# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5)
# 1 thousand values
length(data)
## [1] 1000
# count number of elements
data[1:20]
##  [1]  3.2009123  3.0237494  4.3572042  3.3387089  3.1155914  1.7061506
##  [7]  2.6476068 -1.1340420  2.4510877  4.2088753  2.9262838  2.1308570
## [13]  3.0479925  0.5835284  4.2065059  1.4385558  5.2861530  4.3048954
## [19]  3.0799716  2.5141564
data[1:300]
##   [1]  3.200912340  3.023749437  4.357204190  3.338708852  3.115591373
##   [6]  1.706150558  2.647606834 -1.134041983  2.451087703  4.208875315
##  [11]  2.926283841  2.130856999  3.047992510  0.583528363  4.206505857
##  [16]  1.438555842  5.286152954  4.304895354  3.079971566  2.514156408
##  [21]  1.956792637  2.451811728  0.921247833 -0.041689227  2.652164424
##  [26] -0.319349710 -1.348668751  2.462035694  2.875986463 -0.003035858
##  [31]  5.350219975  2.298825830  2.416344211  2.725687425  2.819707146
##  [36]  0.157476289  3.680611832  2.192310500  2.628071344  1.616865904
##  [41]  4.296041237  2.021387393  2.504442233  2.588449355  0.820124538
##  [46]  1.680649894 -1.332351023  1.249603318  0.162366654  3.049400678
##  [51]  2.502014733  1.737405886  1.494253537  2.777584892  1.770172353
##  [56]  1.971742203  3.605225684  3.344697806  1.348794425  2.967654619
##  [61]  4.930631981  2.734265361  2.753443681  5.767394240  1.428817936
##  [66]  0.567573576  1.492280672  0.913866204  2.758310326  1.569527462
##  [71]  4.020333971  2.879690454  0.017946866  2.638575118  2.399652526
##  [76]  2.859495845  0.906938634  3.062216590 -0.398040252  0.885807787
##  [81]  1.695942559  0.639639663  1.753941982  1.550897336  0.523040410
##  [86]  1.905560779  1.319466038  1.805610053 -0.032781357  1.687896421
##  [91]  0.822513583  0.347464402  1.951926756  0.453492209  1.895828695
##  [96]  1.966192090  1.254620246 -0.524699666  1.074278636  3.284242779
## [101]  4.106652068  1.496521766  3.352739824  1.642645292  3.780822570
## [106]  1.914201502  2.170834664  0.720719371  1.881731125 -1.534671038
## [111]  1.930724611  0.861359677  1.097133365  0.350493307  1.981715063
## [116]  2.709411814  0.011170040  3.927884711  4.515368469  0.041524719
## [121]  1.838554041  2.512457742  4.554551246  0.927907449  3.723610182
## [126]  1.573634827  1.702721840  3.520186286  2.430032674  1.071294542
## [131]  1.736239567  2.739036080  1.011705106  3.223911463  2.734131973
## [136]  1.159233033  2.310926852  0.031821095 -1.401981414  1.962910888
## [141]  2.046145493  0.980449233  1.396985861  2.580970947  3.081924169
## [146]  5.491114410 -0.244578687  1.305629744  1.842288708  2.168814020
## [151]  2.165353095  2.034979902  3.666440910  1.391542262  0.871042599
## [156]  3.872756417  2.172619776 -1.036336830  0.918146427  1.134246108
## [161] -0.029583231  1.872629933  3.642381995  3.442954678  2.975226030
## [166]  2.380379399  1.688684005  2.873751683  1.038484112  4.577721602
## [171]  2.046911925  1.692878091  4.198268593  6.090775348  0.073699494
## [176]  2.951062770  2.806822855  0.523208458  3.684836895  2.935265872
## [181]  2.969338827  1.409608427  2.719926905  2.386517004  1.579074589
## [186]  1.944528941  4.615199070  2.117004716  2.968865773  2.161570119
## [191]  0.415658639  0.513956163  2.595355001  3.581718230  1.960681541
## [196]  3.222590879  1.092737459  2.541743384  3.682000771  1.663142408
## [201]  0.974859061  5.242690257  5.812134943  4.049182075  2.284427034
## [206]  2.959889959  2.437594006  1.040405817  1.974692430  1.080906558
## [211]  1.627214047  2.990977471  1.597968431  1.385803897  1.615126119
## [216]  1.349142313  3.575306251  1.983484551  0.929564644  0.147183515
## [221]  2.574887050  0.035407393  0.545427166  1.578485488  3.726441583
## [226]  4.244131966  1.099300411 -0.202668617  2.063195189  1.723968408
## [231]  1.894243941 -0.052676052  2.693664957  3.015941102  2.749815415
## [236]  0.938916290  3.084851977  2.381312001  0.746764348  1.322618106
## [241]  2.501322050  0.693079123  0.015875095 -0.480081255  4.521827448
## [246]  2.499076274  3.893033523  1.852846799  2.467751874  1.912695632
## [251]  2.733639470 -0.430692748 -0.264676822  2.428597864  1.155047503
## [256]  1.688226760  3.877298191  1.797552386  1.955188374  3.025035141
## [261]  2.746515735  0.220081043  2.643664391  0.820547263  0.355681409
## [266]  0.750658578  3.087308746  0.373654952  2.115043353  2.875145358
## [271]  2.350885259  0.947069383 -0.177433537  2.840498441  1.327457727
## [276]  3.926156967  1.490733756  0.577680916  0.032915558  3.911707048
## [281]  2.152899983  0.218129097  3.995818690  4.521731145  4.335798258
## [286]  2.758709449  4.791665657  1.103875136  2.063913441  1.038278928
## [291]  0.502098725  2.891736159  2.432925159  0.146172384  1.360591409
## [296]  3.782523649  2.692437300  0.629280280  1.106927273  1.067133246
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

3
## [1] 3
hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
     
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.18700228 -2.09513133 -2.00326039 -1.91138944 -1.81951850 -1.72764756
##   [7] -1.63577661 -1.54390567 -1.45203472 -1.36016378 -1.26829283 -1.17642189
##  [13] -1.08455094 -0.99268000 -0.90080905 -0.80893811 -0.71706716 -0.62519622
##  [19] -0.53332527 -0.44145433 -0.34958338 -0.25771244 -0.16584149 -0.07397055
##  [25]  0.01790039  0.10977134  0.20164228  0.29351323  0.38538417  0.47725512
##  [31]  0.56912606  0.66099701  0.75286795  0.84473890  0.93660984  1.02848079
##  [37]  1.12035173  1.21222268  1.30409362  1.39596457  1.48783551  1.57970646
##  [43]  1.67157740  1.76344835  1.85531929  1.94719023  2.03906118  2.13093212
##  [49]  2.22280307  2.31467401  2.40654496  2.49841590  2.59028685  2.68215779
##  [55]  2.77402874  2.86589968  2.95777063  3.04964157  3.14151252  3.23338346
##  [61]  3.32525441  3.41712535  3.50899630  3.60086724  3.69273818  3.78460913
##  [67]  3.87648007  3.96835102  4.06022196  4.15209291  4.24396385  4.33583480
##  [73]  4.42770574  4.51957669  4.61144763  4.70331858  4.79518952  4.88706047
##  [79]  4.97893141  5.07080236  5.16267330  5.25454425  5.34641519  5.43828614
##  [85]  5.53015708  5.62202802  5.71389897  5.80576991  5.89764086  5.98951180
##  [91]  6.08138275  6.17325369  6.26512464  6.35699558  6.44886653  6.54073747
##  [97]  6.63260842  6.72447936  6.81635031  6.90822125
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)

# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)

abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  3.200912340  3.023749437  4.357204190  3.338708852  3.115591373
##    [6]  1.706150558  2.647606834 -1.134041983  2.451087703  4.208875315
##   [11]  2.926283841  2.130856999  3.047992510  0.583528363  4.206505857
##   [16]  1.438555842  5.286152954  4.304895354  3.079971566  2.514156408
##   [21]  1.956792637  2.451811728  0.921247833 -0.041689227  2.652164424
##   [26] -0.319349710 -1.348668751  2.462035694  2.875986463 -0.003035858
##   [31]  5.350219975  2.298825830  2.416344211  2.725687425  2.819707146
##   [36]  0.157476289  3.680611832  2.192310500  2.628071344  1.616865904
##   [41]  4.296041237  2.021387393  2.504442233  2.588449355  0.820124538
##   [46]  1.680649894 -1.332351023  1.249603318  0.162366654  3.049400678
##   [51]  2.502014733  1.737405886  1.494253537  2.777584892  1.770172353
##   [56]  1.971742203  3.605225684  3.344697806  1.348794425  2.967654619
##   [61]  4.930631981  2.734265361  2.753443681  5.767394240  1.428817936
##   [66]  0.567573576  1.492280672  0.913866204  2.758310326  1.569527462
##   [71]  4.020333971  2.879690454  0.017946866  2.638575118  2.399652526
##   [76]  2.859495845  0.906938634  3.062216590 -0.398040252  0.885807787
##   [81]  1.695942559  0.639639663  1.753941982  1.550897336  0.523040410
##   [86]  1.905560779  1.319466038  1.805610053 -0.032781357  1.687896421
##   [91]  0.822513583  0.347464402  1.951926756  0.453492209  1.895828695
##   [96]  1.966192090  1.254620246 -0.524699666  1.074278636  3.284242779
##  [101]  4.106652068  1.496521766  3.352739824  1.642645292  3.780822570
##  [106]  1.914201502  2.170834664  0.720719371  1.881731125 -1.534671038
##  [111]  1.930724611  0.861359677  1.097133365  0.350493307  1.981715063
##  [116]  2.709411814  0.011170040  3.927884711  4.515368469  0.041524719
##  [121]  1.838554041  2.512457742  4.554551246  0.927907449  3.723610182
##  [126]  1.573634827  1.702721840  3.520186286  2.430032674  1.071294542
##  [131]  1.736239567  2.739036080  1.011705106  3.223911463  2.734131973
##  [136]  1.159233033  2.310926852  0.031821095 -1.401981414  1.962910888
##  [141]  2.046145493  0.980449233  1.396985861  2.580970947  3.081924169
##  [146]  5.491114410 -0.244578687  1.305629744  1.842288708  2.168814020
##  [151]  2.165353095  2.034979902  3.666440910  1.391542262  0.871042599
##  [156]  3.872756417  2.172619776 -1.036336830  0.918146427  1.134246108
##  [161] -0.029583231  1.872629933  3.642381995  3.442954678  2.975226030
##  [166]  2.380379399  1.688684005  2.873751683  1.038484112  4.577721602
##  [171]  2.046911925  1.692878091  4.198268593  6.090775348  0.073699494
##  [176]  2.951062770  2.806822855  0.523208458  3.684836895  2.935265872
##  [181]  2.969338827  1.409608427  2.719926905  2.386517004  1.579074589
##  [186]  1.944528941  4.615199070  2.117004716  2.968865773  2.161570119
##  [191]  0.415658639  0.513956163  2.595355001  3.581718230  1.960681541
##  [196]  3.222590879  1.092737459  2.541743384  3.682000771  1.663142408
##  [201]  0.974859061  5.242690257  5.812134943  4.049182075  2.284427034
##  [206]  2.959889959  2.437594006  1.040405817  1.974692430  1.080906558
##  [211]  1.627214047  2.990977471  1.597968431  1.385803897  1.615126119
##  [216]  1.349142313  3.575306251  1.983484551  0.929564644  0.147183515
##  [221]  2.574887050  0.035407393  0.545427166  1.578485488  3.726441583
##  [226]  4.244131966  1.099300411 -0.202668617  2.063195189  1.723968408
##  [231]  1.894243941 -0.052676052  2.693664957  3.015941102  2.749815415
##  [236]  0.938916290  3.084851977  2.381312001  0.746764348  1.322618106
##  [241]  2.501322050  0.693079123  0.015875095 -0.480081255  4.521827448
##  [246]  2.499076274  3.893033523  1.852846799  2.467751874  1.912695632
##  [251]  2.733639470 -0.430692748 -0.264676822  2.428597864  1.155047503
##  [256]  1.688226760  3.877298191  1.797552386  1.955188374  3.025035141
##  [261]  2.746515735  0.220081043  2.643664391  0.820547263  0.355681409
##  [266]  0.750658578  3.087308746  0.373654952  2.115043353  2.875145358
##  [271]  2.350885259  0.947069383 -0.177433537  2.840498441  1.327457727
##  [276]  3.926156967  1.490733756  0.577680916  0.032915558  3.911707048
##  [281]  2.152899983  0.218129097  3.995818690  4.521731145  4.335798258
##  [286]  2.758709449  4.791665657  1.103875136  2.063913441  1.038278928
##  [291]  0.502098725  2.891736159  2.432925159  0.146172384  1.360591409
##  [296]  3.782523649  2.692437300  0.629280280  1.106927273  1.067133246
##  [301]  2.641644344  2.853224630  4.352759256  0.323468439  2.681051595
##  [306]  2.960980068  4.373533035  0.070445439  1.927387821  2.314042654
##  [311] -0.075931100  0.630691635  1.869493798  2.273592544  2.890064050
##  [316]  1.604270839  4.644778434 -0.189917103  3.398182188  2.108971326
##  [321]  1.534045964  2.660875443 -1.236065997  3.870657005  3.482147873
##  [326]  5.382311149  2.636381559  0.647472322 -0.994193546  1.752425806
##  [331]  1.900193559  1.473542518  0.695587160  1.609912537  3.003330338
##  [336]  1.142186559  0.676641801  1.332135239  0.721887035  2.617677658
##  [341]  2.057994583  4.646399733  4.870112247 -0.609280050  2.375022214
##  [346]  1.649943526  1.124449231 -0.644152150 -0.378981304  3.649792200
##  [351]  3.829956043  1.300262425  1.795258877 -0.074437264  1.327036169
##  [356]  3.178710454  0.457764321  2.544168474  1.046652139  2.398368754
##  [361]  0.287773051  2.618894334  2.680937109 -0.273903903  1.671715733
##  [366]  3.451166898  1.979783288  1.663815132  2.823003420  4.078833275
##  [371]  2.008997844  0.500335475  1.097184553  1.648139162  1.175568394
##  [376] -0.426896601  1.322810909  1.816280420  0.775065771  1.821889034
##  [381]  1.839579227  2.017385471  2.012268192  1.869466413  1.384828874
##  [386]  1.934964872  0.051301544  3.989461648 -0.071058235  2.416466958
##  [391]  4.825566096  4.977927242  4.565638545  4.812681035  4.373539045
##  [396]  4.259831576  3.842115162  1.107789452  1.807983845  0.757227300
##  [401]  2.321748322  3.403905136  1.980415102  3.156630880  1.753938126
##  [406]  4.324788454  0.522671341  2.208632573  1.373493284  1.361519833
##  [411]  2.517546354  3.054451808  3.238609274  3.110970288  3.124163008
##  [416]  2.690095038  3.437818410  1.408533715  5.198994567  0.559918101
##  [421]  5.073259148  5.282813244  3.461688003  2.771618097 -0.573265536
##  [426]  0.797975700  3.794204794  4.444557954  3.155069327  4.585469008
##  [431]  1.506952715  1.920897990  2.315602166  1.913813969  2.681793579
##  [436]  1.388190072  3.540999233  2.526404545 -0.494644471  1.451956665
##  [441]  0.462645266  1.816747648  2.334479324  0.449643055  0.611442371
##  [446]  0.069571412  0.210607263  0.517470838  2.315158217  2.460505256
##  [451]  2.008441294  1.057520580  5.284920228  1.773731215  0.846733967
##  [456] -0.646545141  0.509858816  1.066737946  1.072442874  0.242285736
##  [461]  0.374421878  2.487430800  3.262450755  1.025718053  1.664562993
##  [466] -0.522611712  2.146493801  5.513303246  2.168425287  4.907023863
##  [471]  2.376428842  0.370689274 -0.321977299  0.693619949  2.225729596
##  [476]  2.978683083 -0.059179200 -0.240011811  1.993385275  1.936475929
##  [481] -0.239278836 -0.880517369 -1.231222462  3.450211860  0.673583465
##  [486]  3.190975303  0.748029233  0.662321819  0.081332842  2.463459218
##  [491]  1.388183936  0.711859022  3.752963412  1.310903475  1.417008450
##  [496]  3.358669170  3.096279015  0.273423647  3.175193100  2.007982048
##  [501]  2.266417967  3.267328829  1.917903212  2.548453091  3.854328640
##  [506]  0.357430881 -1.064043341  0.403107579  0.904661718  3.535201296
##  [511]  2.665350952  1.275396638  1.862213983  4.788839311  2.937926131
##  [516]  0.753176880  0.959981335  3.173580718  1.136040515  4.016060219
##  [521]  1.621361683  1.522763110 -0.252542596  3.049765966  2.928921649
##  [526]  2.331573740 -0.021509172  0.259338333  4.795957505  1.100441610
##  [531]  0.994957541  2.025307415  2.303506667  2.557075156  2.190607802
##  [536] -0.104773081  2.023365558  0.409219027  4.638086437 -0.259698003
##  [541]  1.493925779  1.355471175  2.645569882  2.108960494  5.574303138
##  [546]  3.091061211  3.431298106  2.034419311  3.948643613  2.230349908
##  [551]  0.063010188  0.365269015  2.608876546  1.041897674  1.024752814
##  [556]  0.548530432  5.784065444  2.066868933  0.807988017 -1.078357198
##  [561]  1.945244064  1.897203124  2.406646535  1.140722645  3.253783374
##  [566]  2.490558496  0.523257096  1.327162224  4.110986608  0.717198688
##  [571]  1.811713036  1.975322764  3.012691737  3.751289079  2.750191295
##  [576]  1.855484612  4.148415703  3.120743781  2.769075291  2.591938857
##  [581]  2.956073069  4.767313030 -0.277574026  5.564133226  3.266651761
##  [586]  3.352243185  2.472868338  2.599177163  3.988730043  2.353800833
##  [591]  4.030417772  5.245247778  4.592020618  1.829903301  2.338137000
##  [596]  2.455122598  2.377273943  0.794579565  3.262085702  2.835449920
##  [601]  2.137970154  1.202435303  4.144414230  2.474886388  1.328973424
##  [606]  1.677279975  3.082884256  1.275164217  1.658686201  0.431371544
##  [611]  3.513997023  3.521764724  2.173831902  2.438272523  1.306589264
##  [616]  3.579436831  1.837324672  2.929404582  0.773388144  1.938217263
##  [621]  1.215867442  2.280180065  2.223572615 -0.286598514  1.955648573
##  [626]  0.598674534  3.589012347 -0.142823229  5.512350418  0.654827295
##  [631]  1.210750810  3.031380217  2.463767337  4.170258124  2.074709182
##  [636] -0.401647153  2.506536888  5.118338462  0.192237912  2.527307893
##  [641]  2.681953243  3.673425774  2.909335956  5.013210820  1.012110466
##  [646]  0.331644423 -0.711393545 -0.244600993  0.097317478  3.798835652
##  [651]  2.513050207  3.645820194  1.541628373  1.526689226  0.693801986
##  [656]  1.570371308  2.011985034  1.165057117  0.646684519  0.904034806
##  [661]  3.071575355  1.471949281  2.073541217  1.922748248  3.415952198
##  [666]  4.955167708  0.459889093 -1.983933644  1.702758577  1.327815476
##  [671]  0.897590519 -0.677853685  0.974167662  2.933641997  2.816837003
##  [676]  2.671691619  2.244453057  2.509185363  2.638437833  0.274975575
##  [681]  2.923485538  2.651025462  2.176716504  4.106265962  4.038327534
##  [686]  5.566338666  4.437898700  2.301869459  1.866217095  0.536764285
##  [691]  5.258347249  3.253913463  2.355550972  3.489517562 -1.561490604
##  [696]  2.807333714  3.910305035 -1.059028745  2.428659709  1.837440423
##  [701]  2.249456724  2.180587022  0.727053094  1.902274360 -2.187002279
##  [706] -0.502549549  1.002707589 -1.187386944  4.157368018  3.083945657
##  [711]  2.542018158  5.111198843  0.183441159 -0.902214154  4.125250104
##  [716]  0.771602884 -0.517153152  1.747044401  2.295708663  2.528364763
##  [721]  1.959344117  2.449303190  3.188578760  2.733876382  0.680621281
##  [726]  3.233496734  2.807871672 -0.205501341  0.192583032  2.490827703
##  [731]  0.671913682  0.897099329 -0.003050026  5.362519319  3.898733761
##  [736]  1.928622390  2.739287804  5.255178212  2.424485478  2.786139891
##  [741]  4.987743334  2.468202377  1.504765835  2.111973189  0.396039899
##  [746]  4.868261862  0.399464333  2.065380951  0.792635729  1.097731603
##  [751]  1.962710522  1.651911581  1.977478060  1.539039854  1.505307794
##  [756]  3.890717519  4.572518748  1.095120008  0.548654178  1.530155904
##  [761]  2.607810808  3.080416612  2.105896598  0.872933777  1.176457816
##  [766]  1.681777538  0.290476491  1.466084887 -0.323828589 -0.069320546
##  [771]  2.097882989  2.544942068  0.753494046  1.651928482  1.952913516
##  [776]  1.207327347  0.767479681  1.150329255  3.652920608  0.047664578
##  [781]  3.677556993  5.929974742  1.928839260  1.498946625  3.451607746
##  [786]  1.512357892  0.707843422  0.725612968  1.430722965  1.615089696
##  [791]  1.894869740  2.826704860  3.218885059  3.961490602  3.646580027
##  [796]  1.990947260  0.360887644 -1.273899247  0.121181417  2.382519687
##  [801]  3.571705273  2.388979218  3.836971272  0.222161756  1.261903433
##  [806]  3.504942590  3.316275867  4.124061187 -0.123254223  0.753201926
##  [811]  0.766834521  2.976967311  3.000425002  3.108369404  2.478402652
##  [816]  1.810003300 -1.382891039  3.280718791 -1.210752148  1.725419420
##  [821]  1.486566432  2.704860542  3.244806727  2.517388389 -0.397444876
##  [826]  1.536202962  3.551367576  1.296933616  1.343340679  2.523568591
##  [831]  0.536871597  1.024462483  3.846165023  1.807713759  3.083726137
##  [836]  0.748567130  1.200491310 -0.101266489  3.940775066  3.531013873
##  [841]  1.411549937  1.882377520  3.542423875  0.570985142  0.030541025
##  [846]  0.543480959  0.756888472  2.199263463  2.701405649 -0.318318675
##  [851]  1.579722030  2.311513114 -1.249772697  1.367788020  1.899511557
##  [856]  2.435477355  2.297706572  4.056858264  0.816868341  4.411071986
##  [861] -0.383695340 -1.283112645  3.573664351  3.641535538  3.023842514
##  [866]  2.402642133  3.347306568  2.145223469  1.705972623  2.445240682
##  [871]  4.458712625  3.882348962  1.219016704  0.273780699  3.400143585
##  [876]  1.617856875  2.543115020  3.096757004  0.698324811  1.890118645
##  [881]  2.740764351  1.934802081 -0.903138062  1.407626004  3.137770148
##  [886]  3.326551579  0.675445267  0.622057918  0.558996212  0.555861153
##  [891]  1.685658675  3.728164816  4.378440406  3.119368211  0.050773306
##  [896]  2.582544662  1.834591137  6.666608531  2.519242667  0.741279780
##  [901]  1.095251062  2.753873931  2.134399341 -0.163503004  1.623965589
##  [906]  1.684158895  3.054872711 -0.505169782  3.790175219  1.768423670
##  [911]  1.467616642  0.900418017  2.270457999  3.450896189  3.501867825
##  [916] -0.193195433  2.769695687  2.824955522  0.790361680  1.948552978
##  [921]  2.965141618  0.129939567  3.420382125  1.062012529  1.569331994
##  [926]  2.109073852  0.150336628  1.780496710 -1.869723541  3.162944137
##  [931] -1.172170089  1.109011051  3.806379155  3.308853089  2.293321522
##  [936]  1.584413996  1.095754025 -0.325424610  6.403524757  6.908221251
##  [941]  0.775717280  2.767021161  2.426943768  1.742089535  1.884646779
##  [946]  2.554213886  2.101808093 -0.539798545  1.832794293  1.362217419
##  [951]  0.975060837  1.349304952  2.124645271  2.229501114  0.577022517
##  [956]  1.947253955  5.856284285  3.710218665  0.524588717 -1.795161656
##  [961]  2.483274814  2.422781096  1.756190605  1.538808773  0.736956529
##  [966]  1.689096140  2.339355054 -1.081854972 -0.722758194  2.551687964
##  [971]  0.037852622  1.778281210  1.587932064  1.253715014  0.202768077
##  [976]  2.211488221  2.803680959  1.595050754  3.136303706  2.697091360
##  [981]  3.130894248  1.183800216  2.050985500  2.653369684  2.191857384
##  [986]  2.344701052  2.315189440  2.101241617  2.406530548  0.423603345
##  [991]  0.118105084  4.599540893  2.023418436  2.648271619  4.047995329
##  [996]  0.198412795  0.514825755  3.339118308  0.883497046  1.755385607
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.1870  0.9706  1.9690  2.0025  2.9412  6.9082
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright",
       # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.3281024
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data

abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data

quantile(data,prob = 0.95)
##      95% 
## 4.578109
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.3281024
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [325] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [349]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [697] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
##  [709] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE])
## [1] 50
# there are 50 of them

# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -1.1340420 -1.3486688 -1.3323510 -0.3980403 -0.5246997 -1.5346710
##  [7] -1.4019814 -1.0363368 -0.4800813 -0.4306927 -1.2360660 -0.9941935
## [13] -0.6092800 -0.6441521 -0.3789813 -0.4268966 -0.5732655 -0.4946445
## [19] -0.6465451 -0.5226117 -0.8805174 -1.2312225 -1.0640433 -1.0783572
## [25] -0.4016472 -0.7113935 -1.9839336 -0.6778537 -1.5614906 -1.0590287
## [31] -2.1870023 -0.5025495 -1.1873869 -0.9022142 -0.5171532 -1.2738992
## [37] -1.3828910 -1.2107521 -0.3974449 -1.2497727 -0.3836953 -1.2831126
## [43] -0.9031381 -0.5051698 -1.8697235 -1.1721701 -0.5397985 -1.7951617
## [49] -1.0818550 -0.7227582
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.578109
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [421]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [469] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [541] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [745] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE])
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.286153 5.350220 4.930632 5.767394 5.491114 6.090775 4.615199 5.242690
##  [9] 5.812135 4.791666 4.644778 5.382311 4.646400 4.870112 4.825566 4.977927
## [17] 4.812681 5.198995 5.073259 5.282813 4.585469 5.284920 5.513303 4.907024
## [25] 4.788839 4.795958 4.638086 5.574303 5.784065 4.767313 5.564133 5.245248
## [33] 4.592021 5.512350 5.118338 5.013211 4.955168 5.566339 5.258347 5.111199
## [41] 5.362519 5.255178 4.987743 4.868262 5.929975 6.666609 6.403525 6.908221
## [49] 5.856284 4.599541