Atividades 2º Módulo

Leonardo Souza

2023-03-14

Análise de Cluster

1) Foram coletadas cinco amostras, três da área um e duas da área dois. Utilize a análise exploratória de Cluster para analisar as semelhanças entre as áreas.

As cinco amostra (A1=4, A2=5, A3=1, B1=2 e B2=3) apresentam o mesmo indice de similaridade. Os grupos são 1 (sp1, sp2, sp4, sp14, sp15 e sp16), 2 (sp3, sp6, sp17, sp18 e sp19), 3 (sp5,sp7, sp20, sp21 e sp22), 4 (sp8, sp9, sp10 e sp11) e 5 (sp12 e sp13).


C1<-read.table("C1.txt",header=T)
C1
##      A1 A2 A3 B1 B2
## sp1  13 12  2  3 11
## sp2   8  9  5 12 31
## sp3   0  0  2 21  2
## sp4   3 11  4  0  0
## sp5   0  0  0  1 31
## sp6   0  0 11 12  0
## sp7   0  0  3  0 21
## sp8   2  3  0  0  0
## sp9   1  0  0  0  0
## sp10  1  0  0  0  0
## sp11  1  1  0  0  0
## sp12  0  1  0  0  0
## sp13  0  1  0  0  0
## sp14  0  0  1  0  0
## sp15  0  0  1  0  0
## sp16  0  0  1  0  0
## sp17  0  0  0  1  0
## sp18  0  0  0  1  0
## sp19  0  0  0  1  0
## sp20  0  0  0  0  1
## sp21  0  0  0  0  1
## sp22  0  0  0  0  1
nrow(C1);ncol(C1)
## [1] 22
## [1] 5
names(C1); row.names(C1);str(C1)
## [1] "A1" "A2" "A3" "B1" "B2"
##  [1] "sp1"  "sp2"  "sp3"  "sp4"  "sp5"  "sp6"  "sp7"  "sp8"  "sp9"  "sp10"
## [11] "sp11" "sp12" "sp13" "sp14" "sp15" "sp16" "sp17" "sp18" "sp19" "sp20"
## [21] "sp21" "sp22"
## 'data.frame':    22 obs. of  5 variables:
##  $ A1: int  13 8 0 3 0 0 0 2 1 1 ...
##  $ A2: int  12 9 0 11 0 0 0 3 0 0 ...
##  $ A3: int  2 5 2 4 0 11 3 0 0 0 ...
##  $ B1: int  3 12 21 0 1 12 0 0 0 0 ...
##  $ B2: int  11 31 2 0 31 0 21 0 0 0 ...
library(vegan)
## Carregando pacotes exigidos: permute
## Carregando pacotes exigidos: lattice
## This is vegan 2.6-4
C1t<-log1p(C1)
C1t
##             A1        A2        A3        B1        B2
## sp1  2.6390573 2.5649494 1.0986123 1.3862944 2.4849066
## sp2  2.1972246 2.3025851 1.7917595 2.5649494 3.4657359
## sp3  0.0000000 0.0000000 1.0986123 3.0910425 1.0986123
## sp4  1.3862944 2.4849066 1.6094379 0.0000000 0.0000000
## sp5  0.0000000 0.0000000 0.0000000 0.6931472 3.4657359
## sp6  0.0000000 0.0000000 2.4849066 2.5649494 0.0000000
## sp7  0.0000000 0.0000000 1.3862944 0.0000000 3.0910425
## sp8  1.0986123 1.3862944 0.0000000 0.0000000 0.0000000
## sp9  0.6931472 0.0000000 0.0000000 0.0000000 0.0000000
## sp10 0.6931472 0.0000000 0.0000000 0.0000000 0.0000000
## sp11 0.6931472 0.6931472 0.0000000 0.0000000 0.0000000
## sp12 0.0000000 0.6931472 0.0000000 0.0000000 0.0000000
## sp13 0.0000000 0.6931472 0.0000000 0.0000000 0.0000000
## sp14 0.0000000 0.0000000 0.6931472 0.0000000 0.0000000
## sp15 0.0000000 0.0000000 0.6931472 0.0000000 0.0000000
## sp16 0.0000000 0.0000000 0.6931472 0.0000000 0.0000000
## sp17 0.0000000 0.0000000 0.0000000 0.6931472 0.0000000
## sp18 0.0000000 0.0000000 0.0000000 0.6931472 0.0000000
## sp19 0.0000000 0.0000000 0.0000000 0.6931472 0.0000000
## sp20 0.0000000 0.0000000 0.0000000 0.0000000 0.6931472
## sp21 0.0000000 0.0000000 0.0000000 0.0000000 0.6931472
## sp22 0.0000000 0.0000000 0.0000000 0.0000000 0.6931472
mC1<-vegdist(C1t, "bray")
mC1
##            sp1       sp2       sp3       sp4       sp5       sp6       sp7
## sp2  0.1581088                                                            
## sp3  0.5364767 0.4591672                                                  
## sp4  0.3650610 0.4047802 0.7959658                                        
## sp5  0.5565311 0.4953160 0.6206773 1.0000000                              
## sp6  0.6735471 0.4984249 0.2912521 0.6943282 0.8494588                    
## sp7  0.5108210 0.4669707 0.5500074 0.7215711 0.2841677 0.7089816          
## sp8  0.6074002 0.6643642 1.0000000 0.3760863 1.0000000 1.0000000 1.0000000
## sp9  0.8724304 0.8934882 1.0000000 0.7754547 1.0000000 1.0000000 1.0000000
## sp10 0.8724304 0.8934882 1.0000000 0.7754547 1.0000000 1.0000000 1.0000000
## sp11 0.7601591 0.7977475 1.0000000 0.5962406 1.0000000 1.0000000 1.0000000
## sp12 0.8724304 0.8934882 1.0000000 0.7754547 1.0000000 1.0000000 1.0000000
## sp13 0.8724304 0.8934882 1.0000000 0.7754547 1.0000000 1.0000000 1.0000000
## sp14 0.8724304 0.8934882 0.7682330 0.7754547 1.0000000 0.7586116 0.7318831
## sp15 0.8724304 0.8934882 0.7682330 0.7754547 1.0000000 0.7586116 0.7318831
## sp16 0.8724304 0.8934882 0.7682330 0.7754547 1.0000000 0.7586116 0.7318831
## sp17 0.8724304 0.8934882 0.7682330 1.0000000 0.7142857 0.7586116 1.0000000
## sp18 0.8724304 0.8934882 0.7682330 1.0000000 0.7142857 0.7586116 1.0000000
## sp19 0.8724304 0.8934882 0.7682330 1.0000000 0.7142857 0.7586116 1.0000000
## sp20 0.8724304 0.8934882 0.7682330 1.0000000 0.7142857 1.0000000 0.7318831
## sp21 0.8724304 0.8934882 0.7682330 1.0000000 0.7142857 1.0000000 0.7318831
## sp22 0.8724304 0.8934882 0.7682330 1.0000000 0.7142857 1.0000000 0.7318831
##            sp8       sp9      sp10      sp11      sp12      sp13      sp14
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9  0.5637914                                                            
## sp10 0.5637914 0.0000000                                                  
## sp11 0.2837911 0.3333333 0.3333333                                        
## sp12 0.5637914 1.0000000 1.0000000 0.3333333                              
## sp13 0.5637914 1.0000000 1.0000000 0.3333333 0.0000000                    
## sp14 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000          
## sp15 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.0000000
## sp16 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.0000000
## sp17 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## sp18 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## sp19 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## sp20 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## sp21 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## sp22 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##           sp15      sp16      sp17      sp18      sp19      sp20      sp21
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16 0.0000000                                                            
## sp17 1.0000000 1.0000000                                                  
## sp18 1.0000000 1.0000000 0.0000000                                        
## sp19 1.0000000 1.0000000 0.0000000 0.0000000                              
## sp20 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000                    
## sp21 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.0000000          
## sp22 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.0000000 0.0000000
dC1<-hclust(mC1, method="complete")
dC1
## 
## Call:
## hclust(d = mC1, method = "complete")
## 
## Cluster method   : complete 
## Distance         : bray 
## Number of objects: 22

Gráfico

plot(dC1, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma C1",xlab="Amostras",cex.lab=1.2)
rect.hclust(dC1,5, border=2:6)

Grupos

gC1<- cutree(dC1,5)
gC1
##  sp1  sp2  sp3  sp4  sp5  sp6  sp7  sp8  sp9 sp10 sp11 sp12 sp13 sp14 sp15 sp16 
##    1    1    2    1    3    2    3    4    4    4    4    5    5    1    1    1 
## sp17 sp18 sp19 sp20 sp21 sp22 
##    2    2    2    3    3    3
cgC1<- cbind(C1, cluster=gC1)
cgC1
##      A1 A2 A3 B1 B2 cluster
## sp1  13 12  2  3 11       1
## sp2   8  9  5 12 31       1
## sp3   0  0  2 21  2       2
## sp4   3 11  4  0  0       1
## sp5   0  0  0  1 31       3
## sp6   0  0 11 12  0       2
## sp7   0  0  3  0 21       3
## sp8   2  3  0  0  0       4
## sp9   1  0  0  0  0       4
## sp10  1  0  0  0  0       4
## sp11  1  1  0  0  0       4
## sp12  0  1  0  0  0       5
## sp13  0  1  0  0  0       5
## sp14  0  0  1  0  0       1
## sp15  0  0  1  0  0       1
## sp16  0  0  1  0  0       1
## sp17  0  0  0  1  0       2
## sp18  0  0  0  1  0       2
## sp19  0  0  0  1  0       2
## sp20  0  0  0  0  1       3
## sp21  0  0  0  0  1       3
## sp22  0  0  0  0  1       3

2) Faça o cluster das capitais brasileiras e compare os resultados.

Foram encontrados 6 grupos: 1 (Maceio, Aracaju, Salvador, Palmas e Rio branco), 2 (Boa vista, Manaus, Sao luis e Belem), 3 (Brasilia, Goiania, Cuiaba, Curitiba, Florianopolis, Porto alegre, Rio de janeiro, Sao paulo, Belo horizonte, Vitoria e Campo grande), 4 (Recife, João pessoa, Natal, Fortaleza e Teresina), 5 (Macapa) e 6 (Porto velho). O grupo 1 e 4 são mais semelhantes entre si, igualmente os grupo 3 e 6 são semelhantes. Os dois grande grupos supracitados são mais similares entre si do que o grande grupo de 2 e 5, que por sua vez são mais semelhantes entre si. Analisando os grupos, as cidades foram agrupadas por proximidade.


C2<-read.table("C2.txt",header=T)
C2
##                 LAT  LONG
## Aracaju       10.91 37.07
## Belem          1.46 48.50
## BeloHorizonte 19.92 43.94
## BoaVista       2.82 60.67
## Brasilia      15.78 47.93
## CampoGrande   20.44 54.65
## Cuiaba        15.60 56.10
## Curitiba      25.43 49.27
## Florianopolis 27.60 48.55
## Fortaleza      3.68 38.54
## Goiania       16.68 49.25
## JoaoPessoa     7.11 34.86
## Macapa         0.04 51.07
## Maceio         9.67 35.74
## Manaus         3.10 60.02
## Natal          5.79 35.21
## Palmas        10.21 48.36
## PortoAlegre   30.03 51.23
## PortoVelho    51.23 63.90
## Recife         8.05 34.88
## RioBranco      9.74 67.81
## RioJaneiro    22.90 43.21
## Salvador      12.97 38.51
## SaoLuis        2.53 44.30
## SaoPaulo      23.53 46.64
## Teresina       5.09 42.80
## Vitoria       20.32 40.34
nrow(C2);ncol(C2)
## [1] 27
## [1] 2
names(C2); row.names(C2);str(C2)
## [1] "LAT"  "LONG"
##  [1] "Aracaju"       "Belem"         "BeloHorizonte" "BoaVista"     
##  [5] "Brasilia"      "CampoGrande"   "Cuiaba"        "Curitiba"     
##  [9] "Florianopolis" "Fortaleza"     "Goiania"       "JoaoPessoa"   
## [13] "Macapa"        "Maceio"        "Manaus"        "Natal"        
## [17] "Palmas"        "PortoAlegre"   "PortoVelho"    "Recife"       
## [21] "RioBranco"     "RioJaneiro"    "Salvador"      "SaoLuis"      
## [25] "SaoPaulo"      "Teresina"      "Vitoria"
## 'data.frame':    27 obs. of  2 variables:
##  $ LAT : num  10.91 1.46 19.92 2.82 15.78 ...
##  $ LONG: num  37.1 48.5 43.9 60.7 47.9 ...
C2t<-log1p(C2)
C2t
##                      LAT     LONG
## Aracaju       2.47737838 3.639427
## Belem         0.90016135 3.901973
## BeloHorizonte 3.04070564 3.805328
## BoaVista      1.34025042 4.121798
## Brasilia      2.82018770 3.890391
## CampoGrande   3.06525834 4.019082
## Cuiaba        2.80940270 4.044804
## Curitiba      3.27449973 3.917408
## Florianopolis 3.35340672 3.902982
## Fortaleza     1.54329811 3.677313
## Goiania       2.87243406 3.917011
## JoaoPessoa    2.09309787 3.579622
## Macapa        0.03922071 3.952589
## Maceio        2.36743607 3.603866
## Manaus        1.41098697 4.111202
## Natal         1.91545094 3.589335
## Palmas        2.41680624 3.899140
## PortoAlegre   3.43495448 3.955657
## PortoVelho    3.95565704 4.172848
## Recife        2.20276476 3.580180
## RioBranco     2.37397509 4.231349
## RioJaneiro    3.17387846 3.788951
## Salvador      2.63691217 3.676554
## SaoLuis       1.26129787 3.813307
## SaoPaulo      3.19989686 3.863673
## Teresina      1.80664808 3.779634
## Vitoria       3.05964560 3.721831
mC2<-vegdist(C2t, "bray")
mC2
##                   Aracaju       Belem BeloHorizonte    BoaVista    Brasilia
## Belem         0.168492849                                                  
## BeloHorizonte 0.056255343 0.192063568                                      
## BoaVista      0.139866961 0.064292896   0.163869931                        
## Brasilia      0.046289523 0.167780471   0.022541057 0.140589558            
## CampoGrande   0.073291781 0.192000278   0.017106971 0.145677255 0.027094180
## Cuiaba        0.056849988 0.176047769   0.034362812 0.125537005 0.012178476
## Curitiba      0.080781909 0.199246771   0.024638533 0.169009469 0.034621850
## Florianopolis 0.085214051 0.203528654   0.029098197 0.175491031 0.039078675
## Fortaleza     0.085730869 0.086582729   0.134703805 0.060615289 0.124880046
## Goiania       0.052117360 0.171444343   0.020531283 0.141776250 0.005841931
## JoaoPessoa    0.037667727 0.144659455   0.093724467 0.116304401 0.083811115
## Macapa        0.272175779 0.103657354   0.290532485 0.155517290 0.265657088
## Maceio        0.012036856 0.163864275   0.068245988 0.135141243 0.058293899
## Manaus        0.132156316 0.069743523   0.156497190 0.007404471 0.133249631
## Natal         0.052662211 0.128838382   0.108595836 0.101001142 0.098711105
## Palmas        0.025761470 0.136667220   0.054529143 0.110308509 0.031637842
## PortoAlegre   0.094304234 0.212296524   0.038251821 0.175904808 0.048225229
## PortoVelho    0.141218392 0.257247204   0.085643424 0.196199280 0.095553496
## Recife        0.028056066 0.153460930   0.084178550 0.124867300 0.074249161
## RioBranco     0.054654830 0.158071160   0.081237252 0.094741104 0.059115106
## RioJaneiro    0.064682581 0.202868353   0.010830006 0.174365874 0.033285810
## Salvador      0.015821137 0.176523956   0.040470226 0.147926072 0.030490715
## SaoLuis       0.124198916 0.045541566   0.149940499 0.036770985 0.138816127
## SaoPaulo      0.071831392 0.197041449   0.015639245 0.169075198 0.029506516
## Teresina      0.069292620 0.099035848   0.101328829 0.073184041 0.091429558
## Vitoria       0.051531766 0.201977305   0.007516976 0.173100668 0.030241358
##               CampoGrande      Cuiaba    Curitiba Florianopolis   Fortaleza
## Belem                                                                      
## BeloHorizonte                                                              
## BoaVista                                                                   
## Brasilia                                                                   
## CampoGrande                                                                
## Cuiaba        0.020201365                                                  
## Curitiba      0.021778480 0.042181961                                      
## Florianopolis 0.028188817 0.048603609 0.006459807                          
## Fortaleza     0.151461752 0.135289486 0.158815246   0.163162464            
## Goiania       0.021255613 0.013986353 0.028785741   0.035241835 0.130626680
## JoaoPessoa    0.110654022 0.094315746 0.118090302   0.122488611 0.059439128
## Macapa        0.279206286 0.263912298 0.292430437   0.299051680 0.193147233
## Maceio        0.085253427 0.068839737 0.092728600   0.097151258 0.080199398
## Manaus        0.138530674 0.118355404 0.161812984   0.168300356 0.052705069
## Natal         0.125469716 0.109185315 0.132878833   0.137260298 0.042901006
## Palmas        0.057341592 0.040869698 0.064848312   0.069291122 0.094944760
## PortoAlegre   0.029922115 0.050172550 0.013626130   0.009163825 0.172069013
## PortoVelho    0.068637013 0.085051218 0.061133892   0.056686494 0.217834187
## Recife        0.101139875 0.084770845 0.108591859   0.112999959 0.068759540
## RioBranco     0.066002366 0.046210568 0.088022381   0.094346091 0.117091226
## RioJaneiro    0.024115263 0.044895943 0.016183892   0.020645264 0.142998897
## Salvador      0.057537362 0.041065786 0.065043902   0.069486594 0.094881722
## SaoLuis       0.165288638 0.149185179 0.172608408   0.176934973 0.040600844
## SaoPaulo      0.020501110 0.041071614 0.009002757   0.013465079 0.150026994
## Teresina      0.118230855 0.101919221 0.125653656   0.130043594 0.033836828
## Vitoria       0.021842512 0.042037973 0.029372416   0.033830844 0.130049484
##                   Goiania  JoaoPessoa      Macapa      Maceio      Manaus
## Belem                                                                    
## BeloHorizonte                                                            
## BoaVista                                                                 
## Brasilia                                                                 
## CampoGrande                                                              
## Cuiaba                                                                   
## Curitiba                                                                 
## Florianopolis                                                            
## Fortaleza                                                                
## Goiania                                                                  
## JoaoPessoa    0.089609171                                                
## Macapa        0.266090725 0.251108295                                    
## Maceio        0.064113995 0.025642497 0.268684954                        
## Manaus        0.134477545 0.108414468 0.160855501 0.127357712            
## Natal         0.104492778 0.016762216 0.235819644 0.040651123 0.093074513
## Palmas        0.036130015 0.053652861 0.235845129 0.028048954 0.102877737
## PortoAlegre   0.042395242 0.131504826 0.298600955 0.106220517 0.168786949
## PortoVelho    0.089761672 0.177939591 0.341302615 0.152995183 0.190929204
## Recife        0.080056366 0.009621830 0.259439046 0.016024621 0.117008741
## RioBranco     0.060680219 0.075957033 0.246624656 0.050412727 0.089312255
## RioJaneiro    0.031231485 0.102101543 0.301086659 0.076659752 0.167011544
## Salvador      0.036326175 0.053457007 0.278859753 0.027852690 0.140302596
## SaoLuis       0.144540842 0.099139510 0.150154075 0.119101052 0.042237659
## SaoPaulo      0.027488646 0.109203644 0.293937665 0.083795796 0.161805016
## Teresina      0.097219562 0.043206416 0.202585505 0.063729212 0.065466165
## Vitoria       0.028177273 0.089026684 0.301781959 0.063529216 0.165644122
##                     Natal      Palmas PortoAlegre  PortoVelho      Recife
## Belem                                                                    
## BeloHorizonte                                                            
## BoaVista                                                                 
## Brasilia                                                                 
## CampoGrande                                                              
## Cuiaba                                                                   
## Curitiba                                                                 
## Florianopolis                                                            
## Fortaleza                                                                
## Goiania                                                                  
## JoaoPessoa                                                               
## Macapa                                                                   
## Maceio                                                                   
## Manaus                                                                   
## Natal                                                                    
## Palmas        0.068621832                                                
## PortoAlegre   0.146240177 0.078405161                                    
## PortoVelho    0.192449381 0.125484729 0.047547369                        
## Recife        0.026264721 0.044053773 0.122037412 0.168606433            
## RioBranco     0.090877611 0.029024997 0.095504256 0.111320922 0.066383720
## RioJaneiro    0.116946434 0.065311862 0.029803450 0.077241362 0.092570655
## Salvador      0.068426337 0.035052502 0.078600369 0.125678049 0.043857735
## SaoLuis       0.083003338 0.108979948 0.185797546 0.231301554 0.108182225
## SaoPaulo      0.124024443 0.061179959 0.022626112 0.070098069 0.099686558
## Teresina      0.026967768 0.061304882 0.139041723 0.185363641 0.052384430
## Vitoria       0.103911983 0.062619128 0.042981343 0.090344081 0.079472931
##                 RioBranco  RioJaneiro    Salvador     SaoLuis    SaoPaulo
## Belem                                                                    
## BeloHorizonte                                                            
## BoaVista                                                                 
## Brasilia                                                                 
## CampoGrande                                                              
## Cuiaba                                                                   
## Curitiba                                                                 
## Florianopolis                                                            
## Fortaleza                                                                
## Goiania                                                                  
## JoaoPessoa                                                               
## Macapa                                                                   
## Maceio                                                                   
## Manaus                                                                   
## Natal                                                                    
## Palmas                                                                   
## PortoAlegre                                                              
## PortoVelho                                                               
## Recife                                                                   
## RioBranco                                                                
## RioJaneiro    0.091560096                                                
## Salvador      0.063297906 0.048911497                                    
## SaoLuis       0.131055528 0.160909422 0.132802785                        
## SaoPaulo      0.087322217 0.007182181 0.056073980 0.163860282            
## Teresina      0.083585564 0.109692832 0.078433939 0.054312876 0.116783008
## Vitoria       0.089281158 0.013194796 0.035739767 0.159397038 0.020375046
##                  Teresina
## Belem                    
## BeloHorizonte            
## BoaVista                 
## Brasilia                 
## CampoGrande              
## Cuiaba                   
## Curitiba                 
## Florianopolis            
## Fortaleza                
## Goiania                  
## JoaoPessoa               
## Macapa                   
## Maceio                   
## Manaus                   
## Natal                    
## Palmas                   
## PortoAlegre              
## PortoVelho               
## Recife                   
## RioBranco                
## RioJaneiro               
## Salvador                 
## SaoLuis                  
## SaoPaulo                 
## Teresina                 
## Vitoria       0.105985319
dC2<-hclust(mC2, method="complete")
dC2
## 
## Call:
## hclust(d = mC2, method = "complete")
## 
## Cluster method   : complete 
## Distance         : bray 
## Number of objects: 27

Gráfico

plot(dC2, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma C2",xlab="Amostras",cex.lab=1.2)
rect.hclust(dC2,6, border=2:6)

Grupos

gC2<- cutree(dC2,6)
gC2
##       Aracaju         Belem BeloHorizonte      BoaVista      Brasilia 
##             1             2             3             2             3 
##   CampoGrande        Cuiaba      Curitiba Florianopolis     Fortaleza 
##             3             3             3             3             4 
##       Goiania    JoaoPessoa        Macapa        Maceio        Manaus 
##             3             4             5             1             2 
##         Natal        Palmas   PortoAlegre    PortoVelho        Recife 
##             4             1             3             6             4 
##     RioBranco    RioJaneiro      Salvador       SaoLuis      SaoPaulo 
##             1             3             1             2             3 
##      Teresina       Vitoria 
##             4             3
cgC2<- cbind(C2, cluster=gC2)
cgC2
##                 LAT  LONG cluster
## Aracaju       10.91 37.07       1
## Belem          1.46 48.50       2
## BeloHorizonte 19.92 43.94       3
## BoaVista       2.82 60.67       2
## Brasilia      15.78 47.93       3
## CampoGrande   20.44 54.65       3
## Cuiaba        15.60 56.10       3
## Curitiba      25.43 49.27       3
## Florianopolis 27.60 48.55       3
## Fortaleza      3.68 38.54       4
## Goiania       16.68 49.25       3
## JoaoPessoa     7.11 34.86       4
## Macapa         0.04 51.07       5
## Maceio         9.67 35.74       1
## Manaus         3.10 60.02       2
## Natal          5.79 35.21       4
## Palmas        10.21 48.36       1
## PortoAlegre   30.03 51.23       3
## PortoVelho    51.23 63.90       6
## Recife         8.05 34.88       4
## RioBranco      9.74 67.81       1
## RioJaneiro    22.90 43.21       3
## Salvador      12.97 38.51       1
## SaoLuis        2.53 44.30       2
## SaoPaulo      23.53 46.64       3
## Teresina       5.09 42.80       4
## Vitoria       20.32 40.34       3

3) Faça o cluster da fauna de três áreas (‘aulapi.txt’)*. Utilize os coeficientes de associação ‘distancia euclidiana’ e Bray-Curtis’ e compare os resultados.

Utilizando o coeficiente de Bray-Curtis foi encontrado 5 grupos, em ordem decrescente de semelhança: 1 (A1,A2 e A3), 4 (B3), 2 (B1), 5 (C1 e C2) e 3 (B2 e C3). Enquanto o coeficiente de Distância Euclidiana gerou 4 grupos: 1 (A1, B2 e C3), 2 (A2, A3 e B3), 3 (B1) e 4 (C1 e C2). Os grupos 1 e 4 são mais próximos entre si, do mesmo modo os grupos 2 e 3 são mais semelhantes.

*Renomeado para C3.


C3<-read.table("C3.txt",header=T)
C3
##    sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14 sp15
## A1   3   3   1   2   3   3   2   5   5    1   85    2    5    5    4
## A2  44   3   4  90   4  18   5   3   3    5    3    3    5    3    4
## A3   5   1  70   3  50   1  67   1   2    2    1    3    3    1    5
## B1   0  14   0   4   0  13 120   0   0    0    0    5    0    0   15
## B2   0   0   9   3   0   0   0   0   0    1   70   50    8   10    0
## B3  14  12   0   6  32   0   9   8   0   85    0    0    0    0    1
## C1  21  30  25   0   0   0   0  13   8    0    0    0   16   22   10
## C2  24  25   0   0   0   0   0  11  14    0    0   20    0    0   19
## C3   0   0   0   7  22  12   0   0   0    0    0   12   17   20    9
nrow(C3);ncol(C3)
## [1] 9
## [1] 15
names(C3); row.names(C3);str(C3)
##  [1] "sp1"  "sp2"  "sp3"  "sp4"  "sp5"  "sp6"  "sp7"  "sp8"  "sp9"  "sp10"
## [11] "sp11" "sp12" "sp13" "sp14" "sp15"
## [1] "A1" "A2" "A3" "B1" "B2" "B3" "C1" "C2" "C3"
## 'data.frame':    9 obs. of  15 variables:
##  $ sp1 : int  3 44 5 0 0 14 21 24 0
##  $ sp2 : int  3 3 1 14 0 12 30 25 0
##  $ sp3 : int  1 4 70 0 9 0 25 0 0
##  $ sp4 : int  2 90 3 4 3 6 0 0 7
##  $ sp5 : int  3 4 50 0 0 32 0 0 22
##  $ sp6 : int  3 18 1 13 0 0 0 0 12
##  $ sp7 : int  2 5 67 120 0 9 0 0 0
##  $ sp8 : int  5 3 1 0 0 8 13 11 0
##  $ sp9 : int  5 3 2 0 0 0 8 14 0
##  $ sp10: int  1 5 2 0 1 85 0 0 0
##  $ sp11: int  85 3 1 0 70 0 0 0 0
##  $ sp12: int  2 3 3 5 50 0 0 20 12
##  $ sp13: int  5 5 3 0 8 0 16 0 17
##  $ sp14: int  5 3 1 0 10 0 22 0 20
##  $ sp15: int  4 4 5 15 0 1 10 19 9
C3t<-log1p(C3)
C3t
##         sp1       sp2       sp3      sp4      sp5       sp6      sp7       sp8
## A1 1.386294 1.3862944 0.6931472 1.098612 1.386294 1.3862944 1.098612 1.7917595
## A2 3.806662 1.3862944 1.6094379 4.510860 1.609438 2.9444390 1.791759 1.3862944
## A3 1.791759 0.6931472 4.2626799 1.386294 3.931826 0.6931472 4.219508 0.6931472
## B1 0.000000 2.7080502 0.0000000 1.609438 0.000000 2.6390573 4.795791 0.0000000
## B2 0.000000 0.0000000 2.3025851 1.386294 0.000000 0.0000000 0.000000 0.0000000
## B3 2.708050 2.5649494 0.0000000 1.945910 3.496508 0.0000000 2.302585 2.1972246
## C1 3.091042 3.4339872 3.2580965 0.000000 0.000000 0.0000000 0.000000 2.6390573
## C2 3.218876 3.2580965 0.0000000 0.000000 0.000000 0.0000000 0.000000 2.4849066
## C3 0.000000 0.0000000 0.0000000 2.079442 3.135494 2.5649494 0.000000 0.0000000
##         sp9      sp10      sp11     sp12     sp13      sp14      sp15
## A1 1.791759 0.6931472 4.4543473 1.098612 1.791759 1.7917595 1.6094379
## A2 1.386294 1.7917595 1.3862944 1.386294 1.791759 1.3862944 1.6094379
## A3 1.098612 1.0986123 0.6931472 1.386294 1.386294 0.6931472 1.7917595
## B1 0.000000 0.0000000 0.0000000 1.791759 0.000000 0.0000000 2.7725887
## B2 0.000000 0.6931472 4.2626799 3.931826 2.197225 2.3978953 0.0000000
## B3 0.000000 4.4543473 0.0000000 0.000000 0.000000 0.0000000 0.6931472
## C1 2.197225 0.0000000 0.0000000 0.000000 2.833213 3.1354942 2.3978953
## C2 2.708050 0.0000000 0.0000000 3.044522 0.000000 0.0000000 2.9957323
## C3 0.000000 0.0000000 0.0000000 2.564949 2.890372 3.0445224 2.3025851

Bray-Curtis

mC3<-vegdist(C3t, "bray")
mC3
##           A1        A2        A3        B1        B2        B3        C1
## A2 0.2797460                                                            
## A3 0.3906023 0.3441442                                                  
## B1 0.6139334 0.5478403 0.5172709                                        
## B2 0.4373725 0.5894142 0.6026655 0.8101994                              
## B3 0.5648573 0.4690447 0.4735969 0.6090384 0.8891980                    
## C1 0.4728200 0.4827732 0.5325941 0.7401733 0.6564688 0.6233629          
## C2 0.5596537 0.5631617 0.6574870 0.5725496 0.8254379 0.5711716 0.3400284
## C3 0.5165241 0.4860973 0.5282868 0.5261336 0.5219348 0.7034512 0.6064157
##           C2
## A2          
## A3          
## B1          
## B2          
## B3          
## C1          
## C2          
## C3 0.7317608
dC3<-hclust(mC3, method="complete")
dC3
## 
## Call:
## hclust(d = mC3, method = "complete")
## 
## Cluster method   : complete 
## Distance         : bray 
## Number of objects: 9

Gráfico

plot(dC3, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma C3",xlab="Amostras",cex.lab=1.2)
rect.hclust(dC3,5, border=2:6)

Grupos

gC3<- cutree(dC3,5)
gC3
## A1 A2 A3 B1 B2 B3 C1 C2 C3 
##  1  1  1  2  3  4  5  5  3
cgC3<- cbind(C3, cluster=gC3)
cgC3
##    sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14 sp15 cluster
## A1   3   3   1   2   3   3   2   5   5    1   85    2    5    5    4       1
## A2  44   3   4  90   4  18   5   3   3    5    3    3    5    3    4       1
## A3   5   1  70   3  50   1  67   1   2    2    1    3    3    1    5       1
## B1   0  14   0   4   0  13 120   0   0    0    0    5    0    0   15       2
## B2   0   0   9   3   0   0   0   0   0    1   70   50    8   10    0       3
## B3  14  12   0   6  32   0   9   8   0   85    0    0    0    0    1       4
## C1  21  30  25   0   0   0   0  13   8    0    0    0   16   22   10       5
## C2  24  25   0   0   0   0   0  11  14    0    0   20    0    0   19       5
## C3   0   0   0   7  22  12   0   0   0    0    0   12   17   20    9       3

Distância Euclidiana

mC3e<-vegdist(C3t, "euclidean")
mC3e
##           A1        A2        A3        B1        B2        B3        C1
## A2  5.700450                                                            
## A3  6.903270  6.316713                                                  
## B1  7.521120  7.387786  7.209153                                        
## B2  5.401294  8.044140  8.314087  9.173068                              
## B3  7.615049  6.613724  6.921923  8.067030 10.035801                    
## C1  6.771893  7.502569  7.931208  9.287243  8.762570  8.857762          
## C2  6.882649  7.690750  8.748798  7.638438  8.983244  7.992743  6.199365
## C3  6.564405  6.737954  7.556452  7.670264  6.993737  8.797906  8.431393
##           C2
## A2          
## A3          
## B1          
## B2          
## B3          
## C1          
## C2          
## C3  8.576294
dC3e<-hclust(mC3e, method="complete")
dC3e
## 
## Call:
## hclust(d = mC3e, method = "complete")
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 9

Gráfico

plot(dC3e, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma C3",xlab="Amostras",cex.lab=1.2)
rect.hclust(dC3e,4, border=2:6)

Grupos

gC3e<- cutree(dC3e,4)
gC3e
## A1 A2 A3 B1 B2 B3 C1 C2 C3 
##  1  2  2  3  1  2  4  4  1
cgC3e<- cbind(C3, cluster=gC3e)
cgC3e
##    sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14 sp15 cluster
## A1   3   3   1   2   3   3   2   5   5    1   85    2    5    5    4       1
## A2  44   3   4  90   4  18   5   3   3    5    3    3    5    3    4       2
## A3   5   1  70   3  50   1  67   1   2    2    1    3    3    1    5       2
## B1   0  14   0   4   0  13 120   0   0    0    0    5    0    0   15       3
## B2   0   0   9   3   0   0   0   0   0    1   70   50    8   10    0       1
## B3  14  12   0   6  32   0   9   8   0   85    0    0    0    0    1       2
## C1  21  30  25   0   0   0   0  13   8    0    0    0   16   22   10       4
## C2  24  25   0   0   0   0   0  11  14    0    0   20    0    0   19       4
## C3   0   0   0   7  22  12   0   0   0    0    0   12   17   20    9       1

4) Os dados abióticos de três prados de ervas marinhas foram coletados. Descreva os três ambientes utilizando a analise de Cluster. discuta o uso do tipo de cluster escolhido e do coeficiente de associação.(HaloduleAbiotico.txt)*

Foram obtidos três grupos: 1 (SA, SB e SC), 2 (CA, CB e CC) e 3 (TA, TB e TC). Os grupos 2 e 3 apresentam maior índice de similaridade. Foi utilizado o índice de Bray-Curtis por se tratar de um índice simétrico (mais adequado para dados abióticos) e o cluster médio (para não tendenciar o resultado).

*Renomeado para C4.


C4<-read.table("C4.txt",header=T)
C4
##       Meanmm       Gravel     Sand         mo     CaCO3 MediaNumTalos
## SA 0.1977082  0.006820706 90.74722  0.7793154  2.026049          15.8
## SB 0.1567520  0.029504556 93.53834  0.7671558  1.683111          27.6
## SC 0.1291095  1.248660748 84.63238  1.1246418  1.725585          25.4
## CA 0.1877505 10.549661500 50.00886 14.8964874 55.111331          15.8
## CB 0.2312549 12.271879160 61.60721  9.2596896 48.454016          17.6
## CC 0.1424418  4.379080900 63.82608  7.5375690 36.201956           2.8
## TA 0.1488571  0.602777746 84.24157  5.0433597 45.048717          24.2
## TB 0.1562217  0.381141022 83.32625  7.6325583 48.014157          25.6
## TC 0.1019311  0.830105288 76.12643  7.7981446 44.563297          25.8
##    NfolhasMdia compmedio TempC  mmHg    O2 Salinidade   pH
## SA   1.2768436 10.395455  26.5 765.2  7.63   26.32565 7.78
## SB   1.1068510 10.200502  27.1 764.8  7.12   27.37123 8.07
## SC   1.1030042  8.912925  28.2 765.5  6.45   26.71685 8.06
## CA   1.5822222 20.793562  27.9 762.8  8.08   29.77950 8.32
## CB   1.2344612 17.311197  27.5 763.1 10.25   29.49495 8.03
## CC   0.9833333 10.471429  28.5 763.0  9.62   30.25719 8.31
## TA   1.6772310  7.040551  26.9 762.5  7.55   25.28981 7.68
## TB   1.2680418  6.413243  27.7 762.2  8.30   26.32682 7.99
## TC   1.2573583  7.390939  29.1 761.6  6.51   29.05001 8.17
nrow(C4);ncol(C4)
## [1] 9
## [1] 13
names(C4); row.names(C4);str(C4)
##  [1] "Meanmm"        "Gravel"        "Sand"          "mo"           
##  [5] "CaCO3"         "MediaNumTalos" "NfolhasMdia"   "compmedio"    
##  [9] "TempC"         "mmHg"          "O2"            "Salinidade"   
## [13] "pH"
## [1] "SA" "SB" "SC" "CA" "CB" "CC" "TA" "TB" "TC"
## 'data.frame':    9 obs. of  13 variables:
##  $ Meanmm       : num  0.198 0.157 0.129 0.188 0.231 ...
##  $ Gravel       : num  0.00682 0.0295 1.24866 10.54966 12.27188 ...
##  $ Sand         : num  90.7 93.5 84.6 50 61.6 ...
##  $ mo           : num  0.779 0.767 1.125 14.896 9.26 ...
##  $ CaCO3        : num  2.03 1.68 1.73 55.11 48.45 ...
##  $ MediaNumTalos: num  15.8 27.6 25.4 15.8 17.6 2.8 24.2 25.6 25.8
##  $ NfolhasMdia  : num  1.28 1.11 1.1 1.58 1.23 ...
##  $ compmedio    : num  10.4 10.2 8.91 20.79 17.31 ...
##  $ TempC        : num  26.5 27.1 28.2 27.9 27.5 28.5 26.9 27.7 29.1
##  $ mmHg         : num  765 765 766 763 763 ...
##  $ O2           : num  7.63 7.12 6.45 8.08 10.25 ...
##  $ Salinidade   : num  26.3 27.4 26.7 29.8 29.5 ...
##  $ pH           : num  7.78 8.07 8.06 8.32 8.03 8.31 7.68 7.99 8.17
C4t<-log1p(C4)
C4t
##        Meanmm     Gravel     Sand        mo     CaCO3 MediaNumTalos NfolhasMdia
## SA 0.18040988 0.00679755 4.519037 0.5762287 1.1072579      2.821379   0.8227901
## SB 0.14561606 0.02907767 4.549005 0.5693714 0.9869769      3.353407   0.7451944
## SC 0.12142924 0.81033482 4.450063 0.7536032 1.0026832      3.273364   0.7433669
## CA 0.17206121 2.44665613 3.931999 2.7660982 4.0273378      2.821379   0.9486504
## CB 0.20803386 2.58564745 4.136880 2.3282226 3.9010433      2.923162   0.8040001
## CC 0.13316790 1.68251752 4.171708 2.1444763 3.6163613      1.335001   0.6847789
## TA 0.13876763 0.47173822 4.445489 1.7989601 3.8296999      3.226844   0.9847830
## TB 0.14515752 0.32290999 4.434693 2.1555409 3.8921092      3.280911   0.8189168
## TC 0.09706422 0.60437350 4.345446 2.1745409 3.8191025      3.288402   0.8141952
##    compmedio    TempC     mmHg       O2 Salinidade       pH
## SA  2.433215 3.314186 6.641443 2.155245   3.307826 2.172476
## SB  2.415959 3.335770 6.640921 2.094330   3.345376 2.204972
## SC  2.293839 3.374169 6.641835 2.008214   3.322040 2.203869
## CA  3.081615 3.363842 6.638306 2.206074   3.426849 2.232163
## CB  2.907513 3.349904 6.638699 2.420368   3.417561 2.200552
## CC  2.439859 3.384390 6.638568 2.362739   3.442249 2.231089
## TA  2.084498 3.328627 6.637913 2.145931   3.269182 2.161022
## TB  2.003268 3.356897 6.637520 2.230014   3.307869 2.196113
## TC  2.127152 3.404525 6.636734 2.016235   3.402863 2.215937
mC4<-vegdist(C4t, "bray")
mC4
##            SA         SB         SC         CA         CB         CC         TA
## SB 0.01643882                                                                  
## SC 0.03500389 0.02374315                                                       
## CA 0.13507939 0.14530515 0.13078175                                            
## CB 0.12626243 0.13341091 0.11931028 0.02153364                                 
## CC 0.12829011 0.13593659 0.11989819 0.06444486 0.05276512                      
## TA 0.08545546 0.08476893 0.07650908 0.07507942 0.06751369 0.07432125           
## TB 0.09004147 0.08689533 0.08295545 0.07211815 0.06052891 0.06906210 0.01547776
## TC 0.09720666 0.09037292 0.07523232 0.06791936 0.05748433 0.06269482 0.01915548
##            TB
## SB           
## SC           
## CA           
## CB           
## CC           
## TA           
## TB           
## TC 0.01468438
dC4<-hclust(mC4, method="average")
dC4
## 
## Call:
## hclust(d = mC4, method = "average")
## 
## Cluster method   : average 
## Distance         : bray 
## Number of objects: 9

Gráfico

plot(dC4, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma C4",xlab="Amostras",cex.lab=1.2)
rect.hclust(dC4,3, border=2:6)

Grupos

gC4<- cutree(dC4,3)
gC4
## SA SB SC CA CB CC TA TB TC 
##  1  1  1  2  2  2  3  3  3
cgC4<- cbind(C4, cluster=gC4)
cgC4
##       Meanmm       Gravel     Sand         mo     CaCO3 MediaNumTalos
## SA 0.1977082  0.006820706 90.74722  0.7793154  2.026049          15.8
## SB 0.1567520  0.029504556 93.53834  0.7671558  1.683111          27.6
## SC 0.1291095  1.248660748 84.63238  1.1246418  1.725585          25.4
## CA 0.1877505 10.549661500 50.00886 14.8964874 55.111331          15.8
## CB 0.2312549 12.271879160 61.60721  9.2596896 48.454016          17.6
## CC 0.1424418  4.379080900 63.82608  7.5375690 36.201956           2.8
## TA 0.1488571  0.602777746 84.24157  5.0433597 45.048717          24.2
## TB 0.1562217  0.381141022 83.32625  7.6325583 48.014157          25.6
## TC 0.1019311  0.830105288 76.12643  7.7981446 44.563297          25.8
##    NfolhasMdia compmedio TempC  mmHg    O2 Salinidade   pH cluster
## SA   1.2768436 10.395455  26.5 765.2  7.63   26.32565 7.78       1
## SB   1.1068510 10.200502  27.1 764.8  7.12   27.37123 8.07       1
## SC   1.1030042  8.912925  28.2 765.5  6.45   26.71685 8.06       1
## CA   1.5822222 20.793562  27.9 762.8  8.08   29.77950 8.32       2
## CB   1.2344612 17.311197  27.5 763.1 10.25   29.49495 8.03       2
## CC   0.9833333 10.471429  28.5 763.0  9.62   30.25719 8.31       2
## TA   1.6772310  7.040551  26.9 762.5  7.55   25.28981 7.68       3
## TB   1.2680418  6.413243  27.7 762.2  8.30   26.32682 7.99       3
## TC   1.2573583  7.390939  29.1 761.6  6.51   29.05001 8.17       3

5) Estas amostras representam apenas uma associação de espécies? Faça o dendrograma, justificando o uso de transformação dos dados, coeficiente de associação e técnica utilizada.

Não. Elas tem três associações: similaridade entre as amostras, distância das semelhanças e correlação entre as espécies. O uso de transformação dos dados auxilia a diminuir a influência excessiva das espécies dominantes, além de evitar uma grande diferença (a grau de magnitude) entre as réplicas. O índice de Bray-Curtis foi utilizado para diminuir a influência excessiva das espécies dominantes (por utilizar a soma da mínima abundâncias das espécies comuns as amostras). Enquanto a técnica de cluster médio visou evitar algum tipo de tendência nos resultados.


C5<-read.table("C5.txt",header=T)
C5
##          X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
## Especie1 24 27 24  8 10 14 14 36 36  41
## Especie2 32 30 29 20 18 20 22 14  8  12
## Especie3  3  1  2 11 14 13 12  8  8   6
nrow(C5);ncol(C5)
## [1] 3
## [1] 10
names(C5); row.names(C5);str(C5)
##  [1] "X1"  "X2"  "X3"  "X4"  "X5"  "X6"  "X7"  "X8"  "X9"  "X10"
## [1] "Especie1" "Especie2" "Especie3"
## 'data.frame':    3 obs. of  10 variables:
##  $ X1 : int  24 32 3
##  $ X2 : int  27 30 1
##  $ X3 : int  24 29 2
##  $ X4 : int  8 20 11
##  $ X5 : int  10 18 14
##  $ X6 : int  14 20 13
##  $ X7 : int  14 22 12
##  $ X8 : int  36 14 8
##  $ X9 : int  36 8 8
##  $ X10: int  41 12 6
C5t<-log1p(C5)
C5t
##                X1        X2       X3       X4       X5       X6       X7
## Especie1 3.218876 3.3322045 3.218876 2.197225 2.397895 2.708050 2.708050
## Especie2 3.496508 3.4339872 3.401197 3.044522 2.944439 3.044522 3.135494
## Especie3 1.386294 0.6931472 1.098612 2.484907 2.708050 2.639057 2.564949
##                X8       X9      X10
## Especie1 3.610918 3.610918 3.737670
## Especie2 2.708050 2.197225 2.564949
## Especie3 2.197225 2.197225 1.945910
mC5<-vegdist(C5t, "bray")
mC5
##           Especie1  Especie2
## Especie2 0.1022667          
## Especie3 0.2373059 0.2015688
dC5<-hclust(mC5, method="average")
dC5
## 
## Call:
## hclust(d = mC5, method = "average")
## 
## Cluster method   : average 
## Distance         : bray 
## Number of objects: 3

Gráfico

plot(dC5, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma C5",xlab="Amostras",cex.lab=1.2)
rect.hclust(dC5,2, border=2:6)

Grupos

gC5<- cutree(dC5,2)
gC5
## Especie1 Especie2 Especie3 
##        1        1        2
cgC5<- cbind(C5, cluster=gC5)
cgC5
##          X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 cluster
## Especie1 24 27 24  8 10 14 14 36 36  41       1
## Especie2 32 30 29 20 18 20 22 14  8  12       1
## Especie3  3  1  2 11 14 13 12  8  8   6       2

6) Faça uma pergunta multivariada e descreva passo a passo a realização do dendrograma, explicando suas escolhas, faça uma conclusão.

Utilizando o coeficiente de Jaccard foi encontrado 5 grupos, em ordem decrescente de semelhança: 1 (spA, spB, spC e spE), 5 (spJ), 2 (spD e spI), 4 (spH) e 3 (spG). Este índice foi utilizado por ser um índice assimétrico, que não considera o duplo zero, ou seja considera que o zero pode ser falta de informação. Enquanto a técnica de cluster médio visou evitar algum tipo de tendência nos resultados.


C6<-read.table("C6.txt",header=T)
C6
##     A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
## spA 15  0  6  0  2  0  5  0 15   0
## spB  4  1  1  1  0  0  2  6  8   1
## spC  0  4  1  0  8 19  6  0  0   7
## spD  0  8  0 16  0  3  0  2  0   5
## spE  1  0  0  0 10  0  0  0  0  11
## spG  0  0  1  0  0  0  0  0  0   0
## spH  1  0  0  0  0  0  0  0  0   0
## spI  0  0  0  8  0  0  0  0  0   0
## spJ  0  0  0  0  0  0  3  0  0   0
nrow(C6);ncol(C6)
## [1] 9
## [1] 10
names(C6); row.names(C6);str(C6)
##  [1] "A1"  "A2"  "A3"  "A4"  "A5"  "A6"  "A7"  "A8"  "A9"  "A10"
## [1] "spA" "spB" "spC" "spD" "spE" "spG" "spH" "spI" "spJ"
## 'data.frame':    9 obs. of  10 variables:
##  $ A1 : int  15 4 0 0 1 0 1 0 0
##  $ A2 : int  0 1 4 8 0 0 0 0 0
##  $ A3 : int  6 1 1 0 0 1 0 0 0
##  $ A4 : int  0 1 0 16 0 0 0 8 0
##  $ A5 : int  2 0 8 0 10 0 0 0 0
##  $ A6 : int  0 0 19 3 0 0 0 0 0
##  $ A7 : int  5 2 6 0 0 0 0 0 3
##  $ A8 : int  0 6 0 2 0 0 0 0 0
##  $ A9 : int  15 8 0 0 0 0 0 0 0
##  $ A10: int  0 1 7 5 11 0 0 0 0
C6t<-log1p(C6)
C6t
##            A1        A2        A3        A4       A5       A6       A7       A8
## spA 2.7725887 0.0000000 1.9459101 0.0000000 1.098612 0.000000 1.791759 0.000000
## spB 1.6094379 0.6931472 0.6931472 0.6931472 0.000000 0.000000 1.098612 1.945910
## spC 0.0000000 1.6094379 0.6931472 0.0000000 2.197225 2.995732 1.945910 0.000000
## spD 0.0000000 2.1972246 0.0000000 2.8332133 0.000000 1.386294 0.000000 1.098612
## spE 0.6931472 0.0000000 0.0000000 0.0000000 2.397895 0.000000 0.000000 0.000000
## spG 0.0000000 0.0000000 0.6931472 0.0000000 0.000000 0.000000 0.000000 0.000000
## spH 0.6931472 0.0000000 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000
## spI 0.0000000 0.0000000 0.0000000 2.1972246 0.000000 0.000000 0.000000 0.000000
## spJ 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.000000 1.386294 0.000000
##           A9       A10
## spA 2.772589 0.0000000
## spB 2.197225 0.6931472
## spC 0.000000 2.0794415
## spD 0.000000 1.7917595
## spE 0.000000 2.4849066
## spG 0.000000 0.0000000
## spH 0.000000 0.0000000
## spI 0.000000 0.0000000
## spJ 0.000000 0.0000000
mC6<-vegdist(C6t, "jaccard")
mC6
##           spA       spB       spC       spD       spE       spG       spH
## spB 0.6114045                                                            
## spC 0.8043806 0.8231134                                                  
## spD 1.0000000 0.7982550 0.7015374                                        
## spE 0.8735138 0.8996415 0.6664113 0.8631335                              
## spG 0.9332322 0.9279755 0.9398356 1.0000000 1.0000000                    
## spH 0.9332322 0.9279755 1.0000000 1.0000000 0.8756898 1.0000000          
## spI 1.0000000 0.9377106 1.0000000 0.7639196 1.0000000 1.0000000 1.0000000
## spJ 0.8664644 0.8891573 0.8796713 1.0000000 1.0000000 1.0000000 1.0000000
##           spI
## spB          
## spC          
## spD          
## spE          
## spG          
## spH          
## spI          
## spJ 1.0000000
dC6<-hclust(mC6, method="average")
dC6
## 
## Call:
## hclust(d = mC6, method = "average")
## 
## Cluster method   : average 
## Distance         : jaccard 
## Number of objects: 9

Gráfico

plot(dC6, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma C6",xlab="Amostras",cex.lab=1.2)
rect.hclust(dC6,5, border=2:6)

Grupos

gC6<- cutree(dC6,5)
gC6
## spA spB spC spD spE spG spH spI spJ 
##   1   1   1   2   1   3   4   2   5
cgC6<- cbind(C6, cluster=gC6)
cgC6
##     A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 cluster
## spA 15  0  6  0  2  0  5  0 15   0       1
## spB  4  1  1  1  0  0  2  6  8   1       1
## spC  0  4  1  0  8 19  6  0  0   7       1
## spD  0  8  0 16  0  3  0  2  0   5       2
## spE  1  0  0  0 10  0  0  0  0  11       1
## spG  0  0  1  0  0  0  0  0  0   0       3
## spH  1  0  0  0  0  0  0  0  0   0       4
## spI  0  0  0  8  0  0  0  0  0   0       2
## spJ  0  0  0  0  0  0  3  0  0   0       5

7) Faça uma análise de Cluster utilizando os diferentes tipos de ligação média (os quatro) com a matriz de dados abaixo. Não é necessário transformar os dados. Utilize a distância euclidiana como índice similaridade.

Só foi possível encontrar um cluster de média. Foram formados 4 grupos: 1 (1 e 2), 2 (3, 4 e 5), 3 (7, 8, 6 e 9) e 4 (10). Os grupos 1 e 2 são mais semelhantes entre si, o mesmo ocorre entre os grupos 3 e 4.


C7<-read.table("C7.txt",header=T)
C7
##    sp1 sp2
## 1   15  75
## 2   21  72
## 3   33  58
## 4   32  46
## 5   34  32
## 6   51  27
## 7   54  45
## 8   64  42
## 9   66  20
## 10  82  15
nrow(C7);ncol(C7)
## [1] 10
## [1] 2
names(C7); row.names(C7);str(C7)
## [1] "sp1" "sp2"
##  [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"
## 'data.frame':    10 obs. of  2 variables:
##  $ sp1: int  15 21 33 32 34 51 54 64 66 82
##  $ sp2: int  75 72 58 46 32 27 45 42 20 15
mC7<-vegdist(C7, "euclidean")
mC7
##            1         2         3         4         5         6         7
## 2   6.708204                                                            
## 3  24.758837 18.439089                                                  
## 4  33.615473 28.231188 12.041595                                        
## 5  47.010637 42.059482 26.019224 14.142136                              
## 6  60.000000 54.083269 35.846897 26.870058 17.720045                    
## 7  49.203658 42.638011 24.698178 22.022716 23.853721 18.248288          
## 8  59.076222 52.430907 34.885527 32.249031 31.622777 19.849433 10.440307
## 9  75.006666 68.767725 50.328918 42.801869 34.176015 16.552945 27.730849
## 10 89.938868 83.486526 65.192024 58.830264 50.921508 33.241540 41.036569
##            8         9
## 2                     
## 3                     
## 4                     
## 5                     
## 6                     
## 7                     
## 8                     
## 9  22.090722          
## 10 32.449961 16.763055
dC7<-hclust(mC7, method="average")
dC7
## 
## Call:
## hclust(d = mC7, method = "average")
## 
## Cluster method   : average 
## Distance         : euclidean 
## Number of objects: 10

Gráfico

plot(dC7, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma C7",xlab="Amostras",cex.lab=1.2)
rect.hclust(dC7,4, border=2:6)

Grupos

gC7<- cutree(dC7,4)
gC7
##  1  2  3  4  5  6  7  8  9 10 
##  1  1  2  2  2  3  3  3  3  4
cgC7<- cbind(C7, cluster=gC7)
cgC7
##    sp1 sp2 cluster
## 1   15  75       1
## 2   21  72       1
## 3   33  58       2
## 4   32  46       2
## 5   34  32       2
## 6   51  27       3
## 7   54  45       3
## 8   64  42       3
## 9   66  20       3
## 10  82  15       4

8) Faça uma análise de Cluster utilizando o método de médias não ponderadas (UPGMA) com a matriz de dados abaixo. Transforme os dados se achar necessário. Utilize o índice similaridade que você achar mais adequado. Justifique suas escolhas.

Foi utilizado o índice de Jaccard por se tratar de um índice assimétrico (não considera o duplo zero; considera que o zero pode ser falta de informação). Foram obtidos três grupos: 1 (sp1, sp2, sp3, sp7, sp8 e sp9), 2 (sp4, sp5 e sp6) e 3 (sp10). Os grupos 1 e 2 apresentam maior índice de similaridade.


C8<-read.table("C8.txt",header=T)
C8
##      X1 X2 X3 X4 X5 X6 X7 X8
## Sp1   0  1  1  1  0  0  0  1
## Sp2   0  1  1  0  1  0  0  1
## Sp3   0  1  1  1  0  0  0  1
## Sp4   1  0  0  0  1  1  1  0
## Sp5   1  1  1  1  1  1  1  0
## Sp6   1  1  1  1  0  1  1  0
## Sp7   1  1  1  0  1  0  0  1
## Sp8   0  1  1  1  0  0  0  1
## Sp9   0  1  1  1  0  0  0  1
## Sp10  0  0  0  0  0  0  0  1
nrow(C8);ncol(C8)
## [1] 10
## [1] 8
names(C8); row.names(C8);str(C8)
## [1] "X1" "X2" "X3" "X4" "X5" "X6" "X7" "X8"
##  [1] "Sp1"  "Sp2"  "Sp3"  "Sp4"  "Sp5"  "Sp6"  "Sp7"  "Sp8"  "Sp9"  "Sp10"
## 'data.frame':    10 obs. of  8 variables:
##  $ X1: int  0 0 0 1 1 1 1 0 0 0
##  $ X2: int  1 1 1 0 1 1 1 1 1 0
##  $ X3: int  1 1 1 0 1 1 1 1 1 0
##  $ X4: int  1 0 1 0 1 1 0 1 1 0
##  $ X5: int  0 1 0 1 1 0 1 0 0 0
##  $ X6: int  0 0 0 1 1 1 0 0 0 0
##  $ X7: int  0 0 0 1 1 1 0 0 0 0
##  $ X8: int  1 1 1 0 0 0 1 1 1 1
C8t<-log1p(C8)
C8t
##             X1        X2        X3        X4        X5        X6        X7
## Sp1  0.0000000 0.6931472 0.6931472 0.6931472 0.0000000 0.0000000 0.0000000
## Sp2  0.0000000 0.6931472 0.6931472 0.0000000 0.6931472 0.0000000 0.0000000
## Sp3  0.0000000 0.6931472 0.6931472 0.6931472 0.0000000 0.0000000 0.0000000
## Sp4  0.6931472 0.0000000 0.0000000 0.0000000 0.6931472 0.6931472 0.6931472
## Sp5  0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472
## Sp6  0.6931472 0.6931472 0.6931472 0.6931472 0.0000000 0.6931472 0.6931472
## Sp7  0.6931472 0.6931472 0.6931472 0.0000000 0.6931472 0.0000000 0.0000000
## Sp8  0.0000000 0.6931472 0.6931472 0.6931472 0.0000000 0.0000000 0.0000000
## Sp9  0.0000000 0.6931472 0.6931472 0.6931472 0.0000000 0.0000000 0.0000000
## Sp10 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
##             X8
## Sp1  0.6931472
## Sp2  0.6931472
## Sp3  0.6931472
## Sp4  0.0000000
## Sp5  0.0000000
## Sp6  0.0000000
## Sp7  0.6931472
## Sp8  0.6931472
## Sp9  0.6931472
## Sp10 0.6931472
mC8<-vegdist(C8t, "jaccard")
mC8
##            Sp1       Sp2       Sp3       Sp4       Sp5       Sp6       Sp7
## Sp2  0.4000000                                                            
## Sp3  0.0000000 0.4000000                                                  
## Sp4  1.0000000 0.8571429 1.0000000                                        
## Sp5  0.6250000 0.6250000 0.6250000 0.4285714                              
## Sp6  0.5714286 0.7500000 0.5714286 0.5714286 0.1428571                    
## Sp7  0.5000000 0.2000000 0.5000000 0.7142857 0.5000000 0.6250000          
## Sp8  0.0000000 0.4000000 0.0000000 1.0000000 0.6250000 0.5714286 0.5000000
## Sp9  0.0000000 0.4000000 0.0000000 1.0000000 0.6250000 0.5714286 0.5000000
## Sp10 0.7500000 0.7500000 0.7500000 1.0000000 1.0000000 1.0000000 0.8000000
##            Sp8       Sp9
## Sp2                     
## Sp3                     
## Sp4                     
## Sp5                     
## Sp6                     
## Sp7                     
## Sp8                     
## Sp9  0.0000000          
## Sp10 0.7500000 0.7500000
dC8<-hclust(mC8, method="average")
dC8
## 
## Call:
## hclust(d = mC8, method = "average")
## 
## Cluster method   : average 
## Distance         : jaccard 
## Number of objects: 10

Gráfico

plot(dC8, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma C8",xlab="Amostras",cex.lab=1.2)
rect.hclust(dC8,3, border=2:6)

Grupos

gC8<- cutree(dC8,3)
gC8
##  Sp1  Sp2  Sp3  Sp4  Sp5  Sp6  Sp7  Sp8  Sp9 Sp10 
##    1    1    1    2    2    2    1    1    1    3
cgC8<- cbind(C8, cluster=gC8)
cgC8
##      X1 X2 X3 X4 X5 X6 X7 X8 cluster
## Sp1   0  1  1  1  0  0  0  1       1
## Sp2   0  1  1  0  1  0  0  1       1
## Sp3   0  1  1  1  0  0  0  1       1
## Sp4   1  0  0  0  1  1  1  0       2
## Sp5   1  1  1  1  1  1  1  0       2
## Sp6   1  1  1  1  0  1  1  0       2
## Sp7   1  1  1  0  1  0  0  1       1
## Sp8   0  1  1  1  0  0  0  1       1
## Sp9   0  1  1  1  0  0  0  1       1
## Sp10  0  0  0  0  0  0  0  1       3

Análises Multivariadas

1) Estime os seguintes coeficientes de associação: distância euclidiana, Bray curtis. Qual o índice mais adequado? Qual a justificativa.

O índice de Bray-Curtis é o mais adequado para análise de dados bióticos.


AM1<-read.table("AM1.txt",header=T)
## Warning in read.table("AM1.txt", header = T): incomplete final line found by
## readTableHeader on 'AM1.txt'
AM1
##          Estacao1 Estacao2 Estacao3 Estacao4 Estacao5
## Especie1        2        5        4        8        0
## Especie2        0        1        4        8        1
## Especie3        2        5        1        4        0
## Especie4        0        3        2        4        1
nrow(AM1);ncol(AM1)
## [1] 4
## [1] 5
names(AM1); row.names(AM1);str(AM1)
## [1] "Estacao1" "Estacao2" "Estacao3" "Estacao4" "Estacao5"
## [1] "Especie1" "Especie2" "Especie3" "Especie4"
## 'data.frame':    4 obs. of  5 variables:
##  $ Estacao1: int  2 0 2 0
##  $ Estacao2: int  5 1 5 3
##  $ Estacao3: int  4 4 1 2
##  $ Estacao4: int  8 8 4 4
##  $ Estacao5: int  0 1 0 1
library(vegan)
AM1t<-log1p(AM1)
AM1t
##          Estacao1  Estacao2  Estacao3 Estacao4  Estacao5
## Especie1 1.098612 1.7917595 1.6094379 2.197225 0.0000000
## Especie2 0.000000 0.6931472 1.6094379 2.197225 0.6931472
## Especie3 1.098612 1.7917595 0.6931472 1.609438 0.0000000
## Especie4 0.000000 1.3862944 1.0986123 1.609438 0.6931472

Bray-Curtis

mAM1<-vegdist(AM1t, "bray")
mAM1
##           Especie1  Especie2  Especie3
## Especie2 0.2430928                    
## Especie3 0.1264995 0.4231163          
## Especie4 0.2869807 0.1795269 0.2607788
dAM1<-hclust(mAM1, method="average")
dAM1
## 
## Call:
## hclust(d = mAM1, method = "average")
## 
## Cluster method   : average 
## Distance         : bray 
## Number of objects: 4

Gráfico

plot(dAM1, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma AM1",xlab="Amostras",cex.lab=1.2)
rect.hclust(dAM1,2, border=2:6)

Grupos

gAM1<- cutree(dAM1,2)
gAM1
## Especie1 Especie2 Especie3 Especie4 
##        1        2        1        2
cgAM1<- cbind(AM1, cluster=gAM1)
cgAM1
##          Estacao1 Estacao2 Estacao3 Estacao4 Estacao5 cluster
## Especie1        2        5        4        8        0       1
## Especie2        0        1        4        8        1       2
## Especie3        2        5        1        4        0       1
## Especie4        0        3        2        4        1       2

Distância Euclidiana

mAM1e<-vegdist(AM1t, "euclidean")
mAM1e
##          Especie1 Especie2 Especie3
## Especie2 1.701279                  
## Especie3 1.088615 2.019761         
## Especie4 1.567878 1.042540 1.419932
dAM1e<-hclust(mAM1e, method="complete")
dAM1e
## 
## Call:
## hclust(d = mAM1e, method = "complete")
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 4

Gráfico

plot(dAM1e, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma AM1",xlab="Amostras",cex.lab=1.2)
rect.hclust(dAM1e,2, border=2:6)

Grupos

gAM1e<- cutree(dAM1e,2)
gAM1e
## Especie1 Especie2 Especie3 Especie4 
##        1        2        1        2
cgAM1e<- cbind(AM1, cluster=gAM1e)
cgAM1e
##          Estacao1 Estacao2 Estacao3 Estacao4 Estacao5 cluster
## Especie1        2        5        4        8        0       1
## Especie2        0        1        4        8        1       2
## Especie3        2        5        1        4        0       1
## Especie4        0        3        2        4        1       2

2) Faça uma matriz com o índice de Jaccard e com o índice de Sorensen com os dados abaixo.

Ambos os índices tiveram resultados semelhantes.


AM2<-read.table("AM2.txt",header=T)
## Warning in read.table("AM2.txt", header = T): incomplete final line found by
## readTableHeader on 'AM2.txt'
AM2
##          Estacao1 Estacao2 Estacao3 Estacao4
## Especie1        1        0        0        1
## Especie2        1        1        1        0
## Especie3        1        0        1        1
## Especie4        0        1        1        1
nrow(AM2);ncol(AM2)
## [1] 4
## [1] 4
names(AM2); row.names(AM2);str(AM2)
## [1] "Estacao1" "Estacao2" "Estacao3" "Estacao4"
## [1] "Especie1" "Especie2" "Especie3" "Especie4"
## 'data.frame':    4 obs. of  4 variables:
##  $ Estacao1: int  1 1 1 0
##  $ Estacao2: int  0 1 0 1
##  $ Estacao3: int  0 1 1 1
##  $ Estacao4: int  1 0 1 1
library(vegan)
AM2t<-log1p(AM2)
AM2t
##           Estacao1  Estacao2  Estacao3  Estacao4
## Especie1 0.6931472 0.0000000 0.0000000 0.6931472
## Especie2 0.6931472 0.6931472 0.6931472 0.0000000
## Especie3 0.6931472 0.0000000 0.6931472 0.6931472
## Especie4 0.0000000 0.6931472 0.6931472 0.6931472

Índice de Soresen

The naming conventions vary. The one adopted here is traditional rather than truthful to priority. The function finds either quantitative or binary variants of the indices under the same name, which correctly may refer only to one of these alternatives For instance, the Bray index is known also as Steinhaus, Czekanowski and Sørensen index.
mAM2<-vegdist(AM2t, "bray")
mAM2
##           Especie1  Especie2  Especie3
## Especie2 0.6000000                    
## Especie3 0.2000000 0.3333333          
## Especie4 0.6000000 0.3333333 0.3333333
dAM2<-hclust(mAM2, method="average")
dAM2
## 
## Call:
## hclust(d = mAM2, method = "average")
## 
## Cluster method   : average 
## Distance         : bray 
## Number of objects: 4

Gráfico

plot(dAM2, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma AM2",xlab="Amostras",cex.lab=1.2)
rect.hclust(dAM2,2, border=2:6)

Grupos

gAM2<- cutree(dAM2,2)
gAM2
## Especie1 Especie2 Especie3 Especie4 
##        1        2        1        2
cgAM2<- cbind(AM2, cluster=gAM2)
cgAM2
##          Estacao1 Estacao2 Estacao3 Estacao4 cluster
## Especie1        1        0        0        1       1
## Especie2        1        1        1        0       2
## Especie3        1        0        1        1       1
## Especie4        0        1        1        1       2

Índice de Jaccard

mAM2j<-vegdist(AM2t, "jaccard")
mAM2j
##           Especie1  Especie2  Especie3
## Especie2 0.7500000                    
## Especie3 0.3333333 0.5000000          
## Especie4 0.7500000 0.5000000 0.5000000
dAM2j<-hclust(mAM2j, method="average")
dAM2j
## 
## Call:
## hclust(d = mAM2j, method = "average")
## 
## Cluster method   : average 
## Distance         : jaccard 
## Number of objects: 4

Gráfico

plot(dAM2j, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma AM2",xlab="Amostras",cex.lab=1.2)
rect.hclust(dAM2j,2, border=2:6)

Grupos

gAM2j<- cutree(dAM2j,2)
gAM2j
## Especie1 Especie2 Especie3 Especie4 
##        1        2        1        2
cgAM2j<- cbind(AM2, cluster=gAM2j)
cgAM2j
##          Estacao1 Estacao2 Estacao3 Estacao4 cluster
## Especie1        1        0        0        1       1
## Especie2        1        1        1        0       2
## Especie3        1        0        1        1       1
## Especie4        0        1        1        1       2

3) Faça um estudo entre vários índices e indique o mais adequado para os dados abaixo.

Utilizando o coeficiente de Soresen e Jaccard resultaram em 5 grupos, em ordem decrescente de semelhança: 2 (Especie2 e Especie4), 4 (Especie5), 3 (Especie3), 1 (Especie1) e 5 (Especie5). Enquanto o coeficiente de Distância Euclidiana gerou 5 grupos, em ordem decrescente de semelhança: 2 (Especie2 e Especie6), 4 (Especie4), 5 (Especie5), o 1 (Especie1) e 3 (Especie3) são igualmente dissemelhante dos outros grupos. Os índices de Soresen e Jaccard são mais adequados por serem índices assimétricos, que não considera o duplo zero, ou seja considera que o zero pode ser falta de informação.


AM3<-read.table("AM3.txt",header=T)
AM3
##          X1986 X1987 X1988 X1989
## Especie1     0     1    15     2
## Especie2     4     4     2     2
## Especie3     0    12     1    10
## Especie4    25     2     1     4
## Especie5     2     0     1     5
## Especie6     7     2     0     0
nrow(AM3);ncol(AM3)
## [1] 6
## [1] 4
names(AM3); row.names(AM3);str(AM3)
## [1] "X1986" "X1987" "X1988" "X1989"
## [1] "Especie1" "Especie2" "Especie3" "Especie4" "Especie5" "Especie6"
## 'data.frame':    6 obs. of  4 variables:
##  $ X1986: int  0 4 0 25 2 7
##  $ X1987: int  1 4 12 2 0 2
##  $ X1988: int  15 2 1 1 1 0
##  $ X1989: int  2 2 10 4 5 0
library(vegan)
AM3t<-log1p(AM3)
AM3t
##             X1986     X1987     X1988    X1989
## Especie1 0.000000 0.6931472 2.7725887 1.098612
## Especie2 1.609438 1.6094379 1.0986123 1.098612
## Especie3 0.000000 2.5649494 0.6931472 2.397895
## Especie4 3.258097 1.0986123 0.6931472 1.609438
## Especie5 1.098612 0.0000000 0.6931472 1.791759
## Especie6 2.079442 1.0986123 0.0000000 0.000000

Índice Soresen

The naming conventions vary. The one adopted here is traditional rather than truthful to priority. The function finds either quantitative or binary variants of the indices under the same name, which correctly may refer only to one of these alternatives For instance, the Bray index is known also as Steinhaus, Czekanowski and Sørensen index.
mAM3<-vegdist(AM3t, "bray")
mAM3
##           Especie1  Especie2  Especie3  Especie4  Especie5
## Especie2 0.4207932                                        
## Especie3 0.5137331 0.3856270                              
## Especie4 0.5572014 0.2547142 0.4476462                    
## Especie5 0.5601893 0.3576680 0.4621129 0.3358861          
## Especie6 0.8209478 0.3697925 0.7512777 0.3538799 0.6750424
dAM3<-hclust(mAM3, method="average")
dAM3
## 
## Call:
## hclust(d = mAM3, method = "average")
## 
## Cluster method   : average 
## Distance         : bray 
## Number of objects: 6

Gráfico

plot(dAM3, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma AM3",xlab="Amostras",cex.lab=1.2)
rect.hclust(dAM3,5, border=2:6)

Grupos

gAM3<- cutree(dAM3,5)
gAM3
## Especie1 Especie2 Especie3 Especie4 Especie5 Especie6 
##        1        2        3        2        4        5
cgAM3<- cbind(AM3, cluster=gAM3)
cgAM3
##          X1986 X1987 X1988 X1989 cluster
## Especie1     0     1    15     2       1
## Especie2     4     4     2     2       2
## Especie3     0    12     1    10       3
## Especie4    25     2     1     4       2
## Especie5     2     0     1     5       4
## Especie6     7     2     0     0       5

Índice de Jaccard

mAM3j<-vegdist(AM3t, "jaccard")
mAM3j
##           Especie1  Especie2  Especie3  Especie4  Especie5
## Especie2 0.5923356                                        
## Especie3 0.6787631 0.5566101                              
## Especie4 0.7156446 0.4060116 0.6184470                    
## Especie5 0.7181043 0.5268858 0.6321166 0.5028663          
## Especie6 0.9016709 0.5399248 0.8579766 0.5227641 0.8060004
dAM3j<-hclust(mAM3j, method="average")
dAM3j
## 
## Call:
## hclust(d = mAM3j, method = "average")
## 
## Cluster method   : average 
## Distance         : jaccard 
## Number of objects: 6

Gráfico

plot(dAM3j, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma AM3",xlab="Amostras",cex.lab=1.2)
rect.hclust(dAM3j,5, border=2:6)

Grupos

gAM3j<- cutree(dAM3j,5)
gAM3j
## Especie1 Especie2 Especie3 Especie4 Especie5 Especie6 
##        1        2        3        2        4        5
cgAM3j<- cbind(AM3, cluster=gAM3j)
cgAM3j
##          X1986 X1987 X1988 X1989 cluster
## Especie1     0     1    15     2       1
## Especie2     4     4     2     2       2
## Especie3     0    12     1    10       3
## Especie4    25     2     1     4       2
## Especie5     2     0     1     5       4
## Especie6     7     2     0     0       5

Distância Euclidiana

mAM3e<-vegdist(AM3t, "euclidean")
mAM3e
##          Especie1 Especie2 Especie3 Especie4 Especie5
## Especie2 2.496413                                    
## Especie3 3.084778 2.314267                           
## Especie4 3.919772 1.845092 3.658825                  
## Especie5 2.547927 1.869783 2.855401 2.429725         
## Especie6 3.658234 1.701689 3.564348 2.111864 2.420709
dAM3e<-hclust(mAM3e, method="average")
dAM3e
## 
## Call:
## hclust(d = mAM3e, method = "average")
## 
## Cluster method   : average 
## Distance         : euclidean 
## Number of objects: 6

Gráfico

plot(dAM3e, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma AM3",xlab="Amostras",cex.lab=1.2)
rect.hclust(dAM3e,5, border=2:6)

Grupos

gAM3e<- cutree(dAM3e,5)
gAM3e
## Especie1 Especie2 Especie3 Especie4 Especie5 Especie6 
##        1        2        3        4        5        2
cgAM3e<- cbind(AM3, cluster=gAM3e)
cgAM3e
##          X1986 X1987 X1988 X1989 cluster
## Especie1     0     1    15     2       1
## Especie2     4     4     2     2       2
## Especie3     0    12     1    10       3
## Especie4    25     2     1     4       4
## Especie5     2     0     1     5       5
## Especie6     7     2     0     0       2

4) Faça a matriz de distância dos dados do arquivo exerpast.txt*. Justifique qual a transformação dos dados realizada.

O arquivo exerpast.txt não estava anexado ao exercício, impossibilitando a realização dessa atividade.


5) Faça a matriz de similaridade dos dados do arquivo biot1.txt*. Justifique qual a transformação dos dados realizada.

O arquivo biot1.txt não estava anexado ao exercício, impossibilitando a realização dessa atividade.


Ordenação: Métodos Indiretos

library(vegan)
library(BBmisc)
## Warning: package 'BBmisc' was built under R version 4.2.3
## 
## Attaching package: 'BBmisc'
## The following object is masked from 'package:base':
## 
##     isFALSE
library(factoextra)
## Carregando pacotes exigidos: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(ggplot2)
library(FactoMineR)
library(ade4)
## 
## Attaching package: 'ade4'
## The following object is masked from 'package:FactoMineR':
## 
##     reconst
library(gplots)
## Warning: package 'gplots' was built under R version 4.2.3
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess

1) Os dados abaixo mostram a contaminação por HPA (hidrocarbonetos) no estuário do Pina. Elabore uma hipótese. Faça as análises necessárias para responder à hipótese (descritivas e inferenciais).Apresente a sequencia de análises de modo didático, no programa escolhido. Destaque as conclusões do trabalho.

Quanto mais pireno, fluoreno e benzopireno maior a concentração de HPAs no estuário. O benzopireno atuou como indicador negativo da presença de HPAs, enquanto o pireno e fluoreno estavam mais presentes nas regiões com mais HPAs.


O1<-read.table("O1.txt",header=T)
O1
##                     st1   st2   st3   st4   st5   st6   st7   st8  st9   st10
## OM                 14.1   5.3   6.0   4.0   4.3  10.9  12.2   6.7 10.4   8.50
## Sand               26.6  20.9  78.9  42.4  51.9  20.8   3.6  21.7 51.3  19.70
## Silt               50.2  41.9  14.0  30.3  38.4  40.5  59.0  46.9 38.9  79.70
## Clay               23.2  37.0   7.0  27.3   9.8  38.7  37.4  31.3  9.7   0.58
## Acenaphtylene       2.1   3.5   0.7   1.6   1.1   3.0   2.7   2.7  1.7   1.60
## Fluorene            5.1  10.0   6.0  11.2   3.3   5.0   3.5   2.4  1.4   1.00
## Phenanthrene       21.9  31.4  23.8  37.4  13.7  31.2  14.4  14.6 11.4  11.10
## Anthracene          2.6   5.8   2.5   5.3   1.3   5.6  14.1   2.5  1.8   2.10
## Fluoranthene       38.9  61.5  54.4  45.3  26.4  59.2  34.1  23.3  0.2  35.70
## Pyrene             34.8  91.1  43.6  44.4  24.6  56.8  31.4  25.3 17.7  27.50
## Benzoanthracene    16.4  28.6  16.9  15.3   0.2  30.2  14.8  10.8  0.2  17.70
## Benzofluoranthene  19.8  24.6  13.7  20.0  11.8  22.7  18.6  12.9  7.8  11.10
## Benzopyrene        21.1  24.1  20.7  19.9  10.1  32.6  15.4  13.5 10.6  16.70
## Indenopyrene       20.1  37.9  24.0  25.1   0.2  38.0  23.1   0.2 13.2  17.40
## HPAsLMW            42.5  75.1  43.3  77.6  26.5  58.1  46.4  32.4 24.1  21.70
## HPAsHMW           233.0 422.5 268.0 256.0 119.4 359.3 204.9 136.3 83.9 178.90
O1n<-normalize(O1, method =
"standardize", range = c(0, 1), margin = 1L,
on.constant = "quiet")
O1acp = prcomp(O1n, scale. = TRUE)
O1acp
## Standard deviations (1, .., p=10):
##  [1] 3.05811609 0.60336726 0.40242820 0.23971859 0.20080994 0.10752238
##  [7] 0.07986192 0.06614982 0.03844117 0.01852973
## 
## Rotation (n x k) = (10 x 10):
##            PC1          PC2         PC3         PC4          PC5         PC6
## st1  0.3255490  0.133607212 -0.04627801  0.05254377 -0.075024713  0.08571836
## st2  0.3201026  0.292489307  0.17077340 -0.02671411 -0.168585195  0.17269581
## st3  0.3169114 -0.035534320  0.56078821  0.36397030  0.037913806  0.23682462
## st4  0.3213449  0.127440230  0.31904322 -0.27402295  0.004820482 -0.79293709
## st5  0.3136997 -0.406310308  0.10391046  0.14263428  0.625657058 -0.07998598
## st6  0.3208127  0.295084080  0.12919637  0.02734769 -0.184141420  0.31261695
## st7  0.3183827  0.262194970 -0.34069064 -0.28014395 -0.133766497 -0.07756532
## st8  0.3206857  0.006432586 -0.31730501 -0.43243187  0.476611408  0.31393942
## st9  0.2890960 -0.747002982 -0.03294080 -0.24417920 -0.534937161  0.08272292
## st10 0.3142375 -0.011476165 -0.55416247  0.66540866 -0.089023247 -0.24989767
##               PC7         PC8         PC9        PC10
## st1  -0.254297941  0.22669466 -0.75048143 -0.42309316
## st2   0.804235042 -0.21235559 -0.02147516 -0.17751691
## st3  -0.337320181 -0.05909603  0.42009364 -0.31633438
## st4  -0.001650828  0.25597456  0.08911392  0.03714588
## st5   0.110234801 -0.36088277 -0.30323103  0.27051958
## st6  -0.145309695  0.20650307 -0.08183185  0.76842220
## st7  -0.355815523 -0.68388042  0.12553995 -0.03699020
## st8   0.037498332  0.40385678  0.31127508 -0.14941395
## st9   0.041588275  0.04256593  0.02887051  0.01804688
## st10  0.108369326  0.17033742  0.19941165  0.01899081
O1acp$sdev
##  [1] 3.05811609 0.60336726 0.40242820 0.23971859 0.20080994 0.10752238
##  [7] 0.07986192 0.06614982 0.03844117 0.01852973
head(O1acp$rotation)
##           PC1         PC2         PC3         PC4          PC5         PC6
## st1 0.3255490  0.13360721 -0.04627801  0.05254377 -0.075024713  0.08571836
## st2 0.3201026  0.29248931  0.17077340 -0.02671411 -0.168585195  0.17269581
## st3 0.3169114 -0.03553432  0.56078821  0.36397030  0.037913806  0.23682462
## st4 0.3213449  0.12744023  0.31904322 -0.27402295  0.004820482 -0.79293709
## st5 0.3136997 -0.40631031  0.10391046  0.14263428  0.625657058 -0.07998598
## st6 0.3208127  0.29508408  0.12919637  0.02734769 -0.184141420  0.31261695
##              PC7         PC8         PC9        PC10
## st1 -0.254297941  0.22669466 -0.75048143 -0.42309316
## st2  0.804235042 -0.21235559 -0.02147516 -0.17751691
## st3 -0.337320181 -0.05909603  0.42009364 -0.31633438
## st4 -0.001650828  0.25597456  0.08911392  0.03714588
## st5  0.110234801 -0.36088277 -0.30323103  0.27051958
## st6 -0.145309695  0.20650307 -0.08183185  0.76842220
head(O1acp$x)
##                      PC1         PC2         PC3         PC4           PC5
## OM            -1.5292234 -0.04581607 -0.10082961  0.02023706 -0.1531494795
## Sand           0.3804630 -1.92932175  0.64461439  0.07054242  0.0708335147
## Silt           1.0180441 -0.85118193 -1.34530864  0.09601473  0.0279692617
## Clay          -0.7395254  0.30703570 -0.17815076 -0.62657631  0.1585318253
## Acenaphtylene -1.9702098  0.16889039  0.02878939  0.07100249  0.0008884248
## Fluorene      -1.8297802  0.20418364  0.14971024  0.06311325  0.0326863297
##                       PC6         PC7           PC8          PC9         PC10
## OM             0.09585991 -0.06310650 -0.0029821872 -0.064896522 -0.037234538
## Sand           0.05998324 -0.03794383 -0.0068024746  0.023369178 -0.002066773
## Silt          -0.06499342  0.02001271  0.0002074494  0.007324113  0.003447663
## Clay           0.18906844 -0.06304991 -0.0155008528  0.024613354  0.012429697
## Acenaphtylene  0.04889775  0.04069852  0.0064420961 -0.001648160 -0.001279597
## Fluorene      -0.04206926  0.04718992  0.0017283611 -0.023822808 -0.017875470
biplot(O1acp)

autovalores <- get_eigenvalue(O1acp)
fviz_eig(O1acp)

O1s = as.data.frame(O1acp$x)
ggplot(data = O1s, aes(x = PC1, y = PC2, label =
rownames(O1s))) +
geom_hline(yintercept = 0, colour = "gray65") + geom_vline(xintercept = 0, colour = "gray65") +
geom_text(colour = "blue", alpha = 0.8, size = 4) +
ggtitle("O1acp")

fviz_pca_ind(O1acp, col.ind = "cos2", gradient.cols =
c("#00AFBB", "#E7B800", "#FC4E07"),repel = TRUE)

fviz_pca_var(O1acp, col.var = "contrib",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE)

fviz_pca_biplot(O1acp, repel = TRUE,col.var = "#2E9FDF",
col.ind = "#696969")

O1acp$eig
## NULL
O1acp$var$coord
## NULL
head(O1acp$ind$coord)
## NULL
O1acp = dudi.pca(O1, nf = 5, scannf = FALSE)
O1acp$eig
##  [1] 9.3520740010 0.3640520494 0.1619484583 0.0574650004 0.0403246302
##  [6] 0.0115610613 0.0063779260 0.0043757992 0.0014777233 0.0003433508
O1acp$c1
##             CS1          CS2         CS3         CS4          CS5
## st1  -0.3255490  0.133607212  0.04627801  0.05254377 -0.075024713
## st2  -0.3201026  0.292489307 -0.17077340 -0.02671411 -0.168585195
## st3  -0.3169114 -0.035534320 -0.56078821  0.36397030  0.037913806
## st4  -0.3213449  0.127440230 -0.31904322 -0.27402295  0.004820482
## st5  -0.3136997 -0.406310308 -0.10391046  0.14263428  0.625657058
## st6  -0.3208127  0.295084080 -0.12919637  0.02734769 -0.184141420
## st7  -0.3183827  0.262194970  0.34069064 -0.28014395 -0.133766497
## st8  -0.3206857  0.006432586  0.31730501 -0.43243187  0.476611408
## st9  -0.2890960 -0.747002982  0.03294080 -0.24417920 -0.534937161
## st10 -0.3142375 -0.011476165  0.55416247  0.66540866 -0.089023247
O1acp$co
##           Comp1        Comp2       Comp3       Comp4         Comp5
## st1  -0.9955666  0.080614217  0.01862358  0.01259572 -0.0150657077
## st2  -0.9789109  0.176478472 -0.06872403 -0.00640387 -0.0338535821
## st3  -0.9691517 -0.021440245 -0.22567699  0.08725045  0.0076134690
## st4  -0.9827101  0.076893262 -0.12839199 -0.06568839  0.0009680007
## st5  -0.9593301 -0.245154337 -0.04181650  0.03419209  0.1256381536
## st6  -0.9810826  0.178044072 -0.05199226  0.00655575 -0.0369774267
## st7  -0.9736512  0.158199860  0.13710352 -0.06715571 -0.0268616416
## st8  -0.9806940  0.003881212  0.12769249 -0.10366196  0.0957083061
## st9  -0.8840890 -0.450717142  0.01325631 -0.05853429 -0.1074206968
## st10 -0.9609747 -0.006924342  0.22301061  0.15951082 -0.0178767524
O1rAC=CA(O1, ncp = 5, graph = TRUE)
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

fviz_ca_row(O1rAC)

fviz_ca_col(O1rAC)

fviz_ca_biplot(O1rAC)

2) Imagine um problema de comunidades para responder com os dados abaixo. mostre a sequência da análise multivariada. Explique a escolha de transformação, coeficiente de associação e método multivariado.

O uso de transformação dos dados auxilia a diminuir a influência excessiva das espécies dominantes, além de evitar uma grande diferença (a grau de magnitude) entre as réplicas. O índice de Jaccard foi utilizado por se tratar de um índice assimétrico (não considera o duplo zero; considera que o zero pode ser falta de informação). Enquanto a técnica de cluster médio visou evitar algum tipo de tendência nos resultados.


O2<-read.table("O2.txt",header=T)
O2
##           Area1x1 Area1x2 Area1x3 Area1x4 Area2x1 Area2x2 Area2x3 Area2x4
## Especie1        0       1       1       1       0       0       0       1
## Especie2        0       1       1       0       1       0       0       1
## Especie3        0       1       1       1       0       0       0       1
## Especie4        1       0       0       0       1       1       1       0
## Especie5        1       1       1       1       1       1       1       0
## Especie6        1       1       1       1       0       1       1       0
## Especie7        1       1       1       0       1       0       0       1
## Especie8        0       1       1       1       0       0       0       1
## Especie9        0       1       1       1       0       0       0       1
## Especie10       0       0       0       0       0       0       0       1
nrow(O2);ncol(O2)
## [1] 10
## [1] 8
names(O2); row.names(O2);str(O2)
## [1] "Area1x1" "Area1x2" "Area1x3" "Area1x4" "Area2x1" "Area2x2" "Area2x3"
## [8] "Area2x4"
##  [1] "Especie1"  "Especie2"  "Especie3"  "Especie4"  "Especie5"  "Especie6" 
##  [7] "Especie7"  "Especie8"  "Especie9"  "Especie10"
## 'data.frame':    10 obs. of  8 variables:
##  $ Area1x1: int  0 0 0 1 1 1 1 0 0 0
##  $ Area1x2: int  1 1 1 0 1 1 1 1 1 0
##  $ Area1x3: int  1 1 1 0 1 1 1 1 1 0
##  $ Area1x4: int  1 0 1 0 1 1 0 1 1 0
##  $ Area2x1: int  0 1 0 1 1 0 1 0 0 0
##  $ Area2x2: int  0 0 0 1 1 1 0 0 0 0
##  $ Area2x3: int  0 0 0 1 1 1 0 0 0 0
##  $ Area2x4: int  1 1 1 0 0 0 1 1 1 1
O2t<-log1p(O2)
O2t
##             Area1x1   Area1x2   Area1x3   Area1x4   Area2x1   Area2x2   Area2x3
## Especie1  0.0000000 0.6931472 0.6931472 0.6931472 0.0000000 0.0000000 0.0000000
## Especie2  0.0000000 0.6931472 0.6931472 0.0000000 0.6931472 0.0000000 0.0000000
## Especie3  0.0000000 0.6931472 0.6931472 0.6931472 0.0000000 0.0000000 0.0000000
## Especie4  0.6931472 0.0000000 0.0000000 0.0000000 0.6931472 0.6931472 0.6931472
## Especie5  0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472
## Especie6  0.6931472 0.6931472 0.6931472 0.6931472 0.0000000 0.6931472 0.6931472
## Especie7  0.6931472 0.6931472 0.6931472 0.0000000 0.6931472 0.0000000 0.0000000
## Especie8  0.0000000 0.6931472 0.6931472 0.6931472 0.0000000 0.0000000 0.0000000
## Especie9  0.0000000 0.6931472 0.6931472 0.6931472 0.0000000 0.0000000 0.0000000
## Especie10 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
##             Area2x4
## Especie1  0.6931472
## Especie2  0.6931472
## Especie3  0.6931472
## Especie4  0.0000000
## Especie5  0.0000000
## Especie6  0.0000000
## Especie7  0.6931472
## Especie8  0.6931472
## Especie9  0.6931472
## Especie10 0.6931472
mO2<-vegdist(O2t, "jaccard")
mO2
##            Especie1  Especie2  Especie3  Especie4  Especie5  Especie6  Especie7
## Especie2  0.4000000                                                            
## Especie3  0.0000000 0.4000000                                                  
## Especie4  1.0000000 0.8571429 1.0000000                                        
## Especie5  0.6250000 0.6250000 0.6250000 0.4285714                              
## Especie6  0.5714286 0.7500000 0.5714286 0.5714286 0.1428571                    
## Especie7  0.5000000 0.2000000 0.5000000 0.7142857 0.5000000 0.6250000          
## Especie8  0.0000000 0.4000000 0.0000000 1.0000000 0.6250000 0.5714286 0.5000000
## Especie9  0.0000000 0.4000000 0.0000000 1.0000000 0.6250000 0.5714286 0.5000000
## Especie10 0.7500000 0.7500000 0.7500000 1.0000000 1.0000000 1.0000000 0.8000000
##            Especie8  Especie9
## Especie2                     
## Especie3                     
## Especie4                     
## Especie5                     
## Especie6                     
## Especie7                     
## Especie8                     
## Especie9  0.0000000          
## Especie10 0.7500000 0.7500000
dO2<-hclust(mO2, method="average")
dO2
## 
## Call:
## hclust(d = mO2, method = "average")
## 
## Cluster method   : average 
## Distance         : jaccard 
## Number of objects: 10

Gráfico

plot(dO2, hang=-1,ann=FALSE, cex.axis=1.1,col=1)
title(ylab="Dissimilaridade",
main="Dendrograma O2",xlab="Amostras",cex.lab=1.2)
rect.hclust(dO2,5, border=2:6)

Grupos

gO2<- cutree(dO2,5)
gO2
##  Especie1  Especie2  Especie3  Especie4  Especie5  Especie6  Especie7  Especie8 
##         1         2         1         3         4         4         2         1 
##  Especie9 Especie10 
##         1         5
cgO2<- cbind(O2, cluster=gO2)
cgO2
##           Area1x1 Area1x2 Area1x3 Area1x4 Area2x1 Area2x2 Area2x3 Area2x4
## Especie1        0       1       1       1       0       0       0       1
## Especie2        0       1       1       0       1       0       0       1
## Especie3        0       1       1       1       0       0       0       1
## Especie4        1       0       0       0       1       1       1       0
## Especie5        1       1       1       1       1       1       1       0
## Especie6        1       1       1       1       0       1       1       0
## Especie7        1       1       1       0       1       0       0       1
## Especie8        0       1       1       1       0       0       0       1
## Especie9        0       1       1       1       0       0       0       1
## Especie10       0       0       0       0       0       0       0       1
##           cluster
## Especie1        1
## Especie2        2
## Especie3        1
## Especie4        3
## Especie5        4
## Especie6        4
## Especie7        2
## Especie8        1
## Especie9        1
## Especie10       5

3) Os dados da pesca de fundo da plataforma continental de um país foram disponibilizados (gfa.txt). Analise os dados da comunidade, apresentando e discutindo os resultados.

A matriz não está abrindo.


4) Um emissário submarino foi monitorado durante 11 anos. O emissário localizado em Loch Linnhe (lnmb.txt), iniciou as emissões em 1966 com aumento em 1970 e redução drástica da poluição em 1972. Com a analise multivariada, mostre as diferenças na macrofauna neste monitoramento ambiental. Explique as escolhas metodológicas.

Houve grande diminuição na diversidade de espécies conforme o aumento da poluição, posteriormente, em 1973, após a drástica redução da poluição, em 1972, a diversidade voltou a crescer. O uso de transformação dos dados auxilia a diminuir a influência excessiva das espécies dominantes, além de evitar uma grande diferença (a grau de magnitude) entre as réplicas. O log1p é uma das transformações indicadas para dados bióticos.


O4<-read.table("O4.txt",header=T)
O4
##       A1963 A1964 A1965 A1966 A1967 A1968 A1969 A1970 A1971 A1972 A1973
## sp1       0     0     0     0     0     0   124   146    58     0     4
## sp2       2     0     0     1     1     2     0     4     4    30     0
## sp3       0     0     0    44    26    18    20     0    15    18    13
## sp4       0     0     1    12    36    47    25     0     5    58     0
## sp5      77     1     0    46   186   438   241     0     0     0   246
## sp6       0     0     0     0   213     0   997     0     0     0     0
## sp7       2     0     0     0     0     0     0     0     0     0     0
## sp8       0     0     0     0     0   101     2     0     1     0    13
## sp9       0     0     0     0     0     0     0     0     7     0     0
## sp10      2     5     9     2    13     0    58    45    27   136    15
## sp11      2    20    27     0     0     0     0     0     0     0     0
## sp12      2   125     0     0     4     5   112     2   117    55     0
## sp13      0     1     1     0     7     9     2     1    32     2     0
## sp14      0     0     4     7    36     3    32    73    34     0     1
## sp15      0     0     0     2     1     0     0     0    24     0     0
## sp16      0     0     0     0     7     0     0     0     0     0     0
## sp17      6     0     0     0    11     0     2     0     1     0     0
## sp18      0     0     0     9     2     0     0     2     1     3     0
## sp19      0     2     0     0     0     0     0     0     0     0     0
## sp20      0     0     0     1    40     7     2    31     1     0     5
## sp21      0     0     1     8    24     0    21     0     0     0    23
## sp24      0     0     0     2     0     0     0     0     0     0     0
## sp25      2     0     0     0     0     0   229     0    22     0     0
## sp26      2   426     0     0     0     0   235    45     0     0     0
## sp27      2     0     6    47    26     6    54     0     2    10    33
## sp28      0     1     0     0     0     0     0     0     0     0     0
## sp29     48     3   122   135   195   398   221   525   119   211    44
## sp30     10    18     9     5    67    48    77   198    38     4    37
## sp31      8     0     3    33     0     0     0     0     0     0     0
## sp32      0     0     0     0     0     0     4     0     0     0     0
## sp33      0     0     0     0     0     0     5     0     0     0     0
## sp34      2     0     0    17     4   569    98    17   101   192    30
## sp35      0    23     4     0     1     0     1    12     0     0     1
## sp36      0     0     0     0     2     2     1     0     0     0     1
## sp37      0    17     1     2     1     0     0     0     0     0     0
## sp38      0     0     2     0     0     0     0     0     0     0     0
## sp39      0     1     0     0     0     0     0     0     0     0     0
## sp40      8     0     0    93    87     4     0     0     0     0     0
## sp41      0     0     0     4     0    47     0     1     0     0     0
## sp42      4    18    48     9    59    14     8   490     0     0    43
## sp43      0     0     0     0     0     0     0     0    10     0     0
## sp44     74     2     0     0     0     0     0     0    24     0     0
## sp45      0     0     0     0    10     0     0     0     0     0     0
## sp46      4     9    17     9    31     3    37     7     0     0     0
## sp47      0     0     0     0     0     0     0     0     5     0     0
## sp48      0     2     0     0     0     0     0     0     0     0     0
## sp49      2     0     0     0     0     0     0     0     0     0     0
## sp50      2     0     0     0     0     0     0     0     0     0     0
## sp51      0     3     2     0     0     2     1     0     0     0     5
## sp52      0     1     0    53   233   448     8     0     0     0     0
## sp53      0     0     0     1     0     0     0     0     0     0     0
## sp54      0     0     0    35     0     0     0     0     0   776     0
## sp56      6     0     0     0     0     0     0     0     0     0     9
## sp57      2     0     0     0     0     0     0     0     0     0     0
## sp59      0     0     0     0     0     2     4     0     4     0     1
## sp60      0     0     0   262     0     0     0     0     0     0     0
## sp61      8    18    56     0     0     0    21     1     8     6     2
## sp62      0     0     0     0     0    61   194     0     1     0    73
## sp63      0     0     0     0   905    88     0     0     0     0     0
## sp64     44     0     0   205     0    32    94     0     6     0     0
## sp65      0     0     0     0     0     0     0     0    73     0     0
## sp66    176     0     0     2     0   156     0     4   103    21     0
## sp67      2     1     2     0     0     9     0   107     0     0     6
## sp68      2     0     0   116    28  1158   437     0     0     0   167
## sp70      0     0     0    44   126     0    15     0     0     0     0
## sp71      0     0     0     0     2     0     0     0     0     0     0
## sp72      6     0    43    23   459    26     4     0     0     0     0
## sp73      6     0    27     0     3   114   107     0     0     0   490
## sp74      0     0    69     0     0     0     0     0     0     0     0
## sp75      0     6    13     0     0     0     0     2     0     0     1
## sp76      0    10    44     0     0     0     4     7     2     0   135
## sp77     32     1     0     4     0     2     0     0     0     0     0
## sp78     80     0    20     0    37     0    17  2644    84     0     0
## sp79     18     0     9     0     7     1     0     0     0     0     0
## sp80      0     0     0     0    36     0     0     0     0     0     0
## sp81      0    46     0     0     0     0    37     0     0     0     0
## sp82     12     0     0   478   211    55     0     0     0     0     0
## sp83      0     0    42     0     0    70    49   305   437     0   126
## sp84      6     0     0     0     0     0     0     0     0     0     0
## sp85      0     0     0     0     4     0     0     0     0     0     0
## sp86     28     0     0     0     0     0     0     0     0     0     0
## sp87    280   217    17  4579  1482   817  1649     0     0     0     0
## sp88      0    11     0    23   172     0     0     0     0     0     0
## sp90      0     9     0     0     0     0     0     0     0     0     0
## sp91      0     0     0     4     0    15     7     4  1220  1585     7
## sp92      0     0     1     0     0     0     0     0     0     0     0
## sp93      0    21     0    57     0    64    46     0     0     0     0
## sp95      0     0     5     0     9     0     0     0     3     0     0
## sp96      1     7    10     4     0     5     0     2     4     0     0
## sp97      0     0     9     0     0     0     0     0     0     0     0
## sp98      0     0     0     0     0     0     0     0    24   436     8
## sp99    357   798   106   517  1664  1224   220   357     0    46   403
## sp100  2739  1741    26  3610  8602  3456  2022     0     0    51  4905
## sp101    39   172     0    73   383   647    79     0     0     0     0
## sp102     0     0     2     0     0    12     0     0     0     1     0
## sp103     0     0     0     0     0     0     0     0     0     0    51
## sp104     0     0    26     0     0     0     0     0     8     4     0
## sp105    13    54    27    13   148   174     0    13     0     0     0
## sp106     0     0     0     0     0     0     0     4     2     0     0
## sp107   221  1559   179   276   593   773   276   359     0    41   662
## sp108    62   130     0    25    56    50     0     0     0     0     0
## sp109   126   273   700   259   469   189   392     0    21    91   476
## sp110     0     0     0     0     0     0     0     0     0   256     0
## sp111     0 10000  2000     0     0     0     0     0     0     0     0
## sp113     0   430    31   122    91    21    31   510     0     0     0
## sp114    48    53    14   246  1166    58   181     0     0     0    56
## sp115     0     0     0    32    13    94    11     0     0     0     0
O4n<-log1p(O4)
O4acp = prcomp(O4n, scale. = TRUE)
O4acp
## Standard deviations (1, .., p=11):
##  [1] 2.1544672 1.2899469 1.0873404 0.8586420 0.8100321 0.7130997 0.6918629
##  [8] 0.6154049 0.5633819 0.5031998 0.4266883
## 
## Rotation (n x k) = (11 x 11):
##              PC1         PC2         PC3         PC4         PC5         PC6
## A1963 0.34008122  0.13115700 -0.03878690  0.18750757 -0.23006761  0.80778866
## A1964 0.29666172  0.16973381  0.45314204  0.34626192 -0.03327357 -0.19973524
## A1965 0.27430706 -0.06082100  0.59444459  0.19312464  0.16714160  0.05027496
## A1966 0.35349709  0.25820652 -0.27798258  0.12424493 -0.21688805 -0.18925053
## A1967 0.35335888  0.25776606 -0.12703365 -0.12140492 -0.27401616 -0.26270117
## A1968 0.37623869  0.08792743 -0.27942120 -0.15090807  0.01349773  0.05416077
## A1969 0.35940193 -0.07005184 -0.12722534 -0.34097826  0.17537885 -0.21186910
## A1970 0.22131084 -0.37427963  0.38761446 -0.41543599 -0.39580158 -0.13070812
## A1971 0.08041778 -0.66913941 -0.15152393 -0.02586959 -0.27208783  0.17957222
## A1972 0.19136399 -0.44298115 -0.27911062  0.64710220  0.09666545 -0.27662885
## A1973 0.32936081 -0.14307880 -0.03181099 -0.21548442  0.72451732  0.16294741
##               PC7         PC8         PC9        PC10       PC11
## A1963 -0.07273490 -0.18227490  0.26366087  0.01507342 -0.1294863
## A1964 -0.50622227 -0.24590201 -0.20078662 -0.23399418  0.3242663
## A1965  0.27061390  0.57348887 -0.04815413  0.16544606 -0.2609952
## A1966  0.12549266  0.06696879 -0.11718004  0.69724749  0.3356835
## A1967  0.27309595  0.26616295  0.41582052 -0.53972006  0.1552164
## A1968  0.09572366 -0.01611703 -0.74605890 -0.27316354 -0.3257349
## A1969 -0.60187735  0.10907167  0.30119341  0.18996537 -0.3960644
## A1970  0.26604481 -0.47176844  0.01585690  0.12816828 -0.0658550
## A1971 -0.24550787  0.42416833 -0.14336853 -0.08993245  0.3834625
## A1972  0.17310062 -0.23959860  0.16238353 -0.06060175 -0.2592750
## A1973  0.20603353 -0.17332894  0.08194658 -0.03609195  0.4377404
O4acp$sdev
##  [1] 2.1544672 1.2899469 1.0873404 0.8586420 0.8100321 0.7130997 0.6918629
##  [8] 0.6154049 0.5633819 0.5031998 0.4266883
head(O4acp$rotation)
##             PC1         PC2        PC3        PC4         PC5         PC6
## A1963 0.3400812  0.13115700 -0.0387869  0.1875076 -0.23006761  0.80778866
## A1964 0.2966617  0.16973381  0.4531420  0.3462619 -0.03327357 -0.19973524
## A1965 0.2743071 -0.06082100  0.5944446  0.1931246  0.16714160  0.05027496
## A1966 0.3534971  0.25820652 -0.2779826  0.1242449 -0.21688805 -0.18925053
## A1967 0.3533589  0.25776606 -0.1270336 -0.1214049 -0.27401616 -0.26270117
## A1968 0.3762387  0.08792743 -0.2794212 -0.1509081  0.01349773  0.05416077
##               PC7         PC8         PC9        PC10       PC11
## A1963 -0.07273490 -0.18227490  0.26366087  0.01507342 -0.1294863
## A1964 -0.50622227 -0.24590201 -0.20078662 -0.23399418  0.3242663
## A1965  0.27061390  0.57348887 -0.04815413  0.16544606 -0.2609952
## A1966  0.12549266  0.06696879 -0.11718004  0.69724749  0.3356835
## A1967  0.27309595  0.26616295  0.41582052 -0.53972006  0.1552164
## A1968  0.09572366 -0.01611703 -0.74605890 -0.27316354 -0.3257349
head(O4acp$x)
##            PC1        PC2        PC3        PC4        PC5         PC6
## sp1 -0.2136189 -2.6113174  0.3741798 -2.1243384 -0.5517976 -0.22261691
## sp2 -0.8045952 -1.2290256 -0.6286553  0.9161723 -0.5180671 -0.07171139
## sp3  0.9576974 -0.8995137 -1.9644752  0.1158088  0.3748682 -0.86478291
## sp4  0.7187939 -0.7007519 -1.7429832  0.7431894 -0.2133935 -1.27763445
## sp5  3.1660009  1.4204637 -1.8646414 -1.3415847  1.1485036  1.13939354
## sp6 -0.1386597  0.7055739 -0.6650418 -1.3663746  0.1185600 -1.25811968
##             PC7        PC8         PC9       PC10        PC11
## sp1 -0.96062207 -0.3449460  0.42970131  0.5346917  0.21514770
## sp2  0.53404118 -0.7205104  0.10375764 -0.1158934 -0.33940573
## sp3  0.14618617  0.4647749 -0.01299089  0.1437996  0.60880460
## sp4  0.17722882  0.5299222 -0.10223825 -0.2993230 -0.84795020
## sp5 -0.08157891 -0.3393633  0.33113260 -0.2896390  0.07822426
## sp6 -1.17358092  0.7092278  1.90913837 -0.6045543 -0.95485736
biplot(O4acp)

autovalores <- get_eigenvalue(O4acp)
fviz_eig(O4acp)

O4s = as.data.frame(O4acp$x)
ggplot(data = O4s, aes(x = PC1, y = PC2, label =
rownames(O4s))) +
geom_hline(yintercept = 0, colour = "gray65") + geom_vline(xintercept = 0, colour = "gray65") +
geom_text(colour = "blue", alpha = 0.8, size = 4) +
ggtitle("O4acp")

fviz_pca_ind(O4acp, col.ind = "cos2", gradient.cols =
c("#00AFBB", "#E7B800", "#FC4E07"),repel = TRUE)

fviz_pca_var(O4acp, col.var = "contrib",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE)

fviz_pca_biplot(O4acp, repel = TRUE,col.var = "#2E9FDF",
col.ind = "#696969")

O4acp$eig
## NULL
O4acp$var$coord
## NULL
head(O4acp$ind$coord)
## NULL
O4acp = dudi.pca(O4, nf = 5, scannf = FALSE)
O4acp$eig
##  [1] 5.120765384 1.914593418 1.796556263 1.004444419 0.620407320 0.192402169
##  [7] 0.145363452 0.114966131 0.052272872 0.029129128 0.009099445
O4acp$c1
##                CS1          CS2          CS3          CS4          CS5
## A1963 -0.425469649 -0.037266501  0.003054981  0.024817306  0.287160130
## A1964 -0.097914543  0.670194062  0.186255429 -0.013127192  0.015176398
## A1965 -0.034353082  0.683607735  0.197695513 -0.011038244 -0.053019144
## A1966 -0.362376903 -0.050047503 -0.023526865 -0.044457197 -0.664320538
## A1967 -0.429104756 -0.038141992 -0.006761807  0.001532921  0.203584402
## A1968 -0.412557988 -0.036150457  0.005185200  0.028317101  0.142310417
## A1969 -0.388956630 -0.044297696 -0.016937512 -0.031077426 -0.496533652
## A1970 -0.004549601 -0.002436295  0.064564527  0.992208951 -0.058942833
## A1971  0.016894552 -0.193754116  0.679875029  0.012809814 -0.025624380
## A1972  0.004378929 -0.191535992  0.677365546 -0.103306005  0.001490364
## A1973 -0.413453288 -0.025889328  0.008963738  0.005353020  0.400996647
O4acp$co
##              Comp1        Comp2        Comp3        Comp4        Comp5
## A1963 -0.962799872 -0.051565223  0.004094765  0.024872394  0.226184374
## A1964 -0.221571878  0.927339708  0.249648724 -0.013156331  0.011953832
## A1965 -0.077737961  0.945900051  0.264982519 -0.011062746 -0.041761027
## A1966 -0.820026615 -0.069250146 -0.031534393 -0.044555880 -0.523258312
## A1967 -0.971025797 -0.052776630 -0.009063234  0.001536324  0.160355167
## A1968 -0.933581935 -0.050020966  0.006950018  0.028379958  0.112092137
## A1969 -0.880174167 -0.061294205 -0.022702308 -0.031146410 -0.391099395
## A1970 -0.010295341 -0.003371074  0.086539500  0.994411402 -0.046426876
## A1971  0.038230864 -0.268095311  0.911275097  0.012838249 -0.020183284
## A1972  0.009909125 -0.265026119  0.907911493 -0.103535318  0.001173899
## A1973 -0.935607919 -0.035822762  0.012014607  0.005364903  0.315848776
O4rAC=CA(O4, ncp = 5, graph = TRUE)

fviz_ca_row(O4rAC)

fviz_ca_col(O4rAC)

fviz_ca_biplot(O4rAC)

5) Um estudo avaliou os metais existentes no sedimento ao longo do estuário do rio Clyde (clev.txt). O que você pode concluir, com uma análise de componentes principais

Os pontos S3, S4, S5 e S9 tem maior presença de Ni, N, C e Zn; enquanto S1 tem mais Mn. S2, S10 e S11 apresentam mais Co e Dep; enquanto S6, S7 e S8 apresentam mais Pb, Cr, Cu e CD.


O5<-read.table("O5.txt",header=T)
O5
##      Cu   Mn Co Ni  Zn  Cd  Pb  Cr Dep    C    N
## S1   26 2470 14 34 160 0.0  70  53 144  3.0 0.53
## S2   30 1170 15 32 156 0.2  59  15 152  3.0 0.46
## S3   37  394 12 38 182 0.2  81  77 140  2.9 0.36
## S4   74  349 12 41 227 0.5  97 113 106  3.7 0.46
## S5  115  317 10 37 329 2.2 137 177 112  5.6 0.69
## S6  344  221 10 37 652 5.7 319 314  82 11.2 1.07
## S7  194  257 11 34 425 3.7 175 227  74  7.1 0.72
## S8  127  246 10 33 292 2.2 130 182  70  6.8 0.58
## S9   36  194  6 16  89 0.4  42  57  64  1.9 0.29
## S10  30  326 11 26 108 0.1  44  52  80  3.2 0.38
## S11  24  439 12 34 119 0.1  58  36  83  2.1 0.35
## S12  22  801 12 33 118 0.0  52  51  83  2.3 0.45
O5n<-normalize(O5, method =
"standardize", range = c(0, 1), margin = 1L,
on.constant = "quiet")
O5acp = prcomp(O5n, scale. = TRUE)
O5acp
## Standard deviations (1, .., p=11):
##  [1] 2.685040798 1.601516582 0.827792521 0.529694285 0.408267741 0.201050376
##  [7] 0.168560768 0.141360792 0.061981739 0.022245062 0.006933159
## 
## Rotation (n x k) = (11 x 11):
##            PC1          PC2         PC3         PC4         PC5         PC6
## Cu   0.3692918 -0.008798325  0.08566842  0.01319915 -0.14653949  0.34137072
## Mn  -0.1528147 -0.416436390  0.69745348 -0.26243961  0.44503441  0.01719028
## Co  -0.1124543 -0.551308864 -0.10715591 -0.43776570 -0.63305153 -0.08447970
## Ni   0.1285326 -0.458182119 -0.65416376 -0.16632035  0.49611365  0.08352748
## Zn   0.3667664 -0.098461821  0.02341109  0.08839758 -0.04278365  0.13077205
## Cd   0.3684938  0.016517835  0.10679085  0.01973303 -0.15612112 -0.05535524
## Pb   0.3657750 -0.083603444  0.04845997  0.07719823 -0.01557157  0.51285641
## Cr   0.3671100  0.017638024 -0.03596383  0.02606053  0.27694125 -0.50360462
## Dep -0.1298160 -0.515619037  0.04733760  0.82978930 -0.09554791 -0.09196917
## C    0.3655305 -0.052664115  0.07749255 -0.03757516 -0.14526031 -0.56585385
## N    0.3489606 -0.163481802  0.20728453 -0.08273782  0.01464340  0.06002599
##              PC7          PC8         PC9        PC10        PC11
## Cu   0.285416033  0.068690664 -0.42925494 -0.46693686  0.47911850
## Mn   0.200007911 -0.027684229  0.06187098 -0.06958446 -0.01103393
## Co   0.069751498 -0.125684726 -0.13342497  0.18391746  0.01051390
## Ni  -0.007126267  0.042166004  0.15748760 -0.18388268  0.06637994
## Zn   0.089031271 -0.259976564 -0.18937526 -0.23636668 -0.81317103
## Cd   0.012867943 -0.574004603  0.65295548 -0.11568192  0.23521849
## Pb   0.224820117  0.296544942  0.20689169  0.63649085 -0.03520325
## Cr   0.158147610 -0.311529305 -0.43483650  0.44291043  0.15911920
## Dep -0.021495071 -0.005711615 -0.01523298 -0.00540663  0.09027741
## C    0.159903599  0.619669543  0.24180424 -0.19493319 -0.09422364
## N   -0.874036822  0.104206914 -0.12847366  0.03032419  0.07513800
O5acp$sdev
##  [1] 2.685040798 1.601516582 0.827792521 0.529694285 0.408267741 0.201050376
##  [7] 0.168560768 0.141360792 0.061981739 0.022245062 0.006933159
head(O5acp$rotation)
##           PC1          PC2         PC3         PC4         PC5         PC6
## Cu  0.3692918 -0.008798325  0.08566842  0.01319915 -0.14653949  0.34137072
## Mn -0.1528147 -0.416436390  0.69745348 -0.26243961  0.44503441  0.01719028
## Co -0.1124543 -0.551308864 -0.10715591 -0.43776570 -0.63305153 -0.08447970
## Ni  0.1285326 -0.458182119 -0.65416376 -0.16632035  0.49611365  0.08352748
## Zn  0.3667664 -0.098461821  0.02341109  0.08839758 -0.04278365  0.13077205
## Cd  0.3684938  0.016517835  0.10679085  0.01973303 -0.15612112 -0.05535524
##             PC7         PC8         PC9        PC10        PC11
## Cu  0.285416033  0.06869066 -0.42925494 -0.46693686  0.47911850
## Mn  0.200007911 -0.02768423  0.06187098 -0.06958446 -0.01103393
## Co  0.069751498 -0.12568473 -0.13342497  0.18391746  0.01051390
## Ni -0.007126267  0.04216600  0.15748760 -0.18388268  0.06637994
## Zn  0.089031271 -0.25997656 -0.18937526 -0.23636668 -0.81317103
## Cd  0.012867943 -0.57400460  0.65295548 -0.11568192  0.23521849
head(O5acp$x)
##           PC1        PC2        PC3         PC4         PC5         PC6
## S1 -1.9901978 -2.5925991  1.6494046 -0.20917747  0.57236748 -0.03055485
## S2 -2.0777660 -1.9387861  0.3844035  0.39033965 -0.90910549 -0.02966809
## S3 -1.3198958 -0.8872213 -1.0243895  0.90130502  0.06142146  0.01614936
## S4 -0.3225322 -0.6335797 -1.2562513 -0.05805345  0.34181334  0.08260451
## S5  1.4657264 -0.2319292 -0.3600954  0.62667691  0.42293729 -0.15357301
## S6  6.6430329 -0.4131231  0.5225512  0.09893492 -0.16913210  0.28157725
##            PC7          PC8          PC9         PC10          PC11
## S1  0.10070668  0.003412817 -0.003693618  0.004641114 -0.0043519185
## S2 -0.07177275 -0.011638953  0.012230141 -0.027392724  0.0050795869
## S3  0.20223711 -0.004545111  0.022233953  0.040195884  0.0034297114
## S4  0.09258297  0.049536083 -0.118587290 -0.035951416 -0.0012115907
## S5 -0.38897428 -0.060921891  0.035723781 -0.005389966 -0.0054462264
## S6  0.01123855  0.157291564 -0.002460709  0.006448158  0.0002251101
biplot(O5acp)

autovalores <- get_eigenvalue(O5acp)
fviz_eig(O5acp)

O5s = as.data.frame(O5acp$x)
ggplot(data = O5s, aes(x = PC1, y = PC2, label =
rownames(O5s))) +
geom_hline(yintercept = 0, colour = "gray65") + geom_vline(xintercept = 0, colour = "gray65") +
geom_text(colour = "blue", alpha = 0.8, size = 4) +
ggtitle("O5acp")

fviz_pca_ind(O5acp, col.ind = "cos2", gradient.cols =
c("#00AFBB", "#E7B800", "#FC4E07"),repel = TRUE)

fviz_pca_var(O5acp, col.var = "contrib",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE)

fviz_pca_biplot(O5acp, repel = TRUE,col.var = "#2E9FDF",
col.ind = "#696969")

O5acp$eig
## NULL
O5acp$var$coord
## NULL
head(O5acp$ind$coord)
## NULL
O5acp = dudi.pca(O5, nf = 5, scannf = FALSE)
O5acp$eig
##  [1] 7.2094440894 2.5648553612 0.6852404581 0.2805760360 0.1666825482
##  [6] 0.0404212536 0.0284127326 0.0199828736 0.0038417360 0.0004948428
## [11] 0.0000480687
O5acp$c1
##            CS1          CS2         CS3         CS4         CS5
## Cu   0.3692918 -0.008798325 -0.08566842 -0.01319915  0.14653949
## Mn  -0.1528147 -0.416436390 -0.69745348  0.26243961 -0.44503441
## Co  -0.1124543 -0.551308864  0.10715591  0.43776570  0.63305153
## Ni   0.1285326 -0.458182119  0.65416376  0.16632035 -0.49611365
## Zn   0.3667664 -0.098461821 -0.02341109 -0.08839758  0.04278365
## Cd   0.3684938  0.016517835 -0.10679085 -0.01973303  0.15612112
## Pb   0.3657750 -0.083603444 -0.04845997 -0.07719823  0.01557157
## Cr   0.3671100  0.017638024  0.03596383 -0.02606053 -0.27694125
## Dep -0.1298160 -0.515619037 -0.04733760 -0.82978930  0.09554791
## C    0.3655305 -0.052664115 -0.07749255  0.03757516  0.14526031
## N    0.3489606 -0.163481802 -0.20728453  0.08273782 -0.01464340
O5acp$co
##          Comp1       Comp2       Comp3        Comp4        Comp5
## Cu   0.9915635 -0.01409066 -0.07091568 -0.006991515  0.059827345
## Mn  -0.4103138 -0.66692978 -0.57734678  0.139012763 -0.181693193
## Co  -0.3019444 -0.88293029  0.08870286  0.231881988  0.258454517
## Ni   0.3451154 -0.73378626  0.54151187  0.088098937 -0.202547198
## Zn   0.9847827 -0.15768824 -0.01937952 -0.046823694  0.017467185
## Cd   0.9894210  0.02645359 -0.08840066 -0.010452473  0.063739219
## Pb   0.9821207 -0.13389230 -0.04011480 -0.040891463  0.006357368
## Cr   0.9857054  0.02824759  0.02977059 -0.013804112 -0.113066179
## Dep -0.3485613 -0.82577244 -0.03918571 -0.439534652  0.039009130
## C    0.9814643 -0.08434245 -0.06414775  0.019903348  0.059305100
## N    0.9369735 -0.26181882 -0.17158858  0.043825752 -0.005978428
O5rAC=CA(O5, ncp = 5, graph = TRUE)

fviz_ca_row(O5rAC)

fviz_ca_col(O5rAC)

fviz_ca_biplot(O5rAC)