Make sure the data meets all the 4 assumptions for Linear Regression
Perform the linear regression analysis Check for homoscedasticity
Visualize the results with graphs Report the results
summary(model)
Call:
lm(formula = heart.disease ~ biking + smoking, data = heart_Lab5)
Residuals:
Min 1Q Median 3Q Max
-2.1789 -0.4463 0.0362 0.4422 1.9331
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.984658 0.080137 186.99 <2e-16 ***
biking -0.200133 0.001366 -146.53 <2e-16 ***
smoking 0.178334 0.003539 50.39 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.654 on 495 degrees of freedom
Multiple R-squared: 0.9796, Adjusted R-squared: 0.9795
F-statistic: 1.19e+04 on 2 and 495 DF, p-value: < 2.2e-16
Assumption 1: linearity
For biking plotted with heart disease, we see clearly that they are
linearly related

From the plot of smoking vs heart disesase the linearity is much less
apparent but still visably linear

Assumption 2: Independence independence can be confirmed by checking
if the residuals are randomly scattered around the horizontal line at
zero which they are when plotted with our observations
plot(model$residuals, xlab = "Observation number", ylab = "Residuals")
abline(h = 0)

Assumption 3: Homoscedasticity We see randomness/evenness when
plotting the residuals and predicted values of our model suggesting
Homoscedasticity
plot(model$fitted.values, model$residuals, main = "Residuals vs. Fitted values plot", xlab = "Fitted values", ylab = "Residuals")
abline(h = 0)

Assumption 4: Normality
from the qq plot we see normality from the plot of the residuals due
to residuals plotted against theoretical normal distributed
residuals
hist(model$residuals, main = "Histogram of residuals")

qqnorm(model$residuals)
qqline(model$residuals)

Significance between predictor variables and heart disease
p<2e-16
summary(model)
Call:
lm(formula = heart.disease ~ biking + smoking, data = heart_Lab5)
Residuals:
Min 1Q Median 3Q Max
-2.1789 -0.4463 0.0362 0.4422 1.9331
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.984658 0.080137 186.99 <2e-16 ***
biking -0.200133 0.001366 -146.53 <2e-16 ***
smoking 0.178334 0.003539 50.39 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.654 on 495 degrees of freedom
Multiple R-squared: 0.9796, Adjusted R-squared: 0.9795
F-statistic: 1.19e+04 on 2 and 495 DF, p-value: < 2.2e-16


The adjusted R-squared value of 0.9795 suggests that the model
explains a large proportion of the variability in the response variable.
Therefore, we can conclude that both biking and smoking have a
significant effect on heart disease in the sample of 500 towns. The
coefficients of the model are significant at the 0.001 level, and the
p-value for the overall F-statistic is <2.2e-16, which means that the
model as a whole is statistically significant. we can conclude that both
biking and smoking have a significant effect on heart disease in the
sample of 500 town
LS0tCnRpdGxlOiAibXVsdCBsaW5lYXIgcmVncmVzc2lvbiBoZWFydCIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICB3b3JkX2RvY3VtZW50OiBkZWZhdWx0Ci0tLQpNYWtlIHN1cmUgdGhlIGRhdGEgbWVldHMgYWxsIHRoZSA0IGFzc3VtcHRpb25zIGZvciBMaW5lYXIgUmVncmVzc2lvbgpQZXJmb3JtIHRoZSBsaW5lYXIgcmVncmVzc2lvbiBhbmFseXNpcwpDaGVjayBmb3IgaG9tb3NjZWRhc3RpY2l0eQpWaXN1YWxpemUgdGhlIHJlc3VsdHMgd2l0aCBncmFwaHMKUmVwb3J0IHRoZSByZXN1bHRzCgoKYGBge3J9CmhlYXJ0X0xhYjUgPC0gcmVhZC5jc3YoIn4vRG93bmxvYWRzL2hlYXJ0X1JlZ3Jlc3Npb24uY3N2IikKYGBgCgpgYGB7cn0Kc2V0LnNlZWQoMTIzKQpsaWJyYXJ5KGdncGxvdDIpCgpgYGAKCmBgYHtyfQptb2RlbCA9bG0oaGVhcnQuZGlzZWFzZSB+IGJpa2luZyArIHNtb2tpbmcsIGRhdGEgPSBoZWFydF9MYWI1KQpzdW1tYXJ5KG1vZGVsKQpgYGAKCgpBc3N1bXB0aW9uIDE6IGxpbmVhcml0eSAKCkZvciBiaWtpbmcgcGxvdHRlZCB3aXRoIGhlYXJ0IGRpc2Vhc2UsIHdlIHNlZSBjbGVhcmx5IHRoYXQgdGhleSBhcmUgbGluZWFybHkgcmVsYXRlZAoKYGBge3J9CnBsb3QoaGVhcnRfTGFiNSRiaWtpbmcsIGhlYXJ0X0xhYjUkaGVhcnQuZGlzZWFzZSwgbWFpbiA9ICJTY2F0dGVyIHBsb3Qgb2YgYmlraW5nIHZzLiBoZWFydCBkaXNlYXNlIiwgeGxhYiA9ICJQZXJjZW50YWdlIG9mIHBlb3BsZSBiaWtpbmcgdG8gd29yayIsIHlsYWIgPSAiUGVyY2VudGFnZSBvZiBwZW9wbGUgd2l0aCBoZWFydCBkaXNlYXNlIikKYGBgCgpGcm9tIHRoZSBwbG90IG9mIHNtb2tpbmcgdnMgaGVhcnQgZGlzZXNhc2UgdGhlIGxpbmVhcml0eSBpcyBtdWNoIGxlc3MgYXBwYXJlbnQgYnV0IHN0aWxsIHZpc2FibHkgbGluZWFyCmBgYHtyfQoKcGxvdChoZWFydF9MYWI1JHNtb2tpbmcsIGhlYXJ0X0xhYjUkaGVhcnQuZGlzZWFzZSwgbWFpbiA9ICJTY2F0dGVyIHBsb3Qgb2Ygc21va2luZyB2cy4gaGVhcnQgZGlzZWFzZSIsIHhsYWIgPSAiUGVyY2VudGFnZSBvZiBwZW9wbGUgc21va2luZyIsIHlsYWIgPSAiUGVyY2VudGFnZSBvZiBwZW9wbGUgd2l0aCBoZWFydCBkaXNlYXNlIikKCmBgYAoKQXNzdW1wdGlvbiAyOiBJbmRlcGVuZGVuY2UgCmluZGVwZW5kZW5jZSBjYW4gYmUgY29uZmlybWVkIGJ5IGNoZWNraW5nIGlmIHRoZSByZXNpZHVhbHMgYXJlIHJhbmRvbWx5IHNjYXR0ZXJlZCBhcm91bmQgdGhlIGhvcml6b250YWwgbGluZSBhdCB6ZXJvIHdoaWNoIHRoZXkgYXJlIHdoZW4gcGxvdHRlZCB3aXRoIG91ciBvYnNlcnZhdGlvbnMKCmBgYHtyfQpwbG90KG1vZGVsJHJlc2lkdWFscywgeGxhYiA9ICJPYnNlcnZhdGlvbiBudW1iZXIiLCB5bGFiID0gIlJlc2lkdWFscyIpCmFibGluZShoID0gMCkKYGBgCkFzc3VtcHRpb24gMzogSG9tb3NjZWRhc3RpY2l0eQpXZSBzZWUgcmFuZG9tbmVzcy9ldmVubmVzcyB3aGVuIHBsb3R0aW5nIHRoZSByZXNpZHVhbHMgYW5kIHByZWRpY3RlZCB2YWx1ZXMgb2Ygb3VyIG1vZGVsIHN1Z2dlc3RpbmcgSG9tb3NjZWRhc3RpY2l0eQoKYGBge3J9CnBsb3QobW9kZWwkZml0dGVkLnZhbHVlcywgbW9kZWwkcmVzaWR1YWxzLCBtYWluID0gIlJlc2lkdWFscyB2cy4gRml0dGVkIHZhbHVlcyBwbG90IiwgeGxhYiA9ICJGaXR0ZWQgdmFsdWVzIiwgeWxhYiA9ICJSZXNpZHVhbHMiKQphYmxpbmUoaCA9IDApCmBgYAoKQXNzdW1wdGlvbiA0OiBOb3JtYWxpdHkKCgpmcm9tIHRoZSBxcSBwbG90IHdlIHNlZSBub3JtYWxpdHkgZnJvbSB0aGUgcGxvdCBvZiB0aGUgcmVzaWR1YWxzIGR1ZSB0byByZXNpZHVhbHMgcGxvdHRlZCBhZ2FpbnN0IHRoZW9yZXRpY2FsIG5vcm1hbCBkaXN0cmlidXRlZCByZXNpZHVhbHMKYGBge3J9Cmhpc3QobW9kZWwkcmVzaWR1YWxzLCBtYWluID0gIkhpc3RvZ3JhbSBvZiByZXNpZHVhbHMiKQoKcXFub3JtKG1vZGVsJHJlc2lkdWFscykKcXFsaW5lKG1vZGVsJHJlc2lkdWFscykKYGBgCgoKCgpTaWduaWZpY2FuY2UgYmV0d2VlbiBwcmVkaWN0b3IgdmFyaWFibGVzIGFuZCBoZWFydCBkaXNlYXNlIHA8MmUtMTYKCmBgYHtyfQptb2RlbCA9bG0oaGVhcnQuZGlzZWFzZSB+IGJpa2luZyArIHNtb2tpbmcsIGRhdGEgPSBoZWFydF9MYWI1KQpzdW1tYXJ5KG1vZGVsKQoKYGBgCgoKCmBgYHtyfQpsaWJyYXJ5KGdncGxvdDIpCmdncGxvdChoZWFydF9MYWI1LCBhZXMoeCA9IGJpa2luZywgeSA9IGhlYXJ0LmRpc2Vhc2UpKSArIGdlb21fcG9pbnQoKSArIAogIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIpICsgbGFicyh0aXRsZSA9ICJMaW5lYXIgcmVncmVzc2lvbiBvZiBiaWtpbmcgdnMuIGhlYXJ0IGRpc2Vhc2UiKQpgYGAKCgpgYGB7cn0KZ2dwbG90KGhlYXJ0X0xhYjUsIGFlcyh4ID0gc21va2luZywgeSA9IGhlYXJ0LmRpc2Vhc2UpKSArIGdlb21fcG9pbnQoKSArIAogIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIpICsgbGFicyh0aXRsZSA9ICJMaW5lYXIgcmVncmVzc2lvbiBvZiBzbW9raW5nIHZzLiBoZWFydCBkaXNlYXNlIikKYGBgCgoKClRoZSBhZGp1c3RlZCBSLXNxdWFyZWQgdmFsdWUgb2YgMC45Nzk1IHN1Z2dlc3RzIHRoYXQgdGhlIG1vZGVsIGV4cGxhaW5zIGEgbGFyZ2UgcHJvcG9ydGlvbiBvZiB0aGUgdmFyaWFiaWxpdHkgaW4gdGhlIHJlc3BvbnNlIHZhcmlhYmxlLiBUaGVyZWZvcmUsIHdlIGNhbiBjb25jbHVkZSB0aGF0IGJvdGggYmlraW5nIGFuZCBzbW9raW5nIGhhdmUgYSBzaWduaWZpY2FudCBlZmZlY3Qgb24gaGVhcnQgZGlzZWFzZSBpbiB0aGUgc2FtcGxlIG9mIDUwMCB0b3ducy4KVGhlIGNvZWZmaWNpZW50cyBvZiB0aGUgbW9kZWwgYXJlIHNpZ25pZmljYW50IGF0IHRoZSAwLjAwMSBsZXZlbCwgYW5kIHRoZSBwLXZhbHVlIGZvciB0aGUgb3ZlcmFsbCBGLXN0YXRpc3RpYyBpcyA8Mi4yZS0xNiwgd2hpY2ggbWVhbnMgdGhhdCB0aGUgbW9kZWwgYXMgYSB3aG9sZSBpcyBzdGF0aXN0aWNhbGx5IHNpZ25pZmljYW50LiAgd2UgY2FuIGNvbmNsdWRlIHRoYXQgYm90aCBiaWtpbmcgYW5kIHNtb2tpbmcgaGF2ZSBhIHNpZ25pZmljYW50IGVmZmVjdCBvbiBoZWFydCBkaXNlYXNlIGluIHRoZSBzYW1wbGUgb2YgNTAwIHRvd24KYGBge3J9CgpgYGAKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoK