# Mindanao Stinate University
# General Santos City

# Basic Programming in R
# Prepared by: Prof. Carlito O. Daarol
# Faculty
# Math Department
# Submitted by: Czarina L. Genobiagon

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  2.4992369  2.6263939  2.4452493  5.0732236  0.9842960  1.7288494
##  [7] -0.4591114  2.6732738  3.4355202  1.6566538  0.7377926  3.2398813
## [13]  0.9250996  3.9234693  2.2230063  1.2610408  1.5714457  4.7346705
## [19]  1.5056527  1.5381212
data[1:300] # display the first 300 elements
##   [1]  2.499236910  2.626393921  2.445249259  5.073223584  0.984295984
##   [6]  1.728849360 -0.459111366  2.673273759  3.435520179  1.656653824
##  [11]  0.737792645  3.239881286  0.925099584  3.923469299  2.223006342
##  [16]  1.261040779  1.571445726  4.734670477  1.505652651  1.538121167
##  [21]  2.559303551  2.392877064  3.287354899  1.273389479  0.228688644
##  [26]  1.658201183 -1.104192106  1.771458159  1.879601090  0.762886018
##  [31]  2.933471725  2.330208028  2.061442003  4.097833428  3.413702354
##  [36]  1.213766147  1.219875055  5.055125606  4.215441252  3.063765868
##  [41]  2.095384882  2.549016751  2.438057934  1.400512324  2.290715308
##  [46]  4.045073048  1.058436103  1.373790479  2.569981587  2.201832012
##  [51] -0.516992418  2.619781654  1.202870592 -0.475971818 -1.144161128
##  [56]  1.087100551  5.225918068  2.448292064  6.151700922  2.223016786
##  [61]  1.746049820  2.001820584 -0.300050806  1.996635010  2.827821590
##  [66]  3.115129141  1.680983759  1.803438111  3.305061448  2.346209553
##  [71]  4.112080289  1.253311425  3.156619745  1.249086963  2.581072768
##  [76] -0.356644220  1.587408517  0.007459284  1.680268929  2.704352011
##  [81] -1.159225457  1.977047690  1.403159626  4.307757994 -0.158365127
##  [86]  0.276111993 -0.380490664  2.005763285  4.069631846  1.971166885
##  [91]  4.097062014  1.781639100  2.863403200  0.207494017  3.900401284
##  [96]  1.852334369  1.409621976  4.293479667  2.857601090  2.278156338
## [101]  2.985164458  3.372571456  2.355322614  0.086692249  1.874368417
## [106]  1.993587815  2.522544846  3.148410793  1.395592010  1.379894611
## [111] -0.076943268  3.807154051  0.967084577  1.814183860  3.972776587
## [116]  1.358292098  1.953277041  2.650033776  2.033663355  1.099357196
## [121]  2.009262546  2.549042106  3.084603522  3.573572488  3.201336658
## [126]  2.246657991  3.496147584 -0.029613227  1.004155857  2.935937107
## [131]  2.038547291  2.149243633  2.235199877  2.057381812  3.362959261
## [136]  3.274791078  2.508662351  2.820982877 -0.815108780  2.480811844
## [141] -0.538182769 -0.830305421  1.132853368  2.179668016  2.449158759
## [146] -0.005322721 -2.190315473  4.538548932  3.152042187  3.381200953
## [151]  2.962593504  4.388080198 -2.407851455  0.920347993 -0.264642422
## [156]  2.488381093  2.966170133  4.217025926  3.237259281  3.932411320
## [161]  3.586380855 -0.326082180  3.059998643  1.346651630  3.727368877
## [166]  2.789224804  0.637069988  2.511011691  1.221767357  3.818434772
## [171] -0.690287016  3.782970873 -0.928365542  1.075282258  0.957782007
## [176]  0.505457954  1.120980640  1.238084441  1.192364667 -0.454613305
## [181]  5.058692024  2.750563331  2.342785408  0.677026939  0.807315332
## [186]  0.115630025  0.839608060  4.487093207  0.814279286  1.252567590
## [191]  1.391606133  1.598439542  1.301023570  1.039520089 -0.519366381
## [196]  3.082055370  1.208103792  2.564309320  2.612231503  2.424859355
## [201]  1.284197331  0.278408669  5.396447755 -0.988854169  2.412222300
## [206]  3.623198202  4.114385432  1.153448412  4.370712729  4.086650533
## [211]  2.519799605 -0.018200220  3.777114440  1.919525671  4.533448948
## [216]  1.184949939  0.655496378  3.213914715  1.896702994  1.105592902
## [221]  2.384997989  1.605544794  4.428351361  3.624949447  1.076489142
## [226]  3.797287684 -0.032684322  1.133626247  1.534399307  4.037402940
## [231]  3.850671875  2.674600921  2.966792471  1.224471285  2.166681271
## [236]  1.735649716  0.609872672  3.509822861  4.069789434  2.270710679
## [241]  2.740502114  3.618513750  2.071868141  1.329874380  2.495226182
## [246]  0.354715235  2.279070155  1.162748195  3.461169335  2.259350599
## [251]  3.138964457  2.351246402  1.402151357  1.786752792  5.904376391
## [256]  1.552511466  1.706665427  2.214846255  3.623470243  1.289892345
## [261]  2.373471323  0.374674384 -0.489194614  2.511221182  2.146036662
## [266]  1.606074109  2.822620305  2.613781343  2.093517812  0.517120205
## [271] -1.594566795  0.143313429  3.464694078  1.106834058  1.330413166
## [276]  2.159897801 -1.869617392  3.471516945  2.027808177  2.815195395
## [281]  2.251484410  1.456015476  1.952716837  2.211991930  0.802156379
## [286]  1.158053863  1.522208483  0.739975316  5.552892802  1.966114847
## [291] -0.225639225  1.795209357  1.833140042  2.008098150  2.925935421
## [296]  1.642985705  3.046823022  3.094318311  1.754785455  4.194211592
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?
# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value 
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.737186594 -2.642980068 -2.548773543 -2.454567017 -2.360360491
##   [6] -2.266153966 -2.171947440 -2.077740915 -1.983534389 -1.889327864
##  [11] -1.795121338 -1.700914813 -1.606708287 -1.512501761 -1.418295236
##  [16] -1.324088710 -1.229882185 -1.135675659 -1.041469134 -0.947262608
##  [21] -0.853056083 -0.758849557 -0.664643032 -0.570436506 -0.476229980
##  [26] -0.382023455 -0.287816929 -0.193610404 -0.099403878 -0.005197353
##  [31]  0.089009173  0.183215698  0.277422224  0.371628750  0.465835275
##  [36]  0.560041801  0.654248326  0.748454852  0.842661377  0.936867903
##  [41]  1.031074428  1.125280954  1.219487479  1.313694005  1.407900531
##  [46]  1.502107056  1.596313582  1.690520107  1.784726633  1.878933158
##  [51]  1.973139684  2.067346209  2.161552735  2.255759261  2.349965786
##  [56]  2.444172312  2.538378837  2.632585363  2.726791888  2.820998414
##  [61]  2.915204939  3.009411465  3.103617990  3.197824516  3.292031042
##  [66]  3.386237567  3.480444093  3.574650618  3.668857144  3.763063669
##  [71]  3.857270195  3.951476720  4.045683246  4.139889772  4.234096297
##  [76]  4.328302823  4.422509348  4.516715874  4.610922399  4.705128925
##  [81]  4.799335450  4.893541976  4.987748501  5.081955027  5.176161553
##  [86]  5.270368078  5.364574604  5.458781129  5.552987655  5.647194180
##  [91]  5.741400706  5.835607231  5.929813757  6.024020283  6.118226808
##  [96]  6.212433334  6.306639859  6.400846385  6.495052910  6.589259436
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts 
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -2.737187  1.079900  2.055904  3.123142  6.589259
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  2.499236910  2.626393921  2.445249259  5.073223584  0.984295984
##    [6]  1.728849360 -0.459111366  2.673273759  3.435520179  1.656653824
##   [11]  0.737792645  3.239881286  0.925099584  3.923469299  2.223006342
##   [16]  1.261040779  1.571445726  4.734670477  1.505652651  1.538121167
##   [21]  2.559303551  2.392877064  3.287354899  1.273389479  0.228688644
##   [26]  1.658201183 -1.104192106  1.771458159  1.879601090  0.762886018
##   [31]  2.933471725  2.330208028  2.061442003  4.097833428  3.413702354
##   [36]  1.213766147  1.219875055  5.055125606  4.215441252  3.063765868
##   [41]  2.095384882  2.549016751  2.438057934  1.400512324  2.290715308
##   [46]  4.045073048  1.058436103  1.373790479  2.569981587  2.201832012
##   [51] -0.516992418  2.619781654  1.202870592 -0.475971818 -1.144161128
##   [56]  1.087100551  5.225918068  2.448292064  6.151700922  2.223016786
##   [61]  1.746049820  2.001820584 -0.300050806  1.996635010  2.827821590
##   [66]  3.115129141  1.680983759  1.803438111  3.305061448  2.346209553
##   [71]  4.112080289  1.253311425  3.156619745  1.249086963  2.581072768
##   [76] -0.356644220  1.587408517  0.007459284  1.680268929  2.704352011
##   [81] -1.159225457  1.977047690  1.403159626  4.307757994 -0.158365127
##   [86]  0.276111993 -0.380490664  2.005763285  4.069631846  1.971166885
##   [91]  4.097062014  1.781639100  2.863403200  0.207494017  3.900401284
##   [96]  1.852334369  1.409621976  4.293479667  2.857601090  2.278156338
##  [101]  2.985164458  3.372571456  2.355322614  0.086692249  1.874368417
##  [106]  1.993587815  2.522544846  3.148410793  1.395592010  1.379894611
##  [111] -0.076943268  3.807154051  0.967084577  1.814183860  3.972776587
##  [116]  1.358292098  1.953277041  2.650033776  2.033663355  1.099357196
##  [121]  2.009262546  2.549042106  3.084603522  3.573572488  3.201336658
##  [126]  2.246657991  3.496147584 -0.029613227  1.004155857  2.935937107
##  [131]  2.038547291  2.149243633  2.235199877  2.057381812  3.362959261
##  [136]  3.274791078  2.508662351  2.820982877 -0.815108780  2.480811844
##  [141] -0.538182769 -0.830305421  1.132853368  2.179668016  2.449158759
##  [146] -0.005322721 -2.190315473  4.538548932  3.152042187  3.381200953
##  [151]  2.962593504  4.388080198 -2.407851455  0.920347993 -0.264642422
##  [156]  2.488381093  2.966170133  4.217025926  3.237259281  3.932411320
##  [161]  3.586380855 -0.326082180  3.059998643  1.346651630  3.727368877
##  [166]  2.789224804  0.637069988  2.511011691  1.221767357  3.818434772
##  [171] -0.690287016  3.782970873 -0.928365542  1.075282258  0.957782007
##  [176]  0.505457954  1.120980640  1.238084441  1.192364667 -0.454613305
##  [181]  5.058692024  2.750563331  2.342785408  0.677026939  0.807315332
##  [186]  0.115630025  0.839608060  4.487093207  0.814279286  1.252567590
##  [191]  1.391606133  1.598439542  1.301023570  1.039520089 -0.519366381
##  [196]  3.082055370  1.208103792  2.564309320  2.612231503  2.424859355
##  [201]  1.284197331  0.278408669  5.396447755 -0.988854169  2.412222300
##  [206]  3.623198202  4.114385432  1.153448412  4.370712729  4.086650533
##  [211]  2.519799605 -0.018200220  3.777114440  1.919525671  4.533448948
##  [216]  1.184949939  0.655496378  3.213914715  1.896702994  1.105592902
##  [221]  2.384997989  1.605544794  4.428351361  3.624949447  1.076489142
##  [226]  3.797287684 -0.032684322  1.133626247  1.534399307  4.037402940
##  [231]  3.850671875  2.674600921  2.966792471  1.224471285  2.166681271
##  [236]  1.735649716  0.609872672  3.509822861  4.069789434  2.270710679
##  [241]  2.740502114  3.618513750  2.071868141  1.329874380  2.495226182
##  [246]  0.354715235  2.279070155  1.162748195  3.461169335  2.259350599
##  [251]  3.138964457  2.351246402  1.402151357  1.786752792  5.904376391
##  [256]  1.552511466  1.706665427  2.214846255  3.623470243  1.289892345
##  [261]  2.373471323  0.374674384 -0.489194614  2.511221182  2.146036662
##  [266]  1.606074109  2.822620305  2.613781343  2.093517812  0.517120205
##  [271] -1.594566795  0.143313429  3.464694078  1.106834058  1.330413166
##  [276]  2.159897801 -1.869617392  3.471516945  2.027808177  2.815195395
##  [281]  2.251484410  1.456015476  1.952716837  2.211991930  0.802156379
##  [286]  1.158053863  1.522208483  0.739975316  5.552892802  1.966114847
##  [291] -0.225639225  1.795209357  1.833140042  2.008098150  2.925935421
##  [296]  1.642985705  3.046823022  3.094318311  1.754785455  4.194211592
##  [301]  1.532659823  3.005292052  4.697094447 -0.628450045  5.106799565
##  [306]  0.970235615  0.965250027  3.654909357  2.184646421  2.139159110
##  [311]  2.349428293  2.949296285  2.857906112  1.830165368  4.648347604
##  [316]  0.757039697  2.375699488  1.345269432  2.103169849  1.948426912
##  [321]  3.312459299  2.193203334  0.502662878  1.104706973  2.780055050
##  [326]  2.440507181  2.077012769  1.828909261  2.495555844  5.315159989
##  [331]  5.243115424  2.896827334 -0.640883679 -0.660510575  2.046897615
##  [336]  1.000484504 -0.197312447  3.188391906  1.097375431 -0.631916274
##  [341]  1.580797667  1.648138137  3.399124313  2.032317133  3.214116433
##  [346]  3.609435707  0.948793608  0.850601466  2.290336309  1.389706823
##  [351]  0.290348833  3.189125783 -0.439321587  1.473674583  0.397639583
##  [356]  4.747402543  2.242470590  1.172242726  3.535848452  3.828940985
##  [361]  0.508596019 -0.094837135  3.664494800  3.819669491  0.323803216
##  [366]  1.319215132  1.987543827  3.939257093  5.599033985  1.899798859
##  [371]  2.662903653  3.363077785 -1.334613938  3.289719553  3.514781557
##  [376]  2.900077770 -0.809464438  1.891559241 -0.074180713 -0.815137238
##  [381]  3.815719988  0.472661203  1.499770206  0.317095729  2.066209694
##  [386]  3.664011450  3.289230561  1.675533798  1.906366964  1.433449431
##  [391]  1.373297428 -2.737186594  4.297647953  1.690792968  1.558496681
##  [396]  1.254080983  1.063723046  5.095122075  2.441981351  3.528783968
##  [401]  3.227477053  0.878366691  0.294609217  3.335428553  0.538837607
##  [406]  0.531207230  1.176006258  1.624407399  3.352108272 -0.429982848
##  [411]  2.692089763  4.351287716  1.425975505  3.033247288  1.623905742
##  [416]  5.355512985  3.366973414  2.780903574  3.440823302  3.357772506
##  [421]  2.982402417  3.589168544  2.155017216  3.520358488  2.061384653
##  [426]  4.225251909  2.619849908  2.333349985  0.875614684  2.456190154
##  [431]  3.521291248  2.628825242  1.458096535  2.913788188  2.057467690
##  [436]  2.132993858 -0.527941134  2.931007326  3.196774640  3.818893978
##  [441]  0.127883557  1.527341655  0.330040845  2.246771284  5.835631544
##  [446] -0.866824019  2.134336398  2.793613058 -0.101820772  3.669375232
##  [451]  2.763162383  0.782371915  1.212541029  1.405966296 -1.095454815
##  [456] -0.916746150  4.314794532  0.591164280  1.188760992  1.084559155
##  [461]  1.953537576 -0.393023571  1.298448643  2.149735536 -0.267293997
##  [466]  0.830156961  3.453825534  1.099889452  2.866695286  5.584749967
##  [471]  0.529543241  2.736266167  2.931740256  1.814093110  1.673411981
##  [476]  1.347193536  1.802790436  2.747237516  2.418778541 -0.877612385
##  [481]  1.985254595  5.019336141  2.653658313  4.884445885  2.332781672
##  [486]  0.594390651  0.501686255 -0.231671186 -1.986277055  4.024613450
##  [491]  1.573601350  0.651157369  2.047860588  0.142270753 -0.139873361
##  [496]  2.823677112  1.138491885  0.289392216  0.775014716  5.698073116
##  [501]  0.930461112  6.589259436  3.843960944  0.742017437  2.123173896
##  [506]  4.018953339  2.954721901  3.106043333  1.562136374  1.217787388
##  [511]  3.158085275  5.181076719  1.766608193  2.661716248  1.007707959
##  [516]  0.498994387  1.512275769  1.181784437  3.526077180  3.790482631
##  [521]  0.599416584  1.005679262 -0.360675503  1.204795190  2.161189310
##  [526]  1.527269571  2.596454649 -0.003751898  2.665686010  3.694977115
##  [531] -1.127741768 -0.561399179  3.124716950  1.646317501  1.439797817
##  [536]  4.997275613  4.165253572  3.325053118 -0.657464357  1.776122761
##  [541]  0.957351023  0.297446854 -0.073851962  3.327496502  3.400899691
##  [546]  0.576574508  5.648287034  2.792164927  1.221679742  1.786215426
##  [551]  0.001155235  1.402729913  1.425230360  1.689302995  0.190006639
##  [556]  3.125430448  3.269761854  0.054724885  5.195829747  0.720543137
##  [561] -0.440496260  0.704644602  2.427867194  0.944259656  2.717791028
##  [566]  2.183330735  2.566548860  1.643803227  2.236562610  0.826942956
##  [571]  0.380575503  3.130325367  0.494507475  3.895391354  3.233633274
##  [576]  4.274910789  1.040078139  2.984171654  5.381407613  3.920636718
##  [581]  4.971094869 -2.230414313  3.165741313  4.340298477  1.240959847
##  [586]  1.045209727  2.429720811  1.141471558  0.825186441  1.166040658
##  [591]  0.954861613  5.169790396  2.151442821  3.788255318  2.836437284
##  [596]  4.010013263  3.111149366  0.545529976  2.091400443  3.935974761
##  [601]  3.119433683  0.306883551  3.481353858  3.038387847  2.112096621
##  [606]  3.896202513  1.776379089  0.315934602  4.120567654  4.490119868
##  [611] -1.294396334  0.849109417  0.923649502  0.142266925  3.335264379
##  [616]  0.851564459  3.186532218  6.439571580  1.534550408  2.896738751
##  [621]  2.282886603  0.562740051  1.325507699  1.789796156  1.191597154
##  [626]  2.329273257  3.935992480  0.557337058  1.358121967  1.832015152
##  [631]  2.931389049  2.606872137 -1.854233081  5.434942576  2.145889629
##  [636]  1.627308604 -0.470060682  5.197782433  2.378083462  3.896406580
##  [641]  1.207240429  3.574100251  0.093131351  2.761264178  3.078455532
##  [646]  5.284031698  2.228770876 -0.897082287 -0.243969818  1.936383443
##  [651]  3.202569498  1.632067290  2.038398445  5.732535953  1.342616559
##  [656]  4.368475869  0.989647070  0.474548814  3.503228517  4.073602960
##  [661]  0.914260060  2.653981031  3.836096880  3.593807953  2.283158474
##  [666] -1.342183480  2.379871300  4.519458087  4.487392676  1.317129339
##  [671]  0.494971376  2.015093774  3.386450514  2.177097727  0.638449450
##  [676]  2.733173245  3.973633340  0.476230519  4.526298166  1.872793804
##  [681]  1.476511961  1.186604939  1.694703951  2.067465050  1.123507680
##  [686]  2.415944446  2.810782118  2.451254923  3.015394423  2.631979647
##  [691]  1.599082325  0.509620670  0.620786953  3.679150745  1.177209215
##  [696]  3.952682232  2.703978798  2.449175951  3.676331558  2.424733325
##  [701]  1.684434198  3.790241141  2.973609621  2.197102063  1.054208153
##  [706]  5.051670967  4.147209799  0.467571338  2.335005808  1.727176902
##  [711]  4.274012848  0.153691781  3.487915795  3.807009504  4.065186730
##  [716] -0.490082352  0.854911430  2.952300066  0.660336624  0.590722486
##  [721]  0.542281239  1.588240077  3.094415247  4.530558805  2.877234677
##  [726]  2.775129296  1.332918421  1.295891151  0.658936664  3.557316136
##  [731]  2.953758375  3.587616718  2.917102647  0.282205408  1.520552908
##  [736]  1.705551576  0.188024740  4.272267868  3.789428796  3.034328380
##  [741] -0.609195370  2.262581861  0.969172906  0.648976153 -0.552929325
##  [746]  0.874250772  3.443214940  3.192124659  4.033086691  2.417005476
##  [751]  0.543096288  2.554326959  0.093826430  2.494580081  0.967774303
##  [756]  4.222977338  3.172260334  1.870452251  4.247560220  0.632813624
##  [761]  1.599360191  1.881097616  1.836909212  2.699228742 -0.325762839
##  [766]  1.712352835  3.508218454  2.632917192  3.043776261  0.417947109
##  [771]  2.973434925  0.065752032  0.173735906  0.427489675  1.380565778
##  [776]  1.473830897  3.788770865  3.237064738  3.303230628  1.614720778
##  [781]  2.641875380  5.426132593  5.069770215  3.433260146  1.176965611
##  [786]  3.859017372  2.200684071  4.110453986  2.820314458  2.583253726
##  [791]  2.667473946  1.714665180  5.800689246  0.686485688  1.880892078
##  [796]  1.597501136  3.107720092  2.665682277  1.335810129  4.139165799
##  [801]  3.124675207  2.203388627  4.061585289  2.341368289  1.405200592
##  [806]  4.306956764  4.282408373  0.374496524  0.774229793  3.984346483
##  [811]  1.763009065  3.522406258  0.958052783 -1.209045534  4.862665248
##  [816]  0.409274788  0.509516708  2.376490508  1.583758741  1.758850826
##  [821]  4.304448468  1.961622742  4.887711687  2.011210847  2.757012842
##  [826]  4.292831788  1.474779115  4.394515534  2.756235322  1.181848191
##  [831]  1.473301947  1.244617192  2.644442143  3.939951631  1.793498700
##  [836]  1.115690208  2.150458288  2.059088731  0.815699593  0.391310709
##  [841]  1.286008721  2.740202972  2.660743861  1.572108218  2.287627739
##  [846]  2.252387249 -0.800164266 -1.615807786  3.792868373  1.477973934
##  [851]  4.088097850  2.417788999  2.578176079  2.629410559  2.554084089
##  [856]  1.408371776  5.878675624  3.959970347  3.445269939  3.228712536
##  [861]  2.054425944  0.445800521  2.746143799  1.020912249  4.004944305
##  [866]  0.529033472  1.252510084  3.263944135  2.827252633  0.362208879
##  [871]  3.122630637  1.601938365  1.950215443  2.479779546  0.087216360
##  [876]  2.980726667  5.367004739  0.866273486  4.135194477 -0.813390961
##  [881] -0.700427156  1.507786736  0.787224323  2.385135864  3.030655175
##  [886] -0.213000765 -0.146655246  1.163939414  1.735227451  4.602976759
##  [891]  2.126202069  5.872736504  0.768866018  3.231637885  1.468557093
##  [896]  1.529973110  2.516334100  2.801502751  0.327953521  0.039051519
##  [901]  2.868867172  0.985155796  3.774500059  1.215810262  1.698281800
##  [906]  3.964349733 -0.054417207  3.348940226  1.926255097  2.162386015
##  [911]  2.037422601  2.961928750  1.895281736  1.788834623 -1.074489335
##  [916]  4.106662016 -0.581959456  1.693407885  0.702245429  0.471737019
##  [921]  2.558177193  1.139074765  1.280951439  1.684073724  2.040634669
##  [926]  2.800091833  0.853566593  2.634939334  3.063850859  2.790501378
##  [931]  2.698340135  1.557100590  0.175329998 -0.640794421  1.323461413
##  [936] -0.402467295  2.695649088  1.043967391  3.957832778  2.232027702
##  [941]  3.150134763 -0.304199211  1.568494753 -0.478716549 -0.395009765
##  [946]  1.270775266  5.159589427  3.214741346  4.556094618  0.020212975
##  [951]  3.571609269  2.770602336  0.631087836  0.640376564  2.179366268
##  [956]  1.966023569  2.083302498  3.811775350  2.238863108  0.213606467
##  [961]  3.325063343  0.070474408  0.904915160  3.223563391  1.278037410
##  [966]  0.276921244  3.059745904  5.211495015  1.112504239  1.819050575
##  [971]  4.087344951 -0.105104001  1.853126556  1.770170410  3.260635029
##  [976]  1.576985482  0.388993611  2.752402577  2.474787129  2.201684582
##  [981]  1.311175467  2.355139539  2.568172776  1.729867826  1.149241254
##  [986]  1.746465084  1.757472683  3.680398133  2.615331988  2.576975284
##  [991]  0.698639688  1.143123546  0.500006806  0.940692600  1.081036300
##  [996]  3.524581857  4.606586711  0.217375872  1.509369138  1.975269989
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -2.737   1.080   2.056   2.073   3.123   6.589
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve) 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.4761091
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.539426
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.4761091
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
##  [145] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [277]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [337] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [745]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -1.1041921 -0.5169924 -1.1441611 -1.1592255 -0.8151088 -0.5381828
##  [7] -0.8303054 -2.1903155 -2.4078515 -0.6902870 -0.9283655 -0.5193664
## [13] -0.9888542 -0.4891946 -1.5945668 -1.8696174 -0.6284500 -0.6408837
## [19] -0.6605106 -0.6319163 -1.3346139 -0.8094644 -0.8151372 -2.7371866
## [25] -0.5279411 -0.8668240 -1.0954548 -0.9167461 -0.8776124 -1.9862771
## [31] -1.1277418 -0.5613992 -0.6574644 -2.2304143 -1.2943963 -1.8542331
## [37] -0.8970823 -1.3421835 -0.4900824 -0.6091954 -0.5529293 -1.2090455
## [43] -0.8001643 -1.6158078 -0.8133910 -0.7004272 -1.0744893 -0.5819595
## [49] -0.6407944 -0.4787165
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.539426
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [637] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [949]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997]  TRUE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.073224 4.734670 5.055126 5.225918 6.151701 5.058692 5.396448 5.904376
##  [9] 5.552893 4.697094 5.106800 4.648348 5.315160 5.243115 4.747403 5.599034
## [17] 5.095122 5.355513 5.835632 5.584750 5.019336 4.884446 5.698073 6.589259
## [25] 5.181077 4.997276 5.648287 5.195830 5.381408 4.971095 5.169790 6.439572
## [33] 5.434943 5.197782 5.284032 5.732536 5.051671 5.426133 5.069770 5.800689
## [41] 4.862665 4.887712 5.878676 5.367005 4.602977 5.872737 5.159589 4.556095
## [49] 5.211495 4.606587