Reperformance of Textbook Exercises

We begin by re-performing the text mining and sentiment analysis from Chapter 2 of Silge and Robinson’s “Text Mining with R” (https://www.tidytextmining.com/). I’ve directly leveraged the code and snippets of explanatory text from their book.

In Part 2, I’ll complete the assignment by extending the analysis to another corpus.

Set-up

library(tidyverse)
library(tidytext)
library(textdata)
library(janeaustenr)
library(wordcloud)
library(reshape2)
library(lexicon)
library(httr)

The function get_sentiments() allows us to get specific sentiment lexicons with the appropriate measures for each one.

afinn <- get_sentiments('afinn')
bing <- get_sentiments('bing')
nrc <- get_sentiments('nrc')

Sentiment analysis with inner join

Let’s also set up some other columns to keep track of which line and chapter of the book each word comes from; we use group_by and mutate to construct those columns.

tidy_books <- austen_books() %>%
  group_by(book) %>%
  mutate(
    linenumber = row_number(),
    chapter = cumsum(str_detect(text, 
                                regex("^chapter [\\divxlc]", 
                                      ignore_case = TRUE)))) %>%
  ungroup() %>%
  unnest_tokens(word, text)

What are the most common joy words in Emma? Let’s use count() from dplyr.

nrc_joy <- nrc %>% 
  filter(sentiment == "joy")

tidy_books %>%
  filter(book == "Emma") %>%
  inner_join(nrc_joy) %>%
  count(word, sort = TRUE) %>%
  head(1)
## Joining with `by = join_by(word)`
## # A tibble: 1 × 2
##   word      n
##   <chr> <int>
## 1 good    359

Next, we count up how many positive and negative words there are in defined sections of each book. We define an index here to keep track of where we are in the narrative; this index (using integer division) counts up sections of 80 lines of text.

jane_austen_sentiment <- tidy_books %>%
  inner_join(bing) %>%
  count(book, index = linenumber %/% 80, sentiment) %>%
  pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>% 
  mutate(sentiment = positive - negative)
## Joining with `by = join_by(word)`
## Warning in inner_join(., bing): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 435434 of `x` matches multiple rows in `y`.
## ℹ Row 5051 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
##   "many-to-many"` to silence this warning.

Now we can plot these sentiment scores across the plot trajectory of each novel. Notice that we are plotting against the index on the x-axis that keeps track of narrative time in sections of text.

library(ggplot2)

ggplot(jane_austen_sentiment, aes(index, sentiment, fill = book)) +
  geom_col(show.legend = FALSE) +
  facet_wrap(~book, ncol = 2, scales = "free_x")
Sentiment through the narratives of Jane Austen's novels

Sentiment through the narratives of Jane Austen’s novels

Comparing the three sentiment dictionaries

First, let’s use filter() to choose only the words from the one novel we are interested in.

pride_prejudice <- tidy_books %>% 
  filter(book == "Pride & Prejudice")

pride_prejudice %>% head(10)
## # A tibble: 10 × 4
##    book              linenumber chapter word     
##    <fct>                  <int>   <int> <chr>    
##  1 Pride & Prejudice          1       0 pride    
##  2 Pride & Prejudice          1       0 and      
##  3 Pride & Prejudice          1       0 prejudice
##  4 Pride & Prejudice          3       0 by       
##  5 Pride & Prejudice          3       0 jane     
##  6 Pride & Prejudice          3       0 austen   
##  7 Pride & Prejudice          7       1 chapter  
##  8 Pride & Prejudice          7       1 1        
##  9 Pride & Prejudice         10       1 it       
## 10 Pride & Prejudice         10       1 is

Now, we can use inner_join() to calculate the sentiment in different ways.

pride_afinn <- pride_prejudice %>% 
  inner_join(afinn) %>% 
  group_by(index = linenumber %/% 80) %>% 
  summarise(sentiment = sum(value)) %>% 
  mutate(method = "AFINN")
## Joining with `by = join_by(word)`
pride_bing_and_nrc <- bind_rows(
  pride_prejudice %>% 
    inner_join(bing) %>%
    mutate(method = "Bing et al."),
  pride_prejudice %>% 
    inner_join(nrc %>% 
                 filter(sentiment %in% c("positive", 
                                         "negative"))
    ) %>%
    mutate(method = "NRC")) %>%
  count(method, index = linenumber %/% 80, sentiment) %>%
  pivot_wider(names_from = sentiment,
              values_from = n,
              values_fill = 0) %>% 
  mutate(sentiment = positive - negative)
## Joining with `by = join_by(word)`
## Joining with `by = join_by(word)`
## Warning in inner_join(., nrc %>% filter(sentiment %in% c("positive", "negative"))): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 215 of `x` matches multiple rows in `y`.
## ℹ Row 5178 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
##   "many-to-many"` to silence this warning.

Comparing three sentiment lexicons using Pride and Prejudice

bind_rows(pride_afinn, 
          pride_bing_and_nrc) %>%
  ggplot(aes(index, sentiment, fill = method)) +
  geom_col(show.legend = FALSE) +
  facet_wrap(~method, ncol = 1, scales = "free_y")
(ref:comparecap)

(ref:comparecap)

Let’s look briefly at how many positive and negative words are in these lexicons.

nrc %>% 
  filter(sentiment %in% c("positive", "negative")) %>% 
  count(sentiment)
## # A tibble: 2 × 2
##   sentiment     n
##   <chr>     <int>
## 1 negative   3316
## 2 positive   2308
bing %>% 
  count(sentiment)
## # A tibble: 2 × 2
##   sentiment     n
##   <chr>     <int>
## 1 negative   4781
## 2 positive   2005

Both lexicons have more negative than positive words, but the ratio of negative to positive words is higher in the Bing lexicon than the NRC lexicon. This will contribute to the effect we see in the plot above, as will any systematic difference in word matches, e.g. if the negative words in the NRC lexicon do not match the words that Jane Austen uses very well. Whatever the source of these differences, we see similar relative trajectories across the narrative arc, with similar changes in slope, but marked differences in absolute sentiment from lexicon to lexicon. This is all important context to keep in mind when choosing a sentiment lexicon for analysis.

Most common positive and negative words

By implementing count() here with arguments of both word and sentiment, we find out how much each word contributed to each sentiment.

bing_word_counts <- tidy_books %>%
  inner_join(get_sentiments("bing")) %>%
  count(word, sentiment, sort = TRUE) %>%
  ungroup()
## Joining with `by = join_by(word)`
## Warning in inner_join(., get_sentiments("bing")): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 435434 of `x` matches multiple rows in `y`.
## ℹ Row 5051 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
##   "many-to-many"` to silence this warning.
bing_word_counts %>% head(10)
## # A tibble: 10 × 3
##    word     sentiment     n
##    <chr>    <chr>     <int>
##  1 miss     negative   1855
##  2 well     positive   1523
##  3 good     positive   1380
##  4 great    positive    981
##  5 like     positive    725
##  6 better   positive    639
##  7 enough   positive    613
##  8 happy    positive    534
##  9 love     positive    495
## 10 pleasure positive    462

This can be shown visually, and we can pipe straight into ggplot2, if we like, because of the way we are consistently using tools built for handling tidy data frames.

bing_word_counts %>%
  group_by(sentiment) %>%
  slice_max(n, n = 10) %>% 
  ungroup() %>%
  mutate(word = reorder(word, n)) %>%
  ggplot(aes(n, word, fill = sentiment)) +
  geom_col(show.legend = FALSE) +
  facet_wrap(~sentiment, scales = "free_y") +
  labs(x = "Contribution to sentiment",
       y = NULL)
Words that contribute to positive and negative sentiment in Jane Austen's novels

Words that contribute to positive and negative sentiment in Jane Austen’s novels

If it were appropriate for our purposes, we could easily add “miss” to a custom stop-words list using bind_rows(). We could implement that with a strategy such as this.

custom_stop_words <- bind_rows(tibble(word = c("miss"),  
                                      lexicon = c("custom")), 
                               stop_words)

custom_stop_words
## # A tibble: 1,150 × 2
##    word        lexicon
##    <chr>       <chr>  
##  1 miss        custom 
##  2 a           SMART  
##  3 a's         SMART  
##  4 able        SMART  
##  5 about       SMART  
##  6 above       SMART  
##  7 according   SMART  
##  8 accordingly SMART  
##  9 across      SMART  
## 10 actually    SMART  
## # ℹ 1,140 more rows

Wordclouds

Let’s look at the most common words in Jane Austen’s works as a whole again, but this time as a wordcloud in Figure @ref(fig:firstwordcloud).

tidy_books %>%
  anti_join(stop_words) %>%
  count(word) %>%
  with(wordcloud(word, n, max.words = 100))
## Joining with `by = join_by(word)`
The most common words in Jane Austen's novels

The most common words in Jane Austen’s novels

You may need to turn the data frame into a matrix with reshape2’s acast(). Until the step where we need to send the data to comparison.cloud(), this can all be done with joins, piping, and dplyr because our data is in tidy format.

tidy_books %>%
  inner_join(get_sentiments("bing")) %>%
  count(word, sentiment, sort = TRUE) %>%
  acast(word ~ sentiment, value.var = "n", fill = 0) %>%
  comparison.cloud(colors = c("gray20", "gray80"),
                   max.words = 100)
## Joining with `by = join_by(word)`
## Warning in inner_join(., get_sentiments("bing")): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 435434 of `x` matches multiple rows in `y`.
## ℹ Row 5051 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
##   "many-to-many"` to silence this warning.
Most common positive and negative words in Jane Austen's novels

Most common positive and negative words in Jane Austen’s novels

Looking at units beyond just words

R packages included coreNLP [@R-coreNLP], cleanNLP [@R-cleanNLP], and sentimentr [@R-sentimentr] are examples of such sentiment analysis algorithms. For these, we may want to tokenize text into sentences, and it makes sense to use a new name for the output column in such a case.

p_and_p_sentences <- tibble(text = prideprejudice) %>% 
  unnest_tokens(sentence, text, token = "sentences")

Let’s look at just one.

p_and_p_sentences$sentence[2]
## [1] "by jane austen"

The sentence tokenizing does seem to have a bit of trouble with UTF-8 encoded text. Use unnest_tokens() is to split into tokens using a regex pattern.

austen_chapters <- austen_books() %>%
  group_by(book) %>%
  unnest_tokens(chapter, text, token = "regex", 
                pattern = "Chapter|CHAPTER [\\dIVXLC]") %>%
  ungroup()

austen_chapters %>% 
  group_by(book) %>% 
  summarise(chapters = n())
## # A tibble: 6 × 2
##   book                chapters
##   <fct>                  <int>
## 1 Sense & Sensibility       51
## 2 Pride & Prejudice         62
## 3 Mansfield Park            49
## 4 Emma                      56
## 5 Northanger Abbey          32
## 6 Persuasion                25

First, let’s get the list of negative words from the Bing lexicon. Second, let’s make a data frame of how many words are in each chapter so we can normalize for the length of chapters. Then, let’s find the number of negative words in each chapter and divide by the total words in each chapter. For each book, which chapter has the highest proportion of negative words?

bingnegative <- get_sentiments("bing") %>% 
  filter(sentiment == "negative")

wordcounts <- tidy_books %>%
  group_by(book, chapter) %>%
  summarize(words = n())
## `summarise()` has grouped output by 'book'. You can override using the
## `.groups` argument.
tidy_books %>%
  semi_join(bingnegative) %>%
  group_by(book, chapter) %>%
  summarize(negativewords = n()) %>%
  left_join(wordcounts, by = c("book", "chapter")) %>%
  mutate(ratio = negativewords/words) %>%
  filter(chapter != 0) %>%
  slice_max(ratio, n = 1) %>% 
  ungroup()
## Joining with `by = join_by(word)`
## `summarise()` has grouped output by 'book'. You can override using the
## `.groups` argument.
## # A tibble: 6 × 5
##   book                chapter negativewords words  ratio
##   <fct>                 <int>         <int> <int>  <dbl>
## 1 Sense & Sensibility      43           161  3405 0.0473
## 2 Pride & Prejudice        34           111  2104 0.0528
## 3 Mansfield Park           46           173  3685 0.0469
## 4 Emma                     15           151  3340 0.0452
## 5 Northanger Abbey         21           149  2982 0.0500
## 6 Persuasion                4            62  1807 0.0343

Summary

Sentiment analysis provides a way to understand the attitudes and opinions expressed in texts. In this chapter, we explored how to approach sentiment analysis using tidy data principles; when text data is in a tidy data structure, sentiment analysis can be implemented as an inner join. We can use sentiment analysis to understand how a narrative arc changes throughout its course or what words with emotional and opinion content are important for a particular text. We will continue to develop our toolbox for applying sentiment analysis to different kinds of text in our case studies later in this book.