1    1    socst    41
## 822  143      0    4   2      1    3    socst    66
## 823   41      0    3   2      1    2    socst    56
## 824   20      0    1   3      1    2    socst    61
## 825   12      0    1   2      1    3    socst    46
## 826   53      0    3   2      1    3    socst    31
## 827  154      0    4   3      1    2    socst    66
## 828  178      0    4   2      2    3    socst    46
## 829  196      0    4   3      2    2    socst    46
## 830   29      0    2   1      1    1    socst    41
## 831  126      0    4   2      1    1    socst    51
## 832  103      0    4   3      1    2    socst    61
## 833  192      0    4   3      2    2    socst    71
## 834  150      0    4   2      1    3    socst    31
## 835  199      0    4   3      2    2    socst    61
## 836  144      0    4   3      1    1    socst    66
## 837  200      0    4   2      2    2    socst    66
## 838   80      0    4   3      1    2    socst    66
## 839   16      0    1   1      1    3    socst    36
## 840  153      0    4   2      1    3    socst    51
## 841  176      0    4   2      2    2    socst    51
## 842  177      0    4   2      2    2    socst    51
## 843  168      0    4   2      1    2    socst    51
## 844   40      0    3   1      1    1    socst    41
## 845   62      0    4   3      1    1    socst    66
## 846  169      0    4   1      1    1    socst    46
## 847   49      0    3   3      1    3    socst    47
## 848  136      0    4   2      1    2    socst    51
## 849  189      0    4   2      2    2    socst    46
## 850    7      0    1   2      1    2    socst    51
## 851   27      0    2   2      1    2    socst    56
## 852  128      0    4   3      1    2    socst    41
## 853   21      0    1   2      1    1    socst    46
## 854  183      0    4   2      2    2    socst    71
## 855  132      0    4   2      1    2    socst    66
## 856   15      0    1   3      1    3    socst    42
## 857   67      0    4   1      1    3    socst    32
## 858   22      0    1   2      1    3    socst    46
## 859  185      0    4   2      2    2    socst    41
## 860    9      0    1   2      1    3    socst    51
## 861  181      0    4   2      2    2    socst    61
## 862  170      0    4   3      1    2    socst    66
## 863  134      0    4   1      1    1    socst    46
## 864  108      0    4   2      1    1    socst    36
## 865  197      0    4   3      2    2    socst    61
## 866  140      0    4   2      1    3    socst    26
## 867  171      0    4   2      1    2    socst    66
## 868  107      0    4   1      1    3    socst    26
## 869   81      0    4   1      1    2    socst    44
## 870   18      0    1   2      1    3    socst    36
## 871  155      0    4   2      1    1    socst    51
## 872   97      0    4   3      1    2    socst    61
## 873   68      0    4   2      1    2    socst    66
## 874  157      0    4   2      1    1    socst    66
## 875   56      0    4   2      1    3    socst    51
## 876    5      0    1   1      1    2    socst    31
## 877  159      0    4   3      1    2    socst    61
## 878  123      0    4   3      1    1    socst    66
## 879  164      0    4   2      1    3    socst    46
## 880   14      0    1   3      1    2    socst    56
## 881  127      0    4   3      1    2    socst    56
## 882  165      0    4   1      1    3    socst    36
## 883  174      0    4   2      2    2    socst    56
## 884    3      0    1   1      1    2    socst    56
## 885   58      0    4   2      1    3    socst    41
## 886  146      0    4   3      1    2    socst    66
## 887  102      0    4   3      1    2    socst    56
## 888  117      0    4   3      1    3    socst    56
## 889  133      0    4   2      1    3    socst    31
## 890   94      0    4   3      1    2    socst    56
## 891   24      0    2   2      1    2    socst    46
## 892  149      0    4   1      1    1    socst    46
## 893   82      1    4   3      1    2    socst    61
## 894    8      1    1   1      1    2    socst    48
## 895  129      1    4   1      1    1    socst    51
## 896  173      1    4   1      1    1    socst    51
## 897   57      1    4   2      1    2    socst    56
## 898  100      1    4   3      1    2    socst    71
## 899    1      1    1   1      1    3    socst    41
## 900  194      1    4   3      2    2    socst    61
## 901   88      1    4   3      1    2    socst    66
## 902   99      1    4   3      1    1    socst    61
## 903   47      1    3   1      1    2    socst    41
## 904  120      1    4   3      1    2    socst    51
## 905  166      1    4   2      1    2    socst    51
## 906   65      1    4   2      1    2    socst    56
## 907  101      1    4   3      1    2    socst    56
## 908   89      1    4   1      1    3    socst    33
## 909   54      1    3   1      2    1    socst    56
## 910  180      1    4   3      2    2    socst    71
## 911  162      1    4   2      1    3    socst    56
## 912    4      1    1   1      1    2    socst    51
## 913  131      1    4   3      1    2    socst    66
## 914  125      1    4   1      1    2    socst    56
## 915   34      1    1   3      2    2    socst    66
## 916  106      1    4   2      1    3    socst    41
## 917  130      1    4   3      1    1    socst    46
## 918   93      1    4   3      1    2    socst    66
## 919  163      1    4   1      1    2    socst    56
## 920   37      1    3   1      1    3    socst    51
## 921   35      1    1   1      2    1    socst    51
## 922   87      1    4   2      1    1    socst    56
## 923   73      1    4   2      1    2    socst    56
## 924  151      1    4   2      1    3    socst    46
## 925   44      1    3   1      1    3    socst    46
## 926  152      1    4   3      1    2    socst    61
## 927  105      1    4   2      1    2    socst    56
## 928   28      1    2   2      1    1    socst    41
## 929   91      1    4   3      1    3    socst    46
## 930   45      1    3   1      1    3    socst    26
## 931  116      1    4   2      1    2    socst    56
## 932   33      1    2   1      1    2    socst    56
## 933   66      1    4   2      1    3    socst    51
## 934   72      1    4   2      1    3    socst    46
## 935   77      1    4   1      1    2    socst    66
## 936   61      1    4   3      1    2    socst    66
## 937  190      1    4   2      2    2    socst    46
## 938   42      1    3   2      1    3    socst    56
## 939    2      1    1   2      1    3    socst    41
## 940   55      1    3   2      2    2    socst    61
## 941   19      1    1   1      1    1    socst    51
## 942   90      1    4   3      1    2    socst    52
## 943  142      1    4   2      1    3    socst    51
## 944   17      1    1   2      1    2    socst    41
## 945  122      1    4   2      1    2    socst    66
## 946  191      1    4   3      2    2    socst    61
## 947   83      1    4   2      1    3    socst    31
## 948  182      1    4   2      2    2    socst    51
## 949    6      1    1   1      1    2    socst    41
## 950   46      1    3   1      1    2    socst    41
## 951   43      1    3   1      1    2    socst    46
## 952   96      1    4   3      1    2    socst    56
## 953  138      1    4   2      1    3    socst    51
## 954   10      1    1   2      1    1    socst    61
## 955   71      1    4   2      1    1    socst    66
## 956  139      1    4   2      1    2    socst    71
## 957  110      1    4   2      1    3    socst    61
## 958  148      1    4   2      1    3    socst    61
## 959  109      1    4   2      1    1    socst    41
## 960   39      1    3   3      1    2    socst    66
## 961  147      1    4   1      1    2    socst    61
## 962   74      1    4   2      1    2    socst    58
## 963  198      1    4   3      2    2    socst    31
## 964  161      1    4   1      1    2    socst    61
## 965  112      1    4   2      1    2    socst    61
## 966   69      1    4   1      1    3    socst    31
## 967  156      1    4   2      1    2    socst    61
## 968  111      1    4   1      1    1    socst    36
## 969  186      1    4   2      2    2    socst    41
## 970   98      1    4   1      1    3    socst    37
## 971  119      1    4   1      1    1    socst    43
## 972   13      1    1   2      1    3    socst    61
## 973   51      1    3   3      1    1    socst    39
## 974   26      1    2   3      1    2    socst    51
## 975   36      1    3   1      1    1    socst    51
## 976  135      1    4   1      1    2    socst    66
## 977   59      1    4   2      1    2    socst    71
## 978   78      1    4   2      1    2    socst    41
## 979   64      1    4   3      1    3    socst    36
## 980   63      1    4   1      1    1    socst    51
## 981   79      1    4   2      1    2    socst    51
## 982  193      1    4   2      2    2    socst    51
## 983   92      1    4   3      1    1    socst    61
## 984  160      1    4   2      1    2    socst    61
## 985   32      1    2   3      1    3    socst    56
## 986   23      1    2   1      1    2    socst    71
## 987  158      1    4   2      1    1    socst    51
## 988   25      1    2   2      1    1    socst    36
## 989  188      1    4   3      2    2    socst    61
## 990   52      1    3   1      1    2    socst    66
## 991  124      1    4   1      1    3    socst    41
## 992  175      1    4   3      2    1    socst    41
## 993  184      1    4   2      2    3    socst    56
## 994   30      1    2   3      1    2    socst    51
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
#Remark: Pay extra attention to the last 2 columns
head(hsb2_long)
##    id female race ses schtyp prog variable value
## 1  70      0    4   1      1    1     read    57
## 2 121      1    4   2      1    3     read    68
## 3  86      0    4   3      1    1     read    44
## 4 141      0    4   3      1    3     read    63
## 5 172      0    4   2      1    2     read    47
## 6 113      0    4   2      1    2     read    44
tail(hsb2_long)
##       id female race ses schtyp prog variable value
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
# get thefrequency
table(hsb2_long$variable)
## 
##    read   write    math science   socst 
##     200     200     200     200     200
# the variables female, race, ses, schtyp, prog are stored as numbers
# for encoding purposes. However these variables are actually qualitative variables
# so we convert each from integer type to categorical type

# defining some variables to become factor variable
# we use another variable to preserve the file hsb2_long
data <- hsb2_long
data$ses = factor(data$ses, labels=c("low", "middle", "high"))
data$schtyp = factor(data$schtyp, labels=c("public", "private"))
data$prog = factor(data$prog, labels=c("general", "academic", "vocational"))
data$race = factor(data$race, labels=c("hispanic", "asian", "african-
amer","white"))
data$female = factor(data$female, labels=c("female", "male"))
# check data structure again. The former integer variables are now categorical variable
str(data)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : Factor w/ 2 levels "female","male": 1 2 1 1 1 1 1 1 1 1 ...
##  $ race    : Factor w/ 4 levels "hispanic","asian",..: 4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : Factor w/ 3 levels "low","middle",..: 1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : Factor w/ 3 levels "general","academic",..: 1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
# we compare student performance by using boxplots
library(gplots)
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
# compute the average value by group using tapply() command
means <- round(tapply(data$value, data$variable, mean), digits=2)
# create boxplot by group
boxplot(data$value ~ data$variable, main= "Student Performance by Subject
(brown dot = mean score)",
        xlab="Subject matter", ylab="Percentage Scores", col=rainbow(5))
# insert the average values
points(means, col="brown", pch=18)
# can also compute the median values
medians = round(tapply(data$value, data$variable, median), digits=2)
medians
##    read   write    math science   socst 
##      50      54      52      53      52
points(medians, col="red", pch=18)

# Lab Exercise 9: How to plot categorical variables
library(ggplot2)

# we load variable names to memory to avoid the dollar notation
attach(hsb2_long)
# create the plot object p
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~race)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

library(ggplot2)
attach(hsb2_long)
## The following objects are masked from hsb2_long (pos = 3):
## 
##     female, id, prog, race, schtyp, ses, value, variable
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~schtyp)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

# Lab Exercise 10: Scatter Plots with marginal Distributions
# Advance Scatter plots using libraries
# install.packages("ggExtra")
# install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ stringr   1.5.0
## ✔ forcats   1.0.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggExtra)
# set theme appearance of grid background
theme_set(theme_bw(1))
# create X and Y vector
(xAxis <- rnorm(1000))
##    [1]  0.0297457221 -0.3719067033 -0.8253756307  1.2635609301  0.3373823884
##    [6] -1.1221804025 -1.2463666417  0.6475856235  1.0462736522  0.1527480433
##   [11] -0.6534576853  1.4887153715  2.5621314625  1.5528798009  0.4994329011
##   [16]  0.0948725504 -0.1323002499  0.4523541675  1.2768456677  0.6987960709
##   [21]  0.0417965938  1.6388258527  1.4461354553  1.0818587624  0.0544531075
##   [26]  0.1074881178  3.2339407154  1.8234381284 -3.2454524858 -1.9548676897
##   [31] -0.1481428193 -0.6954619085 -0.8007918073 -0.3908060212 -1.8754739715
##   [36]  1.2584700185  1.3151973251  0.5317531269 -0.0580682687  0.6921051899
##   [41]  0.2346195712 -0.8610615238  0.6633136609  0.6744063999  0.3269978108
##   [46] -0.4877755023 -0.1137583627  2.6781180839  0.1278014106 -0.3655744141
##   [51] -0.4882098827  2.1734367878 -0.5429270303 -0.0193129758  0.3712298181
##   [56]  0.0458684303  0.4391368022  0.5887800685 -0.1299347125  0.5530494818
##   [61]  0.5919736062  1.3471604490  0.3072489895 -0.3194096380 -0.6597028712
##   [66]  0.7702126840  0.3277050136 -0.9209661583 -0.4250160318 -0.7106530330
##   [71]  0.9478641981  1.1902588180  1.1128440764  0.4792808503 -0.6179437288
##   [76] -0.8940206173  0.4394460577  1.7830676794  0.6673078420  0.8616651994
##   [81]  0.2115773632  0.1174122692 -0.5348682957 -1.2609639858  0.3004198304
##   [86]  0.8909041637 -0.6307066462 -1.1581841792 -0.3813005073 -0.6356241906
##   [91]  1.7560205216  0.3748407752 -1.0016321722  0.8815161214 -0.4446169157
##   [96]  0.8056973043  0.9596901829  0.8839995274  1.1058517812 -1.3385581906
##  [101]  0.2915704470  2.0975267880  2.4509721113  0.1523230095 -0.8194487876
##  [106] -0.7872714077  0.4300525068  2.6854367340  0.7053059859  1.4962929491
##  [111]  0.3158209939 -0.2913716149  1.2130750140 -1.2368420390  0.8569946197
##  [116]  0.2882919879 -0.1584598250 -1.5852201440 -1.2602463461 -0.8132881969
##  [121]  1.7349570309 -1.3992372867 -0.6953358783  1.0476741407  1.0244923691
##  [126]  1.6643829979 -0.7463045863 -0.9935095546  0.6770156484 -0.8655686195
##  [131] -0.1308094442 -0.6526466899 -0.9539715941  0.5201950445  0.0618129340
##  [136]  0.4789391045 -0.7170856005  1.2520437364 -0.7848649740  0.0717970452
##  [141] -1.4215403554  0.3497119775  1.1787481713 -0.3455071408 -0.1528148662
##  [146] -0.8737248206 -2.1281153683 -0.8114387539 -1.6834010981  0.7467304858
##  [151] -0.8531826868  0.9022617113  0.2724357033  1.3399059299  1.0002050319
##  [156]  1.2897714746 -0.2337223301 -0.3529319491 -0.0254069604 -0.1415272495
##  [161]  1.9534852377  0.7952436697  1.7059509124  0.2287902451 -0.7197580072
##  [166]  1.4320970016 -0.4978682028  0.4033766157 -2.6827907193 -0.6434684961
##  [171]  0.2104551201  0.1814535056  0.6256250418 -0.8334662839 -3.2866558340
##  [176] -0.1914934496  0.0739430164  1.4013357109  0.4105214421  0.8348844985
##  [181]  0.8303169205  1.4810686147  1.5778752152  0.2925599109  0.8528775091
##  [186]  0.9956945843 -0.4423267967  1.0819348440  0.7509834580  1.2144061117
##  [191] -0.6269285829 -1.9956967214  1.3999964670 -1.0847765252 -0.6366000027
##  [196] -0.5343268251  0.0251600175  1.0198586086 -1.9443437091  0.6835100483
##  [201] -0.5528511459 -0.6162332787 -0.6576578874  0.0815784655 -0.8171453347
##  [206]  1.1364162684 -0.9335120173  0.4429067723 -0.3416493123 -0.6595571092
##  [211] -1.3576045662 -0.1557524431 -1.0016997979 -0.5858578885  0.6424769480
##  [216] -0.1446774168  0.6413738382  1.2383236686 -0.4187591588 -1.0799796455
##  [221] -0.2213393487  0.9521837707 -1.7438350977  0.5400997653  1.1348809726
##  [226]  0.4580609373 -0.3531589272 -1.7750748404  0.3808376441  0.1994831970
##  [231]  2.0226426827  1.6038290968  0.1313310503 -1.7277859104 -0.3819201738
##  [236]  1.9496984806  1.1765250763 -1.3226663181 -0.1918995827  1.9321220005
##  [241] -0.5479718485 -0.5162434903  0.6466880213  0.5474881045  1.4852350735
##  [246]  0.4599635112 -1.2623146455  1.0102853943  0.1850491089 -0.8903080334
##  [251]  0.2763383093 -1.0220096042  1.1534258222 -0.7475686779 -0.9788482946
##  [256]  1.3982609353 -1.3545032848  0.0508031229 -0.3559652436  1.8741142624
##  [261] -1.2061940744 -0.6637800434  0.4488764355  0.3030192950  1.3982851122
##  [266] -0.2512757324  0.5091259813 -0.6001630079  0.2581386892 -0.2329848448
##  [271]  1.1489735461  0.5410224450 -0.8741434013  1.0738074060 -0.6522022046
##  [276] -0.9285015744  0.7542558450 -0.2571674906  1.4037325119  1.0375238472
##  [281] -0.2136570705  0.1853265992  0.1367506063  0.6520719678  2.1692158518
##  [286]  1.3490746000  0.4583375324 -1.3220937126  0.1703010627 -0.0554655676
##  [291]  0.2614838201 -1.7973645401  0.0384140595 -0.5096118249 -1.2379034206
##  [296] -0.3713795580  2.0223192487 -0.6831552790 -0.7054738944  0.8583198419
##  [301] -0.5101694671 -2.0772583556 -0.8092578543  0.7106423353 -1.4629320060
##  [306] -1.1191629995 -1.3426143607 -0.9688817416 -0.4201186485  0.0849011625
##  [311] -0.5009813782  0.5147757125 -0.2512468984  0.8567017527  0.0954278366
##  [316]  1.2643845003 -0.5942554966 -0.1959233348  0.8031506208 -2.1043710184
##  [321] -0.3513860160  1.5757064583 -1.1412941099 -0.0347549640  0.1347892449
##  [326]  0.1820817426  1.8624937573 -0.2947744839  0.2065919606 -1.3272411922
##  [331]  1.1415769922  0.7668875238  0.1615193508 -1.3263229136 -0.0769360389
##  [336] -0.1828639582  0.6385818443 -1.7151803535  0.4288619325  0.1191084710
##  [341]  0.6700526906  0.2790120515  0.2756173916 -0.1502085874  0.4331693172
##  [346]  1.1467919103 -1.0165315629  1.1901396094  0.8015312079  0.0005762223
##  [351]  2.8416201059  0.0935774062 -1.4909674779  0.5108198901  1.3321489205
##  [356]  1.2695250294 -0.1738973419  0.2662572892 -0.3889410945  1.2288827984
##  [361] -0.3381186163 -0.2380601220  1.0429621369  0.9803586578  1.3509120593
##  [366] -0.7383224784 -0.4854716874  2.5997581769 -1.0815692092 -0.1471275718
##  [371] -0.1600268250 -0.5704367848 -0.9198855770 -0.7636672908  1.4153589000
##  [376] -0.1659504121  0.5639701711  0.8302977937  0.8173706018  0.1629736719
##  [381] -1.5437672226  1.8359009049 -0.0632389876 -0.5539449771  0.9306801528
##  [386]  0.4280427344  0.1520541167 -0.6252512522  0.2760306576 -0.5689200104
##  [391]  1.2699471743 -0.3633696736  1.3456736697 -0.0522560763 -0.5662884605
##  [396]  0.2091842034 -0.7015440325 -0.8046725672  1.3408945290  0.7954213419
##  [401] -0.9010721323  0.8619327704 -0.2175228967  0.9659447097 -0.5372789740
##  [406] -0.9546615639 -0.6797564966 -1.9018391496  1.6192149852  0.5472612225
##  [411] -0.6144420252  1.1888269385  0.5635015544  0.4941279351  1.5312793554
##  [416] -0.3020416968 -0.8869475881  0.4751195671  0.7773538511 -0.4089110935
##  [421]  0.4281784664  2.0147695821 -0.7697458582  0.2758818202  0.2196724627
##  [426]  1.0329571938 -0.8180375092 -0.2362989896 -1.2189605054 -2.1308951576
##  [431]  1.0323978957 -0.7860113016  0.4428930284  0.2834588576  0.6802378303
##  [436] -1.2289552681 -1.0900406038  2.5966592694 -1.5084017499 -0.9899890909
##  [441]  0.3408482172 -0.6781674916  1.3610992777 -0.0210812558  1.0544831482
##  [446]  0.3895570468 -0.4363310935  0.2837655650  0.0863493076  2.5997731258
##  [451] -0.0011795042 -2.5988743468 -1.2031173728 -1.1261898237 -0.2134853681
##  [456] -1.8113182752 -0.3400631182 -1.0931491380 -0.4946962242  0.8942886211
##  [461] -0.1596610463  0.1857733330 -1.0956333200 -0.2902149167 -1.6670120006
##  [466] -0.6129941763  0.7183107447  0.7351411024 -0.3281944261 -0.7839329164
##  [471]  0.5422309355 -1.0422092173 -0.6276356705  1.1562746523 -1.0416456911
##  [476]  0.2033987850  0.0202967311  0.1175921262  0.5521406806 -0.1238682333
##  [481] -0.5617541845 -0.2866909545 -0.8359714681  0.3890531537  0.4523446737
##  [486]  0.0931218427  0.0190845718  0.9280798721 -0.9874708752  0.8783012278
##  [491]  0.6375443912  0.6467993809 -0.5677967838  0.1599924919  0.3417400395
##  [496]  0.5774724337 -1.2805535592  0.6900678257  0.4480056317  0.4769246725
##  [501] -0.5103118726  0.7551541478  0.7522938691 -0.1958805916  1.0059900750
##  [506]  0.1900092866 -0.2499413794 -0.8676335234  1.4228207331 -0.2656096563
##  [511] -0.2561761877  0.1743264763 -0.9633970303 -0.9358733832 -0.2153810986
##  [516]  0.2402580386  0.1204239625 -0.8141156532 -0.6868357684 -0.7231393496
##  [521] -0.6764966187 -0.7176467980  0.5779342896  0.9957480922 -0.0386231676
##  [526] -1.7077338635 -1.0723290572 -0.4566252874 -0.5014118220 -1.6812829298
##  [531]  0.8963215567 -0.6811605984 -0.6822936553 -1.1768724534 -1.0504688042
##  [536]  0.7412883015 -1.1055011654  1.0777936831 -0.2176385345 -0.1563741014
##  [541] -0.9383919626 -2.0691509909  0.4129131415 -0.5002915365 -1.1520533293
##  [546]  0.7502276950 -0.0159827483  0.4418007043 -1.7671544898 -1.1886650133
##  [551]  0.5468990408  1.1789110925  0.3119105528  0.0320808944 -0.5386678752
##  [556] -0.6651075227  0.6680940772  0.3845416500  2.4254537112  0.4185386061
##  [561] -0.3251533967  0.3859831799  1.7631980880  0.1305918683  0.6274930407
##  [566] -0.1630011408 -1.4783170037 -1.6496447308 -0.1247818164  0.0135423654
##  [571]  0.3921813355  2.0814343037 -0.3567735748 -1.5747662625  0.2267419106
##  [576]  0.3630650998 -1.6970907102 -1.4002838168 -0.7451661069 -0.7884760724
##  [581] -0.7337431960  1.1149351186  0.6246632377 -0.4208283521 -0.0915037871
##  [586] -0.7235204869 -0.5494415578  0.4224614928  2.6998457919 -1.9868075514
##  [591]  0.7640852126 -0.8708582515 -0.1925863419  1.3026112360 -2.6308698377
##  [596] -0.1827368551 -2.5155085625  0.5409627272 -0.0715402364  0.2782962569
##  [601] -0.2415786741  0.7577619957 -0.2001982408 -0.6578067619 -0.1947296522
##  [606]  0.5166947393  1.8450558818  1.2083777089 -0.3832953331 -0.5899266732
##  [611] -0.2367193575  0.1320895838 -1.1943478977 -0.1435304511 -0.7595091218
##  [616] -0.8476480906  0.5547168586 -1.3211332473  1.2340623425  1.1723823030
##  [621]  1.3731175868  1.1379608864 -1.5905774585  0.1789986817  0.4731962955
##  [626] -1.6002061336  0.7325575942 -0.6977242626  0.8800582890 -0.3028542113
##  [631] -0.5737616821  0.4292194936  0.3628705552 -1.6565033629 -1.5387774487
##  [636]  0.7678755282 -1.4654691672 -1.5813663734 -0.7575978718  0.4655437514
##  [641] -0.8436281236 -0.3006566746 -0.5174593437  0.7633806412  0.8183168425
##  [646]  1.7776842797  0.9144274051  1.2454977872  0.6546916633  0.4648268447
##  [651] -0.2243081006  0.3659407346  0.3910939630  0.7383422903  0.4482501930
##  [656]  0.6125614051 -0.0985846665  0.5365952806  0.2282276364 -2.6934540057
##  [661]  0.3927495104 -1.5331429097  0.3969422139 -0.2560736925  0.5973491979
##  [666]  0.5799516753  0.0340022550 -1.3705439507  0.7796662237  1.3527227187
##  [671]  0.8880785587  0.4281518747  0.8131003051  0.9514390215 -0.2029615117
##  [676] -1.7667811032  0.0516614393 -1.0366619417  0.8693987508  0.9394040445
##  [681]  0.2538333669 -0.3675027883  0.0109160205 -0.7277246889 -0.3239529641
##  [686] -0.5564472117  1.4464204507 -1.0310062722  0.2602291299 -0.6380003046
##  [691]  0.9575259657 -0.6210657048 -0.3857114253 -0.3856911746 -1.4581458731
##  [696] -0.7502569402 -1.1340671516 -3.0388001691 -1.5373962817  0.4889541443
##  [701] -1.1519935035  0.3791254663 -0.4141287636  1.6749196623  0.0628685597
##  [706]  0.9038242126 -0.0099023019 -0.6442807000  2.0975446250 -0.7725449796
##  [711]  1.5771951108  0.3979039102 -1.6970415653  0.2535416039  0.1265786375
##  [716]  0.2035679537 -0.3778597280  1.1509146882 -0.0602493287 -0.8263212624
##  [721]  0.8761536200  0.1918654509  0.5348178766  0.6083988019 -0.4185915200
##  [726]  0.6997370166  0.1231148384  1.0838257647  0.1439278046 -0.0471785283
##  [731] -0.4565876386  0.9803712607 -1.4154048344  0.3569650564  3.0928633289
##  [736]  0.6061368545 -0.8468732328  0.0833718451 -2.2887629438 -1.7820875112
##  [741]  1.7080953977  0.2706446745 -1.8567387645 -0.1542795611 -1.5654347877
##  [746] -0.7850431414  1.2903500047 -1.3805939354 -0.0187458037  1.9228706924
##  [751] -0.4730253561 -0.9719429129  1.3006055581  0.2005076726  0.5652685458
##  [756]  0.5558317357 -0.4765681503  0.5476065594  0.3085675840 -0.5541490755
##  [761] -1.2552239409 -0.2559452912 -0.1359679495 -1.4033261291 -1.3164641901
##  [766]  0.9179817436 -2.2426068872  1.3040162462  1.2552004530  1.1566747740
##  [771]  0.9794294313 -0.0497125682 -0.2697065594 -0.9755739772 -0.1374296268
##  [776]  0.5459667194 -1.3904980762  0.8396296728 -0.6646680879 -0.8375020993
##  [781]  0.7640428809 -2.0124963104  0.7595413493 -0.6578196216 -0.5583651012
##  [786]  1.7021310938 -2.1196033392  0.6206077285 -1.0619905347 -0.7030054091
##  [791] -0.5309383037 -0.7672069485  0.1931049686 -1.7334763004  0.4143746928
##  [796]  0.7209046114  0.2945504691  0.8161347519 -1.0038830181  1.7016408921
##  [801]  1.2577022189  1.9260521635  0.1662076754 -1.7577495264  0.6703969429
##  [806] -2.1051744017 -0.1667474744  0.0594817727  0.0941378187  0.3543524670
##  [811]  0.6269898006  1.0048186730 -0.4769985695 -0.3251766059 -0.5173528620
##  [816] -0.4036362353 -0.1551973066 -1.0505020557 -0.0172511929 -0.6919528967
##  [821] -0.6448005916 -1.1982603120 -0.9742627991 -0.5993928782  0.9301630581
##  [826] -1.2898350836  1.6008091211  0.2915624462  1.4523207364 -0.5389507846
##  [831] -0.8963846845 -1.2566753874  1.1631139186  0.2150311787 -0.4459107398
##  [836] -0.6777855052 -0.8017529425  0.2954133649 -0.3836601844  0.0342056412
##  [841]  0.0550615927  2.6609255614 -0.4417095556 -0.3088007134 -0.6732679582
##  [846] -1.3328456295  0.1550246863 -0.7126725320 -0.2103545785 -0.1403886692
##  [851] -0.8215777522 -1.2391128403 -0.1465631137  0.4646454770 -0.4522039176
##  [856] -0.4375279621  1.6101006014  0.6123861320 -1.3688133574 -1.2244759987
##  [861] -0.0322167807  0.2452736495 -0.2469359395 -0.5110601252 -0.4677808825
##  [866] -1.0064426915 -0.2748848620  0.1953934872 -0.0606274237  1.5655562888
##  [871]  0.6184544484 -0.2990100585 -0.3143566908 -0.7065443872 -0.2037041013
##  [876] -1.2895126264 -2.0992743534  0.0124892358 -2.1224452478  1.1393488979
##  [881]  0.6879020058 -0.3691033942 -0.6172458888 -1.4996393879  0.2595915139
##  [886]  1.3158683091  0.3486132658  0.3398511201  1.0036176314  0.6349044194
##  [891]  0.8060742293 -0.7846271708 -1.1550594687  2.1942048994 -0.5963683397
##  [896]  0.7546089242 -0.2034354331 -0.4577825019  0.0542870940  0.1590032818
##  [901] -1.2113694840 -1.5519424440 -1.3176355257 -0.8022102232 -0.9820196646
##  [906] -1.0603902851 -0.4592565251 -1.0464125597  0.4960222822 -1.3693016781
##  [911]  0.6615997304 -0.7617800862  0.1655881799 -2.2249045183 -0.9505599853
##  [916] -2.4214269169 -0.9147266438 -0.6629722189 -0.9377096007 -0.4965909589
##  [921] -0.0534838030 -0.3532319983 -1.0151665209 -1.1587899601  0.2747119836
##  [926]  1.6666740704  1.2278629737 -0.2042248009  0.6013494335  0.5511320483
##  [931] -0.5579131916 -0.7296543666  0.1774073474  0.0002128264 -0.2026117538
##  [936]  0.5113188002  0.3024781680  0.7554330439 -0.3747357267  0.5411469038
##  [941] -0.7177320424 -1.0012487218 -1.2199443454 -0.3418202159  2.5526970476
##  [946] -0.3443462193 -0.1216373336  1.0536224918  0.4925280066 -1.4238895891
##  [951]  0.1276215981 -1.2614858224  0.4449606766 -0.5571041217 -0.8896232860
##  [956] -0.1757594582  3.3304936723 -1.5019112649 -1.7893983933 -0.6615357369
##  [961] -0.6867815944  1.9066274096 -1.5856863006 -1.3105004204 -0.5981638880
##  [966] -0.2792472009  0.3610765637 -0.0291916455 -0.9654784549  0.9216795983
##  [971] -0.0634337931 -0.5164548949  2.1105840222  0.6073370371 -0.3054983594
##  [976]  0.2459192201 -0.5665018687  0.1203742216 -0.7718147519 -0.9040384209
##  [981] -1.1253513692  0.2595276588  0.2444850367 -0.0007143723  1.2971856249
##  [986]  0.9383303305 -0.1643244314 -2.1390283857 -0.1057298581  0.6932183281
##  [991] -0.2577201448  0.8853583672 -1.6570018606 -0.3205469796 -0.1897882330
##  [996]  0.3445636956 -2.4838691184 -0.0950728115  2.0734309450  0.7004286628
yAxis <- rnorm(1000) + xAxis + 10
yAxis
##    [1]  9.453977  9.239074  8.934578 12.525743  9.509183  9.284195  8.685609
##    [8] 10.270069 11.451555 10.495430  9.532087 11.051496 12.743650 13.741138
##   [15] 10.267638 10.099549 10.117929 11.631696  9.729594  8.741232  9.945405
##   [22] 10.908883 11.670314  9.433225  8.747644  9.799313 13.151943 13.609822
##   [29]  5.681295  7.955493 11.249553 10.535224  9.250472 10.561307  7.244991
##   [36] 11.222024 12.749457 11.434454  9.936051 11.302762 12.024915 10.602074
##   [43] 10.144157 11.189969 10.720416 10.515124  8.094872 11.555110 10.255558
##   [50]  9.538774  8.715178 12.185025 10.507931  8.258384 11.140384 10.690920
##   [57]  9.876167 10.669613 10.662628  9.608914 11.903545 12.574498  9.556155
##   [64]  8.174616 12.161662  9.921142 10.430268 10.370481  8.788717  9.125051
##   [71]  9.933326 12.232248 12.181600  8.042256  8.592068 10.188963 12.626654
##   [78] 11.715015 11.808902  9.991671  9.864414  9.765506  9.670371  8.015212
##   [85] 11.190050 11.032440  8.660235  8.293803  8.573428 11.332472 10.538030
##   [92]  8.960662  7.177706 12.120763  9.275724 12.223843 10.798274 10.250420
##   [99] 12.396547  8.011546  9.243631 13.087319 10.814846  9.630633  8.573007
##  [106]  9.508982 11.159354 13.036523 12.082295 11.416104 12.186637  7.363956
##  [113] 10.535066  8.742677  9.464906  9.793261  9.190397  9.444054  8.432466
##  [120]  8.640899 11.090482  7.005171 10.077834 12.128834 12.556016 10.735983
##  [127]  8.581836 11.483329 11.098689  8.914656 10.187653 10.111956 10.271029
##  [134]  9.761257 10.178292 12.799087  8.747296 11.769882  9.334794  9.658767
##  [141]  9.268787 10.373545 11.307271  9.698254  9.128445  7.686615  7.620257
##  [148]  7.572256  6.307194  9.589956  7.467497 10.996517 11.528833 10.780836
##  [155] 10.932635 11.749219 10.610544  9.718818 12.076556  9.909437 13.183351
##  [162]  7.442172 10.376130  9.903405  9.129734 10.495736  9.132305 11.870084
##  [169]  7.976982  9.477272 11.408120  8.455681 10.559582  9.763914  6.893826
##  [176]  8.795818  9.495852 10.566155  8.745284 10.729021 11.041582 11.612691
##  [183] 10.738843 11.553614  9.482287 10.567418  9.362975 11.531980 10.234234
##  [190] 10.231721  9.733713  8.045294 12.786436  9.357128 10.750265 10.488705
##  [197] 10.117537 10.405390  7.256452 11.648672 10.596191  9.402079  9.666902
##  [204] 10.591137  8.580359 10.147043  9.192565  8.524973  8.304412  9.218174
##  [211]  8.838642  8.789215  7.969412  8.522022 11.637406 10.113470  8.893417
##  [218] 10.754529  9.233649  9.594366 10.351329 10.743913  7.927042 10.115025
##  [225] 12.148059 12.179157 10.784021  8.212278 11.130464 10.364592 11.620614
##  [232] 11.339242  9.341435  7.195250  8.330650 12.351507 10.481267  7.932837
##  [239] 10.812078 11.614247  8.539142 10.459865  9.918622  7.753849 12.180473
##  [246] 10.570968  9.545812 11.518425  8.645588 10.420645  9.769995  8.232035
##  [253] 12.456708  7.623977  7.578276 11.092797  7.729065 10.649937 10.356220
##  [260] 12.949696  7.918587 10.271219 11.220810  9.575969 13.428994  8.884329
##  [267] 10.289314 10.265825  9.604150 10.213750 11.257015 11.573971  9.683439
##  [274] 11.965759  9.154427  8.349757 11.649629  9.183719  9.904275 11.108445
##  [281]  9.791304 12.507152 10.853708 10.328175 12.991986 12.037280  8.488311
##  [288]  9.956862 12.215851 10.496268  9.795027  8.579310 10.969953 11.214230
##  [295]  9.015577  7.568631 11.142255 11.199421  8.160060 10.121936  9.716368
##  [302]  8.639236  9.222355 10.168601  9.710971 10.210685  8.223630  8.402594
##  [309]  8.941203 10.087638 10.416331  8.006993 10.609145 10.902514  8.891210
##  [316] 11.644846  9.864319 10.981086 10.470505  5.970141 10.132353 12.066213
##  [323]  7.646080  9.845150  8.855918  8.810322 11.953430 10.578748  9.120276
##  [330] 10.321347  9.935359 10.443771  9.427451  8.969488  9.683240 10.133429
##  [337] 11.478430  8.905310  9.197546 10.263742 11.240898 11.918584 10.976689
##  [344] 10.148683  9.344365 11.351561  8.258376 10.436985 10.259799 11.756580
##  [351] 13.231096  8.611064  8.485799 11.234891 11.811525 11.193468 10.566011
##  [358] 10.199050 11.671322 10.382145 10.646544  9.143901 11.631043 10.792654
##  [365] 11.247553  9.968890  9.061755 13.487286 10.872045 10.759334 11.265467
##  [372] 10.187659  9.613908  9.293601 10.920138  8.465347 12.485995 11.444308
##  [379]  8.952600  8.319204  8.783507 11.644908 10.805600  9.460759 12.243261
##  [386]  9.648155  9.710594 10.355361  9.429137  9.311973  9.456671  9.792069
##  [393] 11.331636 10.296542  9.273401  9.495275  9.312412  7.903524 12.740962
##  [400] 11.292401  8.496637 10.238764  9.387828  9.989543 10.484603  8.117885
##  [407]  8.598078  7.881863 11.817668  9.188350 10.454189 11.017408  9.203277
##  [414] 11.790521 10.580694  9.151308  9.508735  9.953474 11.648079  9.766623
##  [421]  9.746793 14.125984  9.062812  9.093786 11.514893  9.251347 10.089108
##  [428] 10.346711  8.864413  7.476873 11.051503  9.872299 10.572560  9.870005
##  [435]  9.420738  8.929287  7.354173 12.395216  8.180989  8.515345  9.787178
##  [442]  7.541471 10.765931 11.657514 10.602468 10.729973 10.585160 12.232231
##  [449] 10.286677 11.508160  9.346587  6.900095  7.833641  9.336389  9.299367
##  [456]  9.006955  9.079644  8.323343  7.671516 12.635052  9.895812 10.157234
##  [463] 10.731041  9.033175  8.321139  8.599102 10.424110 11.224493 10.810104
##  [470]  8.538251  9.421635  7.545463  9.855759  9.389395  9.771780 11.764845
##  [477] 10.313209 11.519728 11.532286 10.298180  9.102949 10.673277  9.507400
##  [484] 10.027527  9.001736  9.748892 10.511648 11.203580  7.736921 12.055085
##  [491] 11.187460  8.629239 10.565413  9.482929 10.460369 10.882234  9.011925
##  [498]  9.802983  9.317664 10.674292  8.914051 10.687780 10.848717 10.142867
##  [505] 10.526016 11.269865 10.196727  7.831304  9.573548  8.929114  9.833303
##  [512] 10.437599  9.426122  9.570107  9.777722 11.269118 11.504992  9.632226
##  [519]  8.915231  9.242460  8.617729 10.402351  9.646076 10.828696  9.138549
##  [526]  9.307227  8.301201  9.790534 10.016987  9.362249 10.515228  9.971570
##  [533]  8.462087  9.542522 11.303971 11.975821  8.292499 11.429558 10.920586
##  [540] 10.181982  7.050046  7.467770 10.692255  8.709334  7.817622 10.265599
##  [547] 11.538511 10.180593  6.810624  7.450217 11.305160 12.299671 11.731279
##  [554] 11.323876  9.613083  8.218513  9.460680  9.287316 10.928254 10.934533
##  [561]  9.739560  9.321227 12.305381  8.617101  7.825448  9.505827 10.183059
##  [568]  9.214365  9.484299 10.031861  9.308477 12.994322  8.517365  6.195398
##  [575] 11.745982 11.557786  8.615114  9.079472  7.669773  9.679420 10.442340
##  [582] 10.104407 10.633507  7.885585  8.775698  8.712617  8.159045  9.237422
##  [589] 13.157305  8.133054 10.626233  9.668621  8.893848 10.271972  6.151951
##  [596]  8.004368  5.573782 11.276755 11.628538 11.221920  9.912229  9.979735
##  [603]  8.881402 11.885333 10.615009 11.223574 12.496979 11.047250 10.004565
##  [610]  6.783518  9.578117  9.560775 10.064334  9.780033  8.260277  9.585861
##  [617] 10.713068 10.213374  8.866621 11.724391 11.944886 12.154821  9.300528
##  [624]  9.884967  9.917218  8.730692 10.068817  9.044606 11.085177  8.520640
##  [631]  9.248731  8.892292 10.196532  9.578561  8.089182 11.866728  8.425290
##  [638]  8.705251 10.152008 10.528637  7.924505  9.515210 10.656964 10.074095
##  [645]  9.773296 12.653464 10.740055 10.780509 10.039008 10.901971 10.102928
##  [652]  9.791358 10.503048  9.041625 11.559882  8.162128 11.348592 10.655467
##  [659]  8.269740  5.636452 10.458425  8.763986  9.276993  8.272660 10.842370
##  [666] 10.435161 10.639479  9.535979 11.809626 12.340023 10.218518 10.705843
##  [673]  9.755214 11.588213  8.664631  8.662769 10.730605  7.845545 11.229735
##  [680] 10.336399  9.418976  7.775643 10.684369  9.240709  9.259642 10.044383
##  [687] 12.283522  9.105747 11.074378  9.199947 10.907456 10.599504 10.741537
##  [694] 10.933206 10.352066  8.421155  8.577236  6.937556  6.714388  9.196153
##  [701]  8.050341 11.007279  9.169395 11.121235  9.712279 10.946698 10.725676
##  [708]  8.221735 12.125425  8.328009 13.335515  9.995661  8.714171  9.991026
##  [715]  8.994569 10.526351  9.630893  9.710638 11.018728 11.000993  9.928009
##  [722] 10.619520 10.555067 10.716664  8.773580  9.202677  9.287867 10.782624
##  [729] 12.749107  9.701834 10.034987 10.599686  9.463782  8.932511 13.900336
##  [736] 10.636148  9.416227 10.753809  6.820454  7.081683 11.016251 10.322426
##  [743]  8.423540  9.886447  7.404879  9.221767 11.548995  9.661386 10.528383
##  [750] 12.647914 10.185613 10.126399 12.123633 11.960577 10.946945 10.502471
##  [757]  9.525026 11.511243 10.027917  8.781929  8.850079  7.454801  8.657842
##  [764]  9.103546  9.894381 11.474208  7.045449 11.624869  9.739154 11.176716
##  [771] 11.791820  9.562302 10.261262 10.093164  8.646884 10.880643 10.458081
##  [778]  9.874506  9.316668  9.452255 11.575891  9.865737 11.234724  8.323238
##  [785] 10.568493 12.253681  7.164357 10.830505 10.046062 10.156462  8.984396
##  [792]  7.066213 10.255289 10.473874  9.056138 11.349230 10.191731 10.155980
##  [799]  9.365147 12.023196 12.762360  9.847179  9.047819  9.619459 10.961039
##  [806]  8.833970 10.160492  9.247590 11.482467 12.751812 10.036136 10.862830
##  [813]  8.879963 11.192393 10.308868 10.538003  9.977676  9.030002  9.171539
##  [820] 10.469054  8.793721  8.363003  9.946520 10.131828  9.792111  8.009001
##  [827] 10.832898  8.063563 10.223027 10.356820  8.879845  8.694306 10.587912
##  [834] 11.640776  9.270999 11.847172  8.771181 10.374984 10.625844 11.466886
##  [841]  9.588701 10.591316  9.123177  9.713419  8.412168  8.212848 10.099760
##  [848] 10.753719  9.896123 10.166165  9.239637  9.672952 10.506769 10.119877
##  [855]  9.322932  9.251234 10.542353 10.237556  7.545981  7.569029  9.129448
##  [862]  8.193194 10.388631  9.100610  9.028805  8.817724  9.664374 10.823007
##  [869]  9.952578 12.309893  9.995596  9.706025 10.620885  7.990322  9.681915
##  [876]  8.390979  6.592356 11.475712  6.905249 12.864397  9.447940  8.705479
##  [883]  8.704129  8.422429  9.575632  9.348573  9.751189 11.269724 10.915746
##  [890] 10.129732 10.498727  9.102381  8.197206 12.687056  9.523146 12.486343
##  [897]  9.486853  9.369335 10.269033 10.387574  8.640959  8.392967  7.929035
##  [904] 10.247707 10.144272  9.000007  8.316906  9.848845 10.813193  8.092104
##  [911] 11.338022  7.771764 11.076424  8.046193  8.284352  7.710484 10.320974
##  [918]  9.459052  9.001695  7.919460 10.052615  8.935708  8.034828  9.513697
##  [925]  9.796135 12.150492 11.364774  8.896390  9.840744 11.170569  9.259643
##  [932]  9.729197  8.629687 10.316767  8.244609 10.962467 11.748269 11.834186
##  [939] 10.522091 11.089672  9.474423  8.052357 10.064427  8.814902 11.959787
##  [946]  9.464402 10.454899 10.581217 11.706605  9.916064  9.858317  8.810747
##  [953]  8.834629  9.920361 10.123302 10.234505 15.680570  9.903128  8.738286
##  [960]  8.765967  9.405496 11.863345  8.361876  9.616801  8.817522 10.529861
##  [967]  9.752964  9.888208  9.483509 11.197902  9.209518  8.639374 10.742357
##  [974] 11.803449 10.696162  8.098121  9.638224  8.691978  9.492734  9.779748
##  [981]  8.530997 10.891975 10.316937  7.929715  9.531347  9.880865 12.012456
##  [988]  7.606808  9.258915 13.449103 10.412024 10.757834  7.289370 11.512605
##  [995]  8.174937  9.579570  8.351182  9.490471 11.656934 10.362739
# create groups for different values of X
(group <- rep(1,1000))
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1
# a vector consisting of 1000 elements
group[xAxis > -1.5] <- 2
group[xAxis > -.5] <- 3
group[xAxis > .5] <- 4
group[xAxis > 1.5] <- 5
group
##    [1] 3 3 2 4 3 2 2 4 4 3 2 4 5 5 3 3 3 3 4 4 3 5 4 4 3 3 5 5 1 1 3 2 2 3 1 4 4
##   [38] 4 3 4 3 2 4 4 3 3 3 5 3 3 3 5 2 3 3 3 3 4 3 4 4 4 3 3 2 4 3 2 3 2 4 4 4 3
##   [75] 2 2 3 5 4 4 3 3 2 2 3 4 2 2 3 2 5 3 2 4 3 4 4 4 4 2 3 5 5 3 2 2 3 5 4 4 3
##  [112] 3 4 2 4 3 3 1 2 2 5 2 2 4 4 5 2 2 4 2 3 2 2 4 3 3 2 4 2 3 2 3 4 3 3 2 1 2
##  [149] 1 4 2 4 3 4 4 4 3 3 3 3 5 4 5 3 2 4 3 3 1 2 3 3 4 2 1 3 3 4 3 4 4 4 5 3 4
##  [186] 4 3 4 4 4 2 1 4 2 2 2 3 4 1 4 2 2 2 3 2 4 2 3 3 2 2 3 2 2 4 3 4 4 3 2 3 4
##  [223] 1 4 4 3 3 1 3 3 5 5 3 1 3 5 4 2 3 5 2 2 4 4 4 3 2 4 3 2 3 2 4 2 2 4 2 3 3
##  [260] 5 2 2 3 3 4 3 4 2 3 3 4 4 2 4 2 2 4 3 4 4 3 3 3 4 5 4 3 2 3 3 3 1 3 2 2 3
##  [297] 5 2 2 4 2 1 2 4 2 2 2 2 3 3 2 4 3 4 3 4 2 3 4 1 3 5 2 3 3 3 5 3 3 2 4 4 3
##  [334] 2 3 3 4 1 3 3 4 3 3 3 3 4 2 4 4 3 5 3 2 4 4 4 3 3 3 4 3 3 4 4 4 2 3 5 2 3
##  [371] 3 2 2 2 4 3 4 4 4 3 1 5 3 2 4 3 3 2 3 2 4 3 4 3 2 3 2 2 4 4 2 4 3 4 2 2 2
##  [408] 1 5 4 2 4 4 3 5 3 2 3 4 3 3 5 2 3 3 4 2 3 2 1 4 2 3 3 4 2 2 5 1 2 3 2 4 3
##  [445] 4 3 3 3 3 5 3 1 2 2 3 1 3 2 3 4 3 3 2 3 1 2 4 4 3 2 4 2 2 4 2 3 3 3 4 3 2
##  [482] 3 2 3 3 3 3 4 2 4 4 4 2 3 3 4 2 4 3 3 2 4 4 3 4 3 3 2 4 3 3 3 2 2 3 3 3 2
##  [519] 2 2 2 2 4 4 3 1 2 3 2 1 4 2 2 2 2 4 2 4 3 3 2 1 3 2 2 4 3 3 1 2 4 4 3 3 2
##  [556] 2 4 3 5 3 3 3 5 3 4 3 2 1 3 3 3 5 3 1 3 3 1 2 2 2 2 4 4 3 3 2 2 3 5 1 4 2
##  [593] 3 4 1 3 1 4 3 3 3 4 3 2 3 4 5 4 3 2 3 3 2 3 2 2 4 2 4 4 4 4 1 3 3 1 4 2 4
##  [630] 3 2 3 3 1 1 4 2 1 2 3 2 3 2 4 4 5 4 4 4 3 3 3 3 4 3 4 3 4 3 1 3 1 3 3 4 4
##  [667] 3 2 4 4 4 3 4 4 3 1 3 2 4 4 3 3 3 2 3 2 4 2 3 2 4 2 3 3 2 2 2 1 1 3 2 3 3
##  [704] 5 3 4 3 2 5 2 5 3 1 3 3 3 3 4 3 2 4 3 4 4 3 4 3 4 3 3 3 4 2 3 5 4 2 3 1 1
##  [741] 5 3 1 3 1 2 4 2 3 5 3 2 4 3 4 4 3 4 3 2 2 3 3 2 2 4 1 4 4 4 4 3 3 2 3 4 2
##  [778] 4 2 2 4 1 4 2 2 5 1 4 2 2 2 2 3 1 3 4 3 4 2 5 4 5 3 1 4 1 3 3 3 3 4 4 3 3
##  [815] 2 3 3 2 3 2 2 2 2 2 4 2 5 3 4 2 2 2 4 3 3 2 2 3 3 3 3 5 3 3 2 2 3 2 3 3 2
##  [852] 2 3 3 3 3 5 4 2 2 3 3 3 2 3 2 3 3 3 5 4 3 3 2 3 2 1 3 1 4 4 3 2 2 3 4 3 3
##  [889] 4 4 4 2 2 5 2 4 3 3 3 3 2 1 2 2 2 2 3 2 3 2 4 2 3 1 2 1 2 2 2 3 3 3 2 2 3
##  [926] 5 4 3 4 4 2 2 3 3 3 4 3 4 3 4 2 2 2 3 5 3 3 4 3 2 3 2 3 2 2 3 5 1 1 2 2 5
##  [963] 1 2 2 3 3 3 2 4 3 2 5 4 3 3 2 3 2 2 2 3 3 3 4 4 3 1 3 4 3 4 1 3 3 3 1 3 5
## [1000] 4
# create sample dataframe by joining variables
sample_data <- data.frame(xAxis,yAxis,group)
sample_data
##              xAxis     yAxis group
## 1     0.0297457221  9.453977     3
## 2    -0.3719067033  9.239074     3
## 3    -0.8253756307  8.934578     2
## 4     1.2635609301 12.525743     4
## 5     0.3373823884  9.509183     3
## 6    -1.1221804025  9.284195     2
## 7    -1.2463666417  8.685609     2
## 8     0.6475856235 10.270069     4
## 9     1.0462736522 11.451555     4
## 10    0.1527480433 10.495430     3
## 11   -0.6534576853  9.532087     2
## 12    1.4887153715 11.051496     4
## 13    2.5621314625 12.743650     5
## 14    1.5528798009 13.741138     5
## 15    0.4994329011 10.267638     3
## 16    0.0948725504 10.099549     3
## 17   -0.1323002499 10.117929     3
## 18    0.4523541675 11.631696     3
## 19    1.2768456677  9.729594     4
## 20    0.6987960709  8.741232     4
## 21    0.0417965938  9.945405     3
## 22    1.6388258527 10.908883     5
## 23    1.4461354553 11.670314     4
## 24    1.0818587624  9.433225     4
## 25    0.0544531075  8.747644     3
## 26    0.1074881178  9.799313     3
## 27    3.2339407154 13.151943     5
## 28    1.8234381284 13.609822     5
## 29   -3.2454524858  5.681295     1
## 30   -1.9548676897  7.955493     1
## 31   -0.1481428193 11.249553     3
## 32   -0.6954619085 10.535224     2
## 33   -0.8007918073  9.250472     2
## 34   -0.3908060212 10.561307     3
## 35   -1.8754739715  7.244991     1
## 36    1.2584700185 11.222024     4
## 37    1.3151973251 12.749457     4
## 38    0.5317531269 11.434454     4
## 39   -0.0580682687  9.936051     3
## 40    0.6921051899 11.302762     4
## 41    0.2346195712 12.024915     3
## 42   -0.8610615238 10.602074     2
## 43    0.6633136609 10.144157     4
## 44    0.6744063999 11.189969     4
## 45    0.3269978108 10.720416     3
## 46   -0.4877755023 10.515124     3
## 47   -0.1137583627  8.094872     3
## 48    2.6781180839 11.555110     5
## 49    0.1278014106 10.255558     3
## 50   -0.3655744141  9.538774     3
## 51   -0.4882098827  8.715178     3
## 52    2.1734367878 12.185025     5
## 53   -0.5429270303 10.507931     2
## 54   -0.0193129758  8.258384     3
## 55    0.3712298181 11.140384     3
## 56    0.0458684303 10.690920     3
## 57    0.4391368022  9.876167     3
## 58    0.5887800685 10.669613     4
## 59   -0.1299347125 10.662628     3
## 60    0.5530494818  9.608914     4
## 61    0.5919736062 11.903545     4
## 62    1.3471604490 12.574498     4
## 63    0.3072489895  9.556155     3
## 64   -0.3194096380  8.174616     3
## 65   -0.6597028712 12.161662     2
## 66    0.7702126840  9.921142     4
## 67    0.3277050136 10.430268     3
## 68   -0.9209661583 10.370481     2
## 69   -0.4250160318  8.788717     3
## 70   -0.7106530330  9.125051     2
## 71    0.9478641981  9.933326     4
## 72    1.1902588180 12.232248     4
## 73    1.1128440764 12.181600     4
## 74    0.4792808503  8.042256     3
## 75   -0.6179437288  8.592068     2
## 76   -0.8940206173 10.188963     2
## 77    0.4394460577 12.626654     3
## 78    1.7830676794 11.715015     5
## 79    0.6673078420 11.808902     4
## 80    0.8616651994  9.991671     4
## 81    0.2115773632  9.864414     3
## 82    0.1174122692  9.765506     3
## 83   -0.5348682957  9.670371     2
## 84   -1.2609639858  8.015212     2
## 85    0.3004198304 11.190050     3
## 86    0.8909041637 11.032440     4
## 87   -0.6307066462  8.660235     2
## 88   -1.1581841792  8.293803     2
## 89   -0.3813005073  8.573428     3
## 90   -0.6356241906 11.332472     2
## 91    1.7560205216 10.538030     5
## 92    0.3748407752  8.960662     3
## 93   -1.0016321722  7.177706     2
## 94    0.8815161214 12.120763     4
## 95   -0.4446169157  9.275724     3
## 96    0.8056973043 12.223843     4
## 97    0.9596901829 10.798274     4
## 98    0.8839995274 10.250420     4
## 99    1.1058517812 12.396547     4
## 100  -1.3385581906  8.011546     2
## 101   0.2915704470  9.243631     3
## 102   2.0975267880 13.087319     5
## 103   2.4509721113 10.814846     5
## 104   0.1523230095  9.630633     3
## 105  -0.8194487876  8.573007     2
## 106  -0.7872714077  9.508982     2
## 107   0.4300525068 11.159354     3
## 108   2.6854367340 13.036523     5
## 109   0.7053059859 12.082295     4
## 110   1.4962929491 11.416104     4
## 111   0.3158209939 12.186637     3
## 112  -0.2913716149  7.363956     3
## 113   1.2130750140 10.535066     4
## 114  -1.2368420390  8.742677     2
## 115   0.8569946197  9.464906     4
## 116   0.2882919879  9.793261     3
## 117  -0.1584598250  9.190397     3
## 118  -1.5852201440  9.444054     1
## 119  -1.2602463461  8.432466     2
## 120  -0.8132881969  8.640899     2
## 121   1.7349570309 11.090482     5
## 122  -1.3992372867  7.005171     2
## 123  -0.6953358783 10.077834     2
## 124   1.0476741407 12.128834     4
## 125   1.0244923691 12.556016     4
## 126   1.6643829979 10.735983     5
## 127  -0.7463045863  8.581836     2
## 128  -0.9935095546 11.483329     2
## 129   0.6770156484 11.098689     4
## 130  -0.8655686195  8.914656     2
## 131  -0.1308094442 10.187653     3
## 132  -0.6526466899 10.111956     2
## 133  -0.9539715941 10.271029     2
## 134   0.5201950445  9.761257     4
## 135   0.0618129340 10.178292     3
## 136   0.4789391045 12.799087     3
## 137  -0.7170856005  8.747296     2
## 138   1.2520437364 11.769882     4
## 139  -0.7848649740  9.334794     2
## 140   0.0717970452  9.658767     3
## 141  -1.4215403554  9.268787     2
## 142   0.3497119775 10.373545     3
## 143   1.1787481713 11.307271     4
## 144  -0.3455071408  9.698254     3
## 145  -0.1528148662  9.128445     3
## 146  -0.8737248206  7.686615     2
## 147  -2.1281153683  7.620257     1
## 148  -0.8114387539  7.572256     2
## 149  -1.6834010981  6.307194     1
## 150   0.7467304858  9.589956     4
## 151  -0.8531826868  7.467497     2
## 152   0.9022617113 10.996517     4
## 153   0.2724357033 11.528833     3
## 154   1.3399059299 10.780836     4
## 155   1.0002050319 10.932635     4
## 156   1.2897714746 11.749219     4
## 157  -0.2337223301 10.610544     3
## 158  -0.3529319491  9.718818     3
## 159  -0.0254069604 12.076556     3
## 160  -0.1415272495  9.909437     3
## 161   1.9534852377 13.183351     5
## 162   0.7952436697  7.442172     4
## 163   1.7059509124 10.376130     5
## 164   0.2287902451  9.903405     3
## 165  -0.7197580072  9.129734     2
## 166   1.4320970016 10.495736     4
## 167  -0.4978682028  9.132305     3
## 168   0.4033766157 11.870084     3
## 169  -2.6827907193  7.976982     1
## 170  -0.6434684961  9.477272     2
## 171   0.2104551201 11.408120     3
## 172   0.1814535056  8.455681     3
## 173   0.6256250418 10.559582     4
## 174  -0.8334662839  9.763914     2
## 175  -3.2866558340  6.893826     1
## 176  -0.1914934496  8.795818     3
## 177   0.0739430164  9.495852     3
## 178   1.4013357109 10.566155     4
## 179   0.4105214421  8.745284     3
## 180   0.8348844985 10.729021     4
## 181   0.8303169205 11.041582     4
## 182   1.4810686147 11.612691     4
## 183   1.5778752152 10.738843     5
## 184   0.2925599109 11.553614     3
## 185   0.8528775091  9.482287     4
## 186   0.9956945843 10.567418     4
## 187  -0.4423267967  9.362975     3
## 188   1.0819348440 11.531980     4
## 189   0.7509834580 10.234234     4
## 190   1.2144061117 10.231721     4
## 191  -0.6269285829  9.733713     2
## 192  -1.9956967214  8.045294     1
## 193   1.3999964670 12.786436     4
## 194  -1.0847765252  9.357128     2
## 195  -0.6366000027 10.750265     2
## 196  -0.5343268251 10.488705     2
## 197   0.0251600175 10.117537     3
## 198   1.0198586086 10.405390     4
## 199  -1.9443437091  7.256452     1
## 200   0.6835100483 11.648672     4
## 201  -0.5528511459 10.596191     2
## 202  -0.6162332787  9.402079     2
## 203  -0.6576578874  9.666902     2
## 204   0.0815784655 10.591137     3
## 205  -0.8171453347  8.580359     2
## 206   1.1364162684 10.147043     4
## 207  -0.9335120173  9.192565     2
## 208   0.4429067723  8.524973     3
## 209  -0.3416493123  8.304412     3
## 210  -0.6595571092  9.218174     2
## 211  -1.3576045662  8.838642     2
## 212  -0.1557524431  8.789215     3
## 213  -1.0016997979  7.969412     2
## 214  -0.5858578885  8.522022     2
## 215   0.6424769480 11.637406     4
## 216  -0.1446774168 10.113470     3
## 217   0.6413738382  8.893417     4
## 218   1.2383236686 10.754529     4
## 219  -0.4187591588  9.233649     3
## 220  -1.0799796455  9.594366     2
## 221  -0.2213393487 10.351329     3
## 222   0.9521837707 10.743913     4
## 223  -1.7438350977  7.927042     1
## 224   0.5400997653 10.115025     4
## 225   1.1348809726 12.148059     4
## 226   0.4580609373 12.179157     3
## 227  -0.3531589272 10.784021     3
## 228  -1.7750748404  8.212278     1
## 229   0.3808376441 11.130464     3
## 230   0.1994831970 10.364592     3
## 231   2.0226426827 11.620614     5
## 232   1.6038290968 11.339242     5
## 233   0.1313310503  9.341435     3
## 234  -1.7277859104  7.195250     1
## 235  -0.3819201738  8.330650     3
## 236   1.9496984806 12.351507     5
## 237   1.1765250763 10.481267     4
## 238  -1.3226663181  7.932837     2
## 239  -0.1918995827 10.812078     3
## 240   1.9321220005 11.614247     5
## 241  -0.5479718485  8.539142     2
## 242  -0.5162434903 10.459865     2
## 243   0.6466880213  9.918622     4
## 244   0.5474881045  7.753849     4
## 245   1.4852350735 12.180473     4
## 246   0.4599635112 10.570968     3
## 247  -1.2623146455  9.545812     2
## 248   1.0102853943 11.518425     4
## 249   0.1850491089  8.645588     3
## 250  -0.8903080334 10.420645     2
## 251   0.2763383093  9.769995     3
## 252  -1.0220096042  8.232035     2
## 253   1.1534258222 12.456708     4
## 254  -0.7475686779  7.623977     2
## 255  -0.9788482946  7.578276     2
## 256   1.3982609353 11.092797     4
## 257  -1.3545032848  7.729065     2
## 258   0.0508031229 10.649937     3
## 259  -0.3559652436 10.356220     3
## 260   1.8741142624 12.949696     5
## 261  -1.2061940744  7.918587     2
## 262  -0.6637800434 10.271219     2
## 263   0.4488764355 11.220810     3
## 264   0.3030192950  9.575969     3
## 265   1.3982851122 13.428994     4
## 266  -0.2512757324  8.884329     3
## 267   0.5091259813 10.289314     4
## 268  -0.6001630079 10.265825     2
## 269   0.2581386892  9.604150     3
## 270  -0.2329848448 10.213750     3
## 271   1.1489735461 11.257015     4
## 272   0.5410224450 11.573971     4
## 273  -0.8741434013  9.683439     2
## 274   1.0738074060 11.965759     4
## 275  -0.6522022046  9.154427     2
## 276  -0.9285015744  8.349757     2
## 277   0.7542558450 11.649629     4
## 278  -0.2571674906  9.183719     3
## 279   1.4037325119  9.904275     4
## 280   1.0375238472 11.108445     4
## 281  -0.2136570705  9.791304     3
## 282   0.1853265992 12.507152     3
## 283   0.1367506063 10.853708     3
## 284   0.6520719678 10.328175     4
## 285   2.1692158518 12.991986     5
## 286   1.3490746000 12.037280     4
## 287   0.4583375324  8.488311     3
## 288  -1.3220937126  9.956862     2
## 289   0.1703010627 12.215851     3
## 290  -0.0554655676 10.496268     3
## 291   0.2614838201  9.795027     3
## 292  -1.7973645401  8.579310     1
## 293   0.0384140595 10.969953     3
## 294  -0.5096118249 11.214230     2
## 295  -1.2379034206  9.015577     2
## 296  -0.3713795580  7.568631     3
## 297   2.0223192487 11.142255     5
## 298  -0.6831552790 11.199421     2
## 299  -0.7054738944  8.160060     2
## 300   0.8583198419 10.121936     4
## 301  -0.5101694671  9.716368     2
## 302  -2.0772583556  8.639236     1
## 303  -0.8092578543  9.222355     2
## 304   0.7106423353 10.168601     4
## 305  -1.4629320060  9.710971     2
## 306  -1.1191629995 10.210685     2
## 307  -1.3426143607  8.223630     2
## 308  -0.9688817416  8.402594     2
## 309  -0.4201186485  8.941203     3
## 310   0.0849011625 10.087638     3
## 311  -0.5009813782 10.416331     2
## 312   0.5147757125  8.006993     4
## 313  -0.2512468984 10.609145     3
## 314   0.8567017527 10.902514     4
## 315   0.0954278366  8.891210     3
## 316   1.2643845003 11.644846     4
## 317  -0.5942554966  9.864319     2
## 318  -0.1959233348 10.981086     3
## 319   0.8031506208 10.470505     4
## 320  -2.1043710184  5.970141     1
## 321  -0.3513860160 10.132353     3
## 322   1.5757064583 12.066213     5
## 323  -1.1412941099  7.646080     2
## 324  -0.0347549640  9.845150     3
## 325   0.1347892449  8.855918     3
## 326   0.1820817426  8.810322     3
## 327   1.8624937573 11.953430     5
## 328  -0.2947744839 10.578748     3
## 329   0.2065919606  9.120276     3
## 330  -1.3272411922 10.321347     2
## 331   1.1415769922  9.935359     4
## 332   0.7668875238 10.443771     4
## 333   0.1615193508  9.427451     3
## 334  -1.3263229136  8.969488     2
## 335  -0.0769360389  9.683240     3
## 336  -0.1828639582 10.133429     3
## 337   0.6385818443 11.478430     4
## 338  -1.7151803535  8.905310     1
## 339   0.4288619325  9.197546     3
## 340   0.1191084710 10.263742     3
## 341   0.6700526906 11.240898     4
## 342   0.2790120515 11.918584     3
## 343   0.2756173916 10.976689     3
## 344  -0.1502085874 10.148683     3
## 345   0.4331693172  9.344365     3
## 346   1.1467919103 11.351561     4
## 347  -1.0165315629  8.258376     2
## 348   1.1901396094 10.436985     4
## 349   0.8015312079 10.259799     4
## 350   0.0005762223 11.756580     3
## 351   2.8416201059 13.231096     5
## 352   0.0935774062  8.611064     3
## 353  -1.4909674779  8.485799     2
## 354   0.5108198901 11.234891     4
## 355   1.3321489205 11.811525     4
## 356   1.2695250294 11.193468     4
## 357  -0.1738973419 10.566011     3
## 358   0.2662572892 10.199050     3
## 359  -0.3889410945 11.671322     3
## 360   1.2288827984 10.382145     4
## 361  -0.3381186163 10.646544     3
## 362  -0.2380601220  9.143901     3
## 363   1.0429621369 11.631043     4
## 364   0.9803586578 10.792654     4
## 365   1.3509120593 11.247553     4
## 366  -0.7383224784  9.968890     2
## 367  -0.4854716874  9.061755     3
## 368   2.5997581769 13.487286     5
## 369  -1.0815692092 10.872045     2
## 370  -0.1471275718 10.759334     3
## 371  -0.1600268250 11.265467     3
## 372  -0.5704367848 10.187659     2
## 373  -0.9198855770  9.613908     2
## 374  -0.7636672908  9.293601     2
## 375   1.4153589000 10.920138     4
## 376  -0.1659504121  8.465347     3
## 377   0.5639701711 12.485995     4
## 378   0.8302977937 11.444308     4
## 379   0.8173706018  8.952600     4
## 380   0.1629736719  8.319204     3
## 381  -1.5437672226  8.783507     1
## 382   1.8359009049 11.644908     5
## 383  -0.0632389876 10.805600     3
## 384  -0.5539449771  9.460759     2
## 385   0.9306801528 12.243261     4
## 386   0.4280427344  9.648155     3
## 387   0.1520541167  9.710594     3
## 388  -0.6252512522 10.355361     2
## 389   0.2760306576  9.429137     3
## 390  -0.5689200104  9.311973     2
## 391   1.2699471743  9.456671     4
## 392  -0.3633696736  9.792069     3
## 393   1.3456736697 11.331636     4
## 394  -0.0522560763 10.296542     3
## 395  -0.5662884605  9.273401     2
## 396   0.2091842034  9.495275     3
## 397  -0.7015440325  9.312412     2
## 398  -0.8046725672  7.903524     2
## 399   1.3408945290 12.740962     4
## 400   0.7954213419 11.292401     4
## 401  -0.9010721323  8.496637     2
## 402   0.8619327704 10.238764     4
## 403  -0.2175228967  9.387828     3
## 404   0.9659447097  9.989543     4
## 405  -0.5372789740 10.484603     2
## 406  -0.9546615639  8.117885     2
## 407  -0.6797564966  8.598078     2
## 408  -1.9018391496  7.881863     1
## 409   1.6192149852 11.817668     5
## 410   0.5472612225  9.188350     4
## 411  -0.6144420252 10.454189     2
## 412   1.1888269385 11.017408     4
## 413   0.5635015544  9.203277     4
## 414   0.4941279351 11.790521     3
## 415   1.5312793554 10.580694     5
## 416  -0.3020416968  9.151308     3
## 417  -0.8869475881  9.508735     2
## 418   0.4751195671  9.953474     3
## 419   0.7773538511 11.648079     4
## 420  -0.4089110935  9.766623     3
## 421   0.4281784664  9.746793     3
## 422   2.0147695821 14.125984     5
## 423  -0.7697458582  9.062812     2
## 424   0.2758818202  9.093786     3
## 425   0.2196724627 11.514893     3
## 426   1.0329571938  9.251347     4
## 427  -0.8180375092 10.089108     2
## 428  -0.2362989896 10.346711     3
## 429  -1.2189605054  8.864413     2
## 430  -2.1308951576  7.476873     1
## 431   1.0323978957 11.051503     4
## 432  -0.7860113016  9.872299     2
## 433   0.4428930284 10.572560     3
## 434   0.2834588576  9.870005     3
## 435   0.6802378303  9.420738     4
## 436  -1.2289552681  8.929287     2
## 437  -1.0900406038  7.354173     2
## 438   2.5966592694 12.395216     5
## 439  -1.5084017499  8.180989     1
## 440  -0.9899890909  8.515345     2
## 441   0.3408482172  9.787178     3
## 442  -0.6781674916  7.541471     2
## 443   1.3610992777 10.765931     4
## 444  -0.0210812558 11.657514     3
## 445   1.0544831482 10.602468     4
## 446   0.3895570468 10.729973     3
## 447  -0.4363310935 10.585160     3
## 448   0.2837655650 12.232231     3
## 449   0.0863493076 10.286677     3
## 450   2.5997731258 11.508160     5
## 451  -0.0011795042  9.346587     3
## 452  -2.5988743468  6.900095     1
## 453  -1.2031173728  7.833641     2
## 454  -1.1261898237  9.336389     2
## 455  -0.2134853681  9.299367     3
## 456  -1.8113182752  9.006955     1
## 457  -0.3400631182  9.079644     3
## 458  -1.0931491380  8.323343     2
## 459  -0.4946962242  7.671516     3
## 460   0.8942886211 12.635052     4
## 461  -0.1596610463  9.895812     3
## 462   0.1857733330 10.157234     3
## 463  -1.0956333200 10.731041     2
## 464  -0.2902149167  9.033175     3
## 465  -1.6670120006  8.321139     1
## 466  -0.6129941763  8.599102     2
## 467   0.7183107447 10.424110     4
## 468   0.7351411024 11.224493     4
## 469  -0.3281944261 10.810104     3
## 470  -0.7839329164  8.538251     2
## 471   0.5422309355  9.421635     4
## 472  -1.0422092173  7.545463     2
## 473  -0.6276356705  9.855759     2
## 474   1.1562746523  9.389395     4
## 475  -1.0416456911  9.771780     2
## 476   0.2033987850 11.764845     3
## 477   0.0202967311 10.313209     3
## 478   0.1175921262 11.519728     3
## 479   0.5521406806 11.532286     4
## 480  -0.1238682333 10.298180     3
## 481  -0.5617541845  9.102949     2
## 482  -0.2866909545 10.673277     3
## 483  -0.8359714681  9.507400     2
## 484   0.3890531537 10.027527     3
## 485   0.4523446737  9.001736     3
## 486   0.0931218427  9.748892     3
## 487   0.0190845718 10.511648     3
## 488   0.9280798721 11.203580     4
## 489  -0.9874708752  7.736921     2
## 490   0.8783012278 12.055085     4
## 491   0.6375443912 11.187460     4
## 492   0.6467993809  8.629239     4
## 493  -0.5677967838 10.565413     2
## 494   0.1599924919  9.482929     3
## 495   0.3417400395 10.460369     3
## 496   0.5774724337 10.882234     4
## 497  -1.2805535592  9.011925     2
## 498   0.6900678257  9.802983     4
## 499   0.4480056317  9.317664     3
## 500   0.4769246725 10.674292     3
## 501  -0.5103118726  8.914051     2
## 502   0.7551541478 10.687780     4
## 503   0.7522938691 10.848717     4
## 504  -0.1958805916 10.142867     3
## 505   1.0059900750 10.526016     4
## 506   0.1900092866 11.269865     3
## 507  -0.2499413794 10.196727     3
## 508  -0.8676335234  7.831304     2
## 509   1.4228207331  9.573548     4
## 510  -0.2656096563  8.929114     3
## 511  -0.2561761877  9.833303     3
## 512   0.1743264763 10.437599     3
## 513  -0.9633970303  9.426122     2
## 514  -0.9358733832  9.570107     2
## 515  -0.2153810986  9.777722     3
## 516   0.2402580386 11.269118     3
## 517   0.1204239625 11.504992     3
## 518  -0.8141156532  9.632226     2
## 519  -0.6868357684  8.915231     2
## 520  -0.7231393496  9.242460     2
## 521  -0.6764966187  8.617729     2
## 522  -0.7176467980 10.402351     2
## 523   0.5779342896  9.646076     4
## 524   0.9957480922 10.828696     4
## 525  -0.0386231676  9.138549     3
## 526  -1.7077338635  9.307227     1
## 527  -1.0723290572  8.301201     2
## 528  -0.4566252874  9.790534     3
## 529  -0.5014118220 10.016987     2
## 530  -1.6812829298  9.362249     1
## 531   0.8963215567 10.515228     4
## 532  -0.6811605984  9.971570     2
## 533  -0.6822936553  8.462087     2
## 534  -1.1768724534  9.542522     2
## 535  -1.0504688042 11.303971     2
## 536   0.7412883015 11.975821     4
## 537  -1.1055011654  8.292499     2
## 538   1.0777936831 11.429558     4
## 539  -0.2176385345 10.920586     3
## 540  -0.1563741014 10.181982     3
## 541  -0.9383919626  7.050046     2
## 542  -2.0691509909  7.467770     1
## 543   0.4129131415 10.692255     3
## 544  -0.5002915365  8.709334     2
## 545  -1.1520533293  7.817622     2
## 546   0.7502276950 10.265599     4
## 547  -0.0159827483 11.538511     3
## 548   0.4418007043 10.180593     3
## 549  -1.7671544898  6.810624     1
## 550  -1.1886650133  7.450217     2
## 551   0.5468990408 11.305160     4
## 552   1.1789110925 12.299671     4
## 553   0.3119105528 11.731279     3
## 554   0.0320808944 11.323876     3
## 555  -0.5386678752  9.613083     2
## 556  -0.6651075227  8.218513     2
## 557   0.6680940772  9.460680     4
## 558   0.3845416500  9.287316     3
## 559   2.4254537112 10.928254     5
## 560   0.4185386061 10.934533     3
## 561  -0.3251533967  9.739560     3
## 562   0.3859831799  9.321227     3
## 563   1.7631980880 12.305381     5
## 564   0.1305918683  8.617101     3
## 565   0.6274930407  7.825448     4
## 566  -0.1630011408  9.505827     3
## 567  -1.4783170037 10.183059     2
## 568  -1.6496447308  9.214365     1
## 569  -0.1247818164  9.484299     3
## 570   0.0135423654 10.031861     3
## 571   0.3921813355  9.308477     3
## 572   2.0814343037 12.994322     5
## 573  -0.3567735748  8.517365     3
## 574  -1.5747662625  6.195398     1
## 575   0.2267419106 11.745982     3
## 576   0.3630650998 11.557786     3
## 577  -1.6970907102  8.615114     1
## 578  -1.4002838168  9.079472     2
## 579  -0.7451661069  7.669773     2
## 580  -0.7884760724  9.679420     2
## 581  -0.7337431960 10.442340     2
## 582   1.1149351186 10.104407     4
## 583   0.6246632377 10.633507     4
## 584  -0.4208283521  7.885585     3
## 585  -0.0915037871  8.775698     3
## 586  -0.7235204869  8.712617     2
## 587  -0.5494415578  8.159045     2
## 588   0.4224614928  9.237422     3
## 589   2.6998457919 13.157305     5
## 590  -1.9868075514  8.133054     1
## 591   0.7640852126 10.626233     4
## 592  -0.8708582515  9.668621     2
## 593  -0.1925863419  8.893848     3
## 594   1.3026112360 10.271972     4
## 595  -2.6308698377  6.151951     1
## 596  -0.1827368551  8.004368     3
## 597  -2.5155085625  5.573782     1
## 598   0.5409627272 11.276755     4
## 599  -0.0715402364 11.628538     3
## 600   0.2782962569 11.221920     3
## 601  -0.2415786741  9.912229     3
## 602   0.7577619957  9.979735     4
## 603  -0.2001982408  8.881402     3
## 604  -0.6578067619 11.885333     2
## 605  -0.1947296522 10.615009     3
## 606   0.5166947393 11.223574     4
## 607   1.8450558818 12.496979     5
## 608   1.2083777089 11.047250     4
## 609  -0.3832953331 10.004565     3
## 610  -0.5899266732  6.783518     2
## 611  -0.2367193575  9.578117     3
## 612   0.1320895838  9.560775     3
## 613  -1.1943478977 10.064334     2
## 614  -0.1435304511  9.780033     3
## 615  -0.7595091218  8.260277     2
## 616  -0.8476480906  9.585861     2
## 617   0.5547168586 10.713068     4
## 618  -1.3211332473 10.213374     2
## 619   1.2340623425  8.866621     4
## 620   1.1723823030 11.724391     4
## 621   1.3731175868 11.944886     4
## 622   1.1379608864 12.154821     4
## 623  -1.5905774585  9.300528     1
## 624   0.1789986817  9.884967     3
## 625   0.4731962955  9.917218     3
## 626  -1.6002061336  8.730692     1
## 627   0.7325575942 10.068817     4
## 628  -0.6977242626  9.044606     2
## 629   0.8800582890 11.085177     4
## 630  -0.3028542113  8.520640     3
## 631  -0.5737616821  9.248731     2
## 632   0.4292194936  8.892292     3
## 633   0.3628705552 10.196532     3
## 634  -1.6565033629  9.578561     1
## 635  -1.5387774487  8.089182     1
## 636   0.7678755282 11.866728     4
## 637  -1.4654691672  8.425290     2
## 638  -1.5813663734  8.705251     1
## 639  -0.7575978718 10.152008     2
## 640   0.4655437514 10.528637     3
## 641  -0.8436281236  7.924505     2
## 642  -0.3006566746  9.515210     3
## 643  -0.5174593437 10.656964     2
## 644   0.7633806412 10.074095     4
## 645   0.8183168425  9.773296     4
## 646   1.7776842797 12.653464     5
## 647   0.9144274051 10.740055     4
## 648   1.2454977872 10.780509     4
## 649   0.6546916633 10.039008     4
## 650   0.4648268447 10.901971     3
## 651  -0.2243081006 10.102928     3
## 652   0.3659407346  9.791358     3
## 653   0.3910939630 10.503048     3
## 654   0.7383422903  9.041625     4
## 655   0.4482501930 11.559882     3
## 656   0.6125614051  8.162128     4
## 657  -0.0985846665 11.348592     3
## 658   0.5365952806 10.655467     4
## 659   0.2282276364  8.269740     3
## 660  -2.6934540057  5.636452     1
## 661   0.3927495104 10.458425     3
## 662  -1.5331429097  8.763986     1
## 663   0.3969422139  9.276993     3
## 664  -0.2560736925  8.272660     3
## 665   0.5973491979 10.842370     4
## 666   0.5799516753 10.435161     4
## 667   0.0340022550 10.639479     3
## 668  -1.3705439507  9.535979     2
## 669   0.7796662237 11.809626     4
## 670   1.3527227187 12.340023     4
## 671   0.8880785587 10.218518     4
## 672   0.4281518747 10.705843     3
## 673   0.8131003051  9.755214     4
## 674   0.9514390215 11.588213     4
## 675  -0.2029615117  8.664631     3
## 676  -1.7667811032  8.662769     1
## 677   0.0516614393 10.730605     3
## 678  -1.0366619417  7.845545     2
## 679   0.8693987508 11.229735     4
## 680   0.9394040445 10.336399     4
## 681   0.2538333669  9.418976     3
## 682  -0.3675027883  7.775643     3
## 683   0.0109160205 10.684369     3
## 684  -0.7277246889  9.240709     2
## 685  -0.3239529641  9.259642     3
## 686  -0.5564472117 10.044383     2
## 687   1.4464204507 12.283522     4
## 688  -1.0310062722  9.105747     2
## 689   0.2602291299 11.074378     3
## 690  -0.6380003046  9.199947     2
## 691   0.9575259657 10.907456     4
## 692  -0.6210657048 10.599504     2
## 693  -0.3857114253 10.741537     3
## 694  -0.3856911746 10.933206     3
## 695  -1.4581458731 10.352066     2
## 696  -0.7502569402  8.421155     2
## 697  -1.1340671516  8.577236     2
## 698  -3.0388001691  6.937556     1
## 699  -1.5373962817  6.714388     1
## 700   0.4889541443  9.196153     3
## 701  -1.1519935035  8.050341     2
## 702   0.3791254663 11.007279     3
## 703  -0.4141287636  9.169395     3
## 704   1.6749196623 11.121235     5
## 705   0.0628685597  9.712279     3
## 706   0.9038242126 10.946698     4
## 707  -0.0099023019 10.725676     3
## 708  -0.6442807000  8.221735     2
## 709   2.0975446250 12.125425     5
## 710  -0.7725449796  8.328009     2
## 711   1.5771951108 13.335515     5
## 712   0.3979039102  9.995661     3
## 713  -1.6970415653  8.714171     1
## 714   0.2535416039  9.991026     3
## 715   0.1265786375  8.994569     3
## 716   0.2035679537 10.526351     3
## 717  -0.3778597280  9.630893     3
## 718   1.1509146882  9.710638     4
## 719  -0.0602493287 11.018728     3
## 720  -0.8263212624 11.000993     2
## 721   0.8761536200  9.928009     4
## 722   0.1918654509 10.619520     3
## 723   0.5348178766 10.555067     4
## 724   0.6083988019 10.716664     4
## 725  -0.4185915200  8.773580     3
## 726   0.6997370166  9.202677     4
## 727   0.1231148384  9.287867     3
## 728   1.0838257647 10.782624     4
## 729   0.1439278046 12.749107     3
## 730  -0.0471785283  9.701834     3
## 731  -0.4565876386 10.034987     3
## 732   0.9803712607 10.599686     4
## 733  -1.4154048344  9.463782     2
## 734   0.3569650564  8.932511     3
## 735   3.0928633289 13.900336     5
## 736   0.6061368545 10.636148     4
## 737  -0.8468732328  9.416227     2
## 738   0.0833718451 10.753809     3
## 739  -2.2887629438  6.820454     1
## 740  -1.7820875112  7.081683     1
## 741   1.7080953977 11.016251     5
## 742   0.2706446745 10.322426     3
## 743  -1.8567387645  8.423540     1
## 744  -0.1542795611  9.886447     3
## 745  -1.5654347877  7.404879     1
## 746  -0.7850431414  9.221767     2
## 747   1.2903500047 11.548995     4
## 748  -1.3805939354  9.661386     2
## 749  -0.0187458037 10.528383     3
## 750   1.9228706924 12.647914     5
## 751  -0.4730253561 10.185613     3
## 752  -0.9719429129 10.126399     2
## 753   1.3006055581 12.123633     4
## 754   0.2005076726 11.960577     3
## 755   0.5652685458 10.946945     4
## 756   0.5558317357 10.502471     4
## 757  -0.4765681503  9.525026     3
## 758   0.5476065594 11.511243     4
## 759   0.3085675840 10.027917     3
## 760  -0.5541490755  8.781929     2
## 761  -1.2552239409  8.850079     2
## 762  -0.2559452912  7.454801     3
## 763  -0.1359679495  8.657842     3
## 764  -1.4033261291  9.103546     2
## 765  -1.3164641901  9.894381     2
## 766   0.9179817436 11.474208     4
## 767  -2.2426068872  7.045449     1
## 768   1.3040162462 11.624869     4
## 769   1.2552004530  9.739154     4
## 770   1.1566747740 11.176716     4
## 771   0.9794294313 11.791820     4
## 772  -0.0497125682  9.562302     3
## 773  -0.2697065594 10.261262     3
## 774  -0.9755739772 10.093164     2
## 775  -0.1374296268  8.646884     3
## 776   0.5459667194 10.880643     4
## 777  -1.3904980762 10.458081     2
## 778   0.8396296728  9.874506     4
## 779  -0.6646680879  9.316668     2
## 780  -0.8375020993  9.452255     2
## 781   0.7640428809 11.575891     4
## 782  -2.0124963104  9.865737     1
## 783   0.7595413493 11.234724     4
## 784  -0.6578196216  8.323238     2
## 785  -0.5583651012 10.568493     2
## 786   1.7021310938 12.253681     5
## 787  -2.1196033392  7.164357     1
## 788   0.6206077285 10.830505     4
## 789  -1.0619905347 10.046062     2
## 790  -0.7030054091 10.156462     2
## 791  -0.5309383037  8.984396     2
## 792  -0.7672069485  7.066213     2
## 793   0.1931049686 10.255289     3
## 794  -1.7334763004 10.473874     1
## 795   0.4143746928  9.056138     3
## 796   0.7209046114 11.349230     4
## 797   0.2945504691 10.191731     3
## 798   0.8161347519 10.155980     4
## 799  -1.0038830181  9.365147     2
## 800   1.7016408921 12.023196     5
## 801   1.2577022189 12.762360     4
## 802   1.9260521635  9.847179     5
## 803   0.1662076754  9.047819     3
## 804  -1.7577495264  9.619459     1
## 805   0.6703969429 10.961039     4
## 806  -2.1051744017  8.833970     1
## 807  -0.1667474744 10.160492     3
## 808   0.0594817727  9.247590     3
## 809   0.0941378187 11.482467     3
## 810   0.3543524670 12.751812     3
## 811   0.6269898006 10.036136     4
## 812   1.0048186730 10.862830     4
## 813  -0.4769985695  8.879963     3
## 814  -0.3251766059 11.192393     3
## 815  -0.5173528620 10.308868     2
## 816  -0.4036362353 10.538003     3
## 817  -0.1551973066  9.977676     3
## 818  -1.0505020557  9.030002     2
## 819  -0.0172511929  9.171539     3
## 820  -0.6919528967 10.469054     2
## 821  -0.6448005916  8.793721     2
## 822  -1.1982603120  8.363003     2
## 823  -0.9742627991  9.946520     2
## 824  -0.5993928782 10.131828     2
## 825   0.9301630581  9.792111     4
## 826  -1.2898350836  8.009001     2
## 827   1.6008091211 10.832898     5
## 828   0.2915624462  8.063563     3
## 829   1.4523207364 10.223027     4
## 830  -0.5389507846 10.356820     2
## 831  -0.8963846845  8.879845     2
## 832  -1.2566753874  8.694306     2
## 833   1.1631139186 10.587912     4
## 834   0.2150311787 11.640776     3
## 835  -0.4459107398  9.270999     3
## 836  -0.6777855052 11.847172     2
## 837  -0.8017529425  8.771181     2
## 838   0.2954133649 10.374984     3
## 839  -0.3836601844 10.625844     3
## 840   0.0342056412 11.466886     3
## 841   0.0550615927  9.588701     3
## 842   2.6609255614 10.591316     5
## 843  -0.4417095556  9.123177     3
## 844  -0.3088007134  9.713419     3
## 845  -0.6732679582  8.412168     2
## 846  -1.3328456295  8.212848     2
## 847   0.1550246863 10.099760     3
## 848  -0.7126725320 10.753719     2
## 849  -0.2103545785  9.896123     3
## 850  -0.1403886692 10.166165     3
## 851  -0.8215777522  9.239637     2
## 852  -1.2391128403  9.672952     2
## 853  -0.1465631137 10.506769     3
## 854   0.4646454770 10.119877     3
## 855  -0.4522039176  9.322932     3
## 856  -0.4375279621  9.251234     3
## 857   1.6101006014 10.542353     5
## 858   0.6123861320 10.237556     4
## 859  -1.3688133574  7.545981     2
## 860  -1.2244759987  7.569029     2
## 861  -0.0322167807  9.129448     3
## 862   0.2452736495  8.193194     3
## 863  -0.2469359395 10.388631     3
## 864  -0.5110601252  9.100610     2
## 865  -0.4677808825  9.028805     3
## 866  -1.0064426915  8.817724     2
## 867  -0.2748848620  9.664374     3
## 868   0.1953934872 10.823007     3
## 869  -0.0606274237  9.952578     3
## 870   1.5655562888 12.309893     5
## 871   0.6184544484  9.995596     4
## 872  -0.2990100585  9.706025     3
## 873  -0.3143566908 10.620885     3
## 874  -0.7065443872  7.990322     2
## 875  -0.2037041013  9.681915     3
## 876  -1.2895126264  8.390979     2
## 877  -2.0992743534  6.592356     1
## 878   0.0124892358 11.475712     3
## 879  -2.1224452478  6.905249     1
## 880   1.1393488979 12.864397     4
## 881   0.6879020058  9.447940     4
## 882  -0.3691033942  8.705479     3
## 883  -0.6172458888  8.704129     2
## 884  -1.4996393879  8.422429     2
## 885   0.2595915139  9.575632     3
## 886   1.3158683091  9.348573     4
## 887   0.3486132658  9.751189     3
## 888   0.3398511201 11.269724     3
## 889   1.0036176314 10.915746     4
## 890   0.6349044194 10.129732     4
## 891   0.8060742293 10.498727     4
## 892  -0.7846271708  9.102381     2
## 893  -1.1550594687  8.197206     2
## 894   2.1942048994 12.687056     5
## 895  -0.5963683397  9.523146     2
## 896   0.7546089242 12.486343     4
## 897  -0.2034354331  9.486853     3
## 898  -0.4577825019  9.369335     3
## 899   0.0542870940 10.269033     3
## 900   0.1590032818 10.387574     3
## 901  -1.2113694840  8.640959     2
## 902  -1.5519424440  8.392967     1
## 903  -1.3176355257  7.929035     2
## 904  -0.8022102232 10.247707     2
## 905  -0.9820196646 10.144272     2
## 906  -1.0603902851  9.000007     2
## 907  -0.4592565251  8.316906     3
## 908  -1.0464125597  9.848845     2
## 909   0.4960222822 10.813193     3
## 910  -1.3693016781  8.092104     2
## 911   0.6615997304 11.338022     4
## 912  -0.7617800862  7.771764     2
## 913   0.1655881799 11.076424     3
## 914  -2.2249045183  8.046193     1
## 915  -0.9505599853  8.284352     2
## 916  -2.4214269169  7.710484     1
## 917  -0.9147266438 10.320974     2
## 918  -0.6629722189  9.459052     2
## 919  -0.9377096007  9.001695     2
## 920  -0.4965909589  7.919460     3
## 921  -0.0534838030 10.052615     3
## 922  -0.3532319983  8.935708     3
## 923  -1.0151665209  8.034828     2
## 924  -1.1587899601  9.513697     2
## 925   0.2747119836  9.796135     3
## 926   1.6666740704 12.150492     5
## 927   1.2278629737 11.364774     4
## 928  -0.2042248009  8.896390     3
## 929   0.6013494335  9.840744     4
## 930   0.5511320483 11.170569     4
## 931  -0.5579131916  9.259643     2
## 932  -0.7296543666  9.729197     2
## 933   0.1774073474  8.629687     3
## 934   0.0002128264 10.316767     3
## 935  -0.2026117538  8.244609     3
## 936   0.5113188002 10.962467     4
## 937   0.3024781680 11.748269     3
## 938   0.7554330439 11.834186     4
## 939  -0.3747357267 10.522091     3
## 940   0.5411469038 11.089672     4
## 941  -0.7177320424  9.474423     2
## 942  -1.0012487218  8.052357     2
## 943  -1.2199443454 10.064427     2
## 944  -0.3418202159  8.814902     3
## 945   2.5526970476 11.959787     5
## 946  -0.3443462193  9.464402     3
## 947  -0.1216373336 10.454899     3
## 948   1.0536224918 10.581217     4
## 949   0.4925280066 11.706605     3
## 950  -1.4238895891  9.916064     2
## 951   0.1276215981  9.858317     3
## 952  -1.2614858224  8.810747     2
## 953   0.4449606766  8.834629     3
## 954  -0.5571041217  9.920361     2
## 955  -0.8896232860 10.123302     2
## 956  -0.1757594582 10.234505     3
## 957   3.3304936723 15.680570     5
## 958  -1.5019112649  9.903128     1
## 959  -1.7893983933  8.738286     1
## 960  -0.6615357369  8.765967     2
## 961  -0.6867815944  9.405496     2
## 962   1.9066274096 11.863345     5
## 963  -1.5856863006  8.361876     1
## 964  -1.3105004204  9.616801     2
## 965  -0.5981638880  8.817522     2
## 966  -0.2792472009 10.529861     3
## 967   0.3610765637  9.752964     3
## 968  -0.0291916455  9.888208     3
## 969  -0.9654784549  9.483509     2
## 970   0.9216795983 11.197902     4
## 971  -0.0634337931  9.209518     3
## 972  -0.5164548949  8.639374     2
## 973   2.1105840222 10.742357     5
## 974   0.6073370371 11.803449     4
## 975  -0.3054983594 10.696162     3
## 976   0.2459192201  8.098121     3
## 977  -0.5665018687  9.638224     2
## 978   0.1203742216  8.691978     3
## 979  -0.7718147519  9.492734     2
## 980  -0.9040384209  9.779748     2
## 981  -1.1253513692  8.530997     2
## 982   0.2595276588 10.891975     3
## 983   0.2444850367 10.316937     3
## 984  -0.0007143723  7.929715     3
## 985   1.2971856249  9.531347     4
## 986   0.9383303305  9.880865     4
## 987  -0.1643244314 12.012456     3
## 988  -2.1390283857  7.606808     1
## 989  -0.1057298581  9.258915     3
## 990   0.6932183281 13.449103     4
## 991  -0.2577201448 10.412024     3
## 992   0.8853583672 10.757834     4
## 993  -1.6570018606  7.289370     1
## 994  -0.3205469796 11.512605     3
## 995  -0.1897882330  8.174937     3
## 996   0.3445636956  9.579570     3
## 997  -2.4838691184  8.351182     1
## 998  -0.0950728115  9.490471     3
## 999   2.0734309450 11.656934     5
## 1000  0.7004286628 10.362739     4
# creates plot object using ggplot
plot <- ggplot(sample_data, aes(x = xAxis, y= yAxis, col = as.factor(group)))+
  geom_point()+theme(legend.position = "none")
# Display plot
plot
# Insert marginal ditribution using marginal function
ggMarginal(plot,type= 'histogram',groupColour=TRUE,groupFill=TRUE)