# Mindanao State University
# General Santos City

# Introduction to R base commands
# Submitted by: John Michael H. Macawili
# Submitted to: Prof. Carlito O. Daarol
# Faculty
# Math Department
# March 28, 2023

# Processing of continuous data
# Using random number generators

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  0.4178714  3.4125364  0.8232094  0.1467935  2.8936739  1.6916231
##  [7]  3.3408214 -0.3457566 -0.3903914  3.1658033 -0.3830377  1.8520203
## [13]  1.8187866  1.2299977  2.3487623  2.4421826  1.0176370  2.7522617
## [19]  2.9017568  3.5595622
data[1:300] # display the first 300 elements
##   [1]  0.4178713874  3.4125364052  0.8232093543  0.1467934578  2.8936738939
##   [6]  1.6916230575  3.3408213878 -0.3457565823 -0.3903914449  3.1658033336
##  [11] -0.3830377446  1.8520202583  1.8187865592  1.2299977256  2.3487622768
##  [16]  2.4421825980  1.0176370147  2.7522616772  2.9017567891  3.5595621867
##  [21]  0.0091845846  2.3237566137  3.4692742989  1.2621893104 -3.0527714702
##  [26]  1.5636457304  0.0332942408  3.6025660674  3.4985824823  1.8476188984
##  [31]  2.2983023376  3.2955155141  3.3875039184  4.8604138429  3.1213423701
##  [36]  0.4119355616  0.5238355496  2.5008097699  2.9266312353 -0.0122721160
##  [41]  2.2300764931  2.3601033676  4.5770014472  1.3128583145  4.3552481379
##  [46]  2.5040326418  0.9800223917  1.4582439687  2.5552565453  2.3247803585
##  [51]  3.3697840797  0.9278829303 -0.3009021168 -0.1846071005 -1.1780204299
##  [56]  5.6304416598  1.8271806727  1.4424607068  2.8825607371  1.2801513912
##  [61]  1.0500906290  1.0737749725  3.9185006984 -2.2602770611  0.2686754930
##  [66]  0.6424679898  0.6060784313  4.2350146164  1.6958963267  1.7056589144
##  [71] -0.3480628005  3.9683465372  3.6620751883  3.8288424434 -1.5646240038
##  [76]  0.5729388301  0.8519424679  3.4382488688  0.8793056948 -0.1248791371
##  [81]  2.4928543954  1.8370250080  0.9135537562  2.5134335681  4.6629737195
##  [86]  3.6754647964  2.5703392826  1.6202232104  4.0532712070  1.4684392006
##  [91]  0.9861803047  5.4403261660 -0.0331691149  0.3755060732  1.7837788072
##  [96]  4.7082041142  2.1939133602  1.1885343070  2.4390624813  2.6356495639
## [101]  0.7515225505  2.2575071625  4.5867022135  1.0721232962 -2.7534102554
## [106]  1.6708718227  2.3278084910  3.8535236554  0.5038014533  4.0448811316
## [111]  2.3533997569  1.1052460216 -0.9053939770  1.9543198573  0.5548589376
## [116]  2.2474421670 -0.5740664219  1.5475508950  3.9724927233  3.0484955161
## [121]  2.8224775480  2.4214327294  2.1486250327  3.6957749486  1.5590661659
## [126]  2.9061690160  0.4867355971 -0.3826361433  2.1515189339  3.9990090517
## [131]  3.4218845968  1.6602279643  0.8417727218  3.7651277107  1.7737019149
## [136]  0.7820515613 -0.0175514207  1.9368247238  1.1508297662  1.0674413735
## [141]  1.8751536613  3.0334192522  4.1479768392 -0.0751014965  0.0257848109
## [146]  1.3299915867  3.1129728167  2.7331752423  4.3480816543  0.0009823095
## [151] -0.2966957464  3.5317815201  2.6867429247  3.8387515392  2.7363077063
## [156]  1.8994981101  1.6831094446  3.8734852019  2.8125492052  3.6590011640
## [161]  1.6172614719 -0.6811290017  0.5331017857  1.6594815274  2.1879833908
## [166]  1.8782162875  2.1292842141  3.1494864487 -0.3883753005  2.7316977099
## [171]  2.0396837643  1.9679339317  1.4531092447  2.7377442564  2.4566576105
## [176]  0.9716395664  2.5942584821  1.8037962756  2.1933925404  3.1514589889
## [181]  1.2562171406  2.5169577202  2.5980616715  4.6757798458  4.1673875485
## [186]  2.0513454497 -1.1771006504  1.1223195605  3.0791966795  1.4773259615
## [191]  1.0265584756 -0.8644619587  1.6513443391  0.8785428322  1.6405963395
## [196]  4.8874208657  0.6333478369  0.1773707673  1.8996314626  1.3274462403
## [201]  3.4644399566  0.5893416609 -0.2581021448  3.6739842068  0.2920604151
## [206]  4.2080799590  2.5541784131  6.0509337144  5.2533001720  1.9339912345
## [211]  1.7942095211  1.2656598553  3.9022411519  1.3949080661  3.4016309933
## [216]  0.9973245952  2.8850571549  1.9109461076  3.3354162571 -0.3778919783
## [221] -1.0386639299  2.9724084051  4.2404740591  1.0749285500  1.9621109800
## [226]  2.5448814465  1.4451688026  1.3220716329  2.9684961109  4.3048235667
## [231]  2.1916650132  3.4630330899  0.2855501883  3.6910858743  2.5351606611
## [236]  6.6266466467  5.3868341898  2.6345116556  2.5794409295  2.0771113019
## [241]  2.5703507372  2.0776979555  3.7563037813  3.2807786094  3.3073673765
## [246] -0.2053095111  0.8162741665  2.8318250860  1.9251341875  1.1461117418
## [251]  5.1500631599  1.9624973152  4.5432516377  1.4277224305  0.7302375826
## [256]  3.1552605229  0.9470495090  1.4831808875  2.7697964090  0.6585846805
## [261]  2.9594041772  0.8617015866  0.7114341342  2.7945344857  1.3403278457
## [266]  0.0715938726 -0.9777855723  3.6550650528  1.5819493606  2.3694396505
## [271]  2.8732682553 -0.1209759337  4.3172025335  2.0896074008  4.4701994244
## [276]  1.0567968470  5.0764135806  5.5137743394  1.6283844092  0.7981582737
## [281]  1.1588688612  3.3782289523  1.3058103900  4.2461295864 -1.0528641187
## [286]  2.0244870715  1.6001996742  2.6795030657  0.2930124754  2.2298501573
## [291]  1.2211812413  1.1154037170 -0.2580448536  5.9206950506  1.3462188558
## [296]  1.2752306982  1.2380822042  4.3346253395  2.0393354031  3.9260349993
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)
hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?
# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value 
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -3.66033636 -3.54655701 -3.43277766 -3.31899832 -3.20521897 -3.09143962
##   [7] -2.97766028 -2.86388093 -2.75010158 -2.63632224 -2.52254289 -2.40876354
##  [13] -2.29498420 -2.18120485 -2.06742550 -1.95364616 -1.83986681 -1.72608746
##  [19] -1.61230812 -1.49852877 -1.38474942 -1.27097008 -1.15719073 -1.04341138
##  [25] -0.92963204 -0.81585269 -0.70207334 -0.58829400 -0.47451465 -0.36073531
##  [31] -0.24695596 -0.13317661 -0.01939727  0.09438208  0.20816143  0.32194077
##  [37]  0.43572012  0.54949947  0.66327881  0.77705816  0.89083751  1.00461685
##  [43]  1.11839620  1.23217555  1.34595489  1.45973424  1.57351359  1.68729293
##  [49]  1.80107228  1.91485163  2.02863097  2.14241032  2.25618967  2.36996901
##  [55]  2.48374836  2.59752770  2.71130705  2.82508640  2.93886574  3.05264509
##  [61]  3.16642444  3.28020378  3.39398313  3.50776248  3.62154182  3.73532117
##  [67]  3.84910052  3.96287986  4.07665921  4.19043856  4.30421790  4.41799725
##  [73]  4.53177660  4.64555594  4.75933529  4.87311464  4.98689398  5.10067333
##  [79]  5.21445268  5.32823202  5.44201137  5.55579072  5.66957006  5.78334941
##  [85]  5.89712875  6.01090810  6.12468745  6.23846679  6.35224614  6.46602549
##  [91]  6.57980483  6.69358418  6.80736353  6.92114287  7.03492222  7.14870157
##  [97]  7.26248091  7.37626026  7.49003961  7.60381895
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts 
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##         0%        25%        50%        75%       100% 
## -3.6603364  0.9099228  1.9576553  2.9915554  7.6038190
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  0.4178713874  3.4125364052  0.8232093543  0.1467934578  2.8936738939
##    [6]  1.6916230575  3.3408213878 -0.3457565823 -0.3903914449  3.1658033336
##   [11] -0.3830377446  1.8520202583  1.8187865592  1.2299977256  2.3487622768
##   [16]  2.4421825980  1.0176370147  2.7522616772  2.9017567891  3.5595621867
##   [21]  0.0091845846  2.3237566137  3.4692742989  1.2621893104 -3.0527714702
##   [26]  1.5636457304  0.0332942408  3.6025660674  3.4985824823  1.8476188984
##   [31]  2.2983023376  3.2955155141  3.3875039184  4.8604138429  3.1213423701
##   [36]  0.4119355616  0.5238355496  2.5008097699  2.9266312353 -0.0122721160
##   [41]  2.2300764931  2.3601033676  4.5770014472  1.3128583145  4.3552481379
##   [46]  2.5040326418  0.9800223917  1.4582439687  2.5552565453  2.3247803585
##   [51]  3.3697840797  0.9278829303 -0.3009021168 -0.1846071005 -1.1780204299
##   [56]  5.6304416598  1.8271806727  1.4424607068  2.8825607371  1.2801513912
##   [61]  1.0500906290  1.0737749725  3.9185006984 -2.2602770611  0.2686754930
##   [66]  0.6424679898  0.6060784313  4.2350146164  1.6958963267  1.7056589144
##   [71] -0.3480628005  3.9683465372  3.6620751883  3.8288424434 -1.5646240038
##   [76]  0.5729388301  0.8519424679  3.4382488688  0.8793056948 -0.1248791371
##   [81]  2.4928543954  1.8370250080  0.9135537562  2.5134335681  4.6629737195
##   [86]  3.6754647964  2.5703392826  1.6202232104  4.0532712070  1.4684392006
##   [91]  0.9861803047  5.4403261660 -0.0331691149  0.3755060732  1.7837788072
##   [96]  4.7082041142  2.1939133602  1.1885343070  2.4390624813  2.6356495639
##  [101]  0.7515225505  2.2575071625  4.5867022135  1.0721232962 -2.7534102554
##  [106]  1.6708718227  2.3278084910  3.8535236554  0.5038014533  4.0448811316
##  [111]  2.3533997569  1.1052460216 -0.9053939770  1.9543198573  0.5548589376
##  [116]  2.2474421670 -0.5740664219  1.5475508950  3.9724927233  3.0484955161
##  [121]  2.8224775480  2.4214327294  2.1486250327  3.6957749486  1.5590661659
##  [126]  2.9061690160  0.4867355971 -0.3826361433  2.1515189339  3.9990090517
##  [131]  3.4218845968  1.6602279643  0.8417727218  3.7651277107  1.7737019149
##  [136]  0.7820515613 -0.0175514207  1.9368247238  1.1508297662  1.0674413735
##  [141]  1.8751536613  3.0334192522  4.1479768392 -0.0751014965  0.0257848109
##  [146]  1.3299915867  3.1129728167  2.7331752423  4.3480816543  0.0009823095
##  [151] -0.2966957464  3.5317815201  2.6867429247  3.8387515392  2.7363077063
##  [156]  1.8994981101  1.6831094446  3.8734852019  2.8125492052  3.6590011640
##  [161]  1.6172614719 -0.6811290017  0.5331017857  1.6594815274  2.1879833908
##  [166]  1.8782162875  2.1292842141  3.1494864487 -0.3883753005  2.7316977099
##  [171]  2.0396837643  1.9679339317  1.4531092447  2.7377442564  2.4566576105
##  [176]  0.9716395664  2.5942584821  1.8037962756  2.1933925404  3.1514589889
##  [181]  1.2562171406  2.5169577202  2.5980616715  4.6757798458  4.1673875485
##  [186]  2.0513454497 -1.1771006504  1.1223195605  3.0791966795  1.4773259615
##  [191]  1.0265584756 -0.8644619587  1.6513443391  0.8785428322  1.6405963395
##  [196]  4.8874208657  0.6333478369  0.1773707673  1.8996314626  1.3274462403
##  [201]  3.4644399566  0.5893416609 -0.2581021448  3.6739842068  0.2920604151
##  [206]  4.2080799590  2.5541784131  6.0509337144  5.2533001720  1.9339912345
##  [211]  1.7942095211  1.2656598553  3.9022411519  1.3949080661  3.4016309933
##  [216]  0.9973245952  2.8850571549  1.9109461076  3.3354162571 -0.3778919783
##  [221] -1.0386639299  2.9724084051  4.2404740591  1.0749285500  1.9621109800
##  [226]  2.5448814465  1.4451688026  1.3220716329  2.9684961109  4.3048235667
##  [231]  2.1916650132  3.4630330899  0.2855501883  3.6910858743  2.5351606611
##  [236]  6.6266466467  5.3868341898  2.6345116556  2.5794409295  2.0771113019
##  [241]  2.5703507372  2.0776979555  3.7563037813  3.2807786094  3.3073673765
##  [246] -0.2053095111  0.8162741665  2.8318250860  1.9251341875  1.1461117418
##  [251]  5.1500631599  1.9624973152  4.5432516377  1.4277224305  0.7302375826
##  [256]  3.1552605229  0.9470495090  1.4831808875  2.7697964090  0.6585846805
##  [261]  2.9594041772  0.8617015866  0.7114341342  2.7945344857  1.3403278457
##  [266]  0.0715938726 -0.9777855723  3.6550650528  1.5819493606  2.3694396505
##  [271]  2.8732682553 -0.1209759337  4.3172025335  2.0896074008  4.4701994244
##  [276]  1.0567968470  5.0764135806  5.5137743394  1.6283844092  0.7981582737
##  [281]  1.1588688612  3.3782289523  1.3058103900  4.2461295864 -1.0528641187
##  [286]  2.0244870715  1.6001996742  2.6795030657  0.2930124754  2.2298501573
##  [291]  1.2211812413  1.1154037170 -0.2580448536  5.9206950506  1.3462188558
##  [296]  1.2752306982  1.2380822042  4.3346253395  2.0393354031  3.9260349993
##  [301] -1.3909942762  2.0448451933  2.5830987900  2.5625239090  2.2084031808
##  [306]  4.1921730148  0.3495814089  0.6976900290  1.2683087217  4.2273425847
##  [311]  1.2370631748  2.4779446330  3.2158784547  1.4674950116  2.4897861481
##  [316]  3.9715021346  3.1815081071  0.8477171864  2.0666930260 -0.0056971070
##  [321]  4.5260213415  2.1288013184  1.8848866671  4.2167727963  3.6879406750
##  [326]  2.5285262759  1.6236578172 -3.4841053882  2.3039439593  3.0053535249
##  [331]  2.0239675566  2.1693195832  3.0045128307  4.9537731950  0.8951255936
##  [336]  2.0423057868  1.4620160056  1.3111487929  3.0443917448  0.3669218068
##  [341]  3.4561680485  2.3229386317  2.9762696048 -2.1060415248  0.4539085864
##  [346]  3.3944460347  0.6049944733  2.4611492766  2.0666642543  1.4253483993
##  [351]  2.8240550094  1.4963447539  1.0324405095  0.4653501150  0.2450977892
##  [356]  3.1092803747  0.6698855850 -1.6091983407  3.0427624128 -0.2011775126
##  [361]  2.2506698387  1.8847617004  0.5310752192  1.6657959341 -1.1034160503
##  [366]  0.0883408226  1.2406705249 -0.7013683399  0.6749288406  3.1770792468
##  [371]  2.1592632848  1.0734903183  2.6266426332  1.8556427625  0.6844065589
##  [376]  0.4185049767  1.8387919322  0.8586201087  2.3095205579  4.8451006622
##  [381]  2.1286414534  1.6788510459  1.9719079210  4.8679532275  1.4740787743
##  [386]  1.7739410949  2.7141722347  0.6831609866  2.9112625020  1.9091518754
##  [391]  1.5064296954  0.0857823260  2.3385170800  2.8029804549  0.6976708508
##  [396]  0.8072950211  1.7111427867  1.7521089717  2.8860178567  0.7024494931
##  [401]  3.6285793041  3.6913236991 -0.6529396003  1.9609908329  1.1843756186
##  [406]  2.3585991220  0.8201502967  1.3474967905  1.1847958704  5.3169486040
##  [411]  2.3822777430 -0.4772785959  2.1565194956  6.0999342804  1.1352402078
##  [416]  1.4034424166  2.4488774440  1.4882752784  0.3910163000  2.1598729632
##  [421]  1.2671448319 -1.6902961400  2.0196530913  0.2233829389  4.4703431645
##  [426]  4.0819501006  3.8826838777  4.1087278020  1.3573603477  2.1449823492
##  [431]  0.4026943189  2.1043238523  3.1135479935  1.2243211010  3.1763562684
##  [436]  0.0232345165 -1.3009293401  3.4636058258  3.6016259802  4.8429268944
##  [441]  2.0131047361  0.7605719118  0.8827951888  4.2890266381  2.5851291923
##  [446]  2.1920550992 -0.2803017875  2.8816068932  2.9759156064 -1.7004514926
##  [451]  1.2889012380 -0.2600736449  2.9904000891  4.8191264814  1.1026094032
##  [456]  2.7393183924 -0.1053359423  2.7902967261  2.7295829385  2.1873851737
##  [461]  1.1536301823  2.2445901677  1.2661825872  2.7607230569  3.2065868673
##  [466]  3.5061365825  0.8141343262  2.2124955552  3.0675412080 -1.7828087513
##  [471]  2.3174439898  0.6852862251  0.9988732564  2.9069680843  2.0735315219
##  [476]  0.9623806782  1.6648360147  2.0199742230  2.3373832636  2.7411897492
##  [481]  0.7286122558  0.4941044006  2.9843058600  3.4669717257  1.8389017251
##  [486] -1.0134324835  1.0543931464  3.8806071044  1.1193068228  1.9770474301
##  [491] -0.4805968245  2.1389976481  1.9984024924  1.8287909433  1.5995285676
##  [496]  0.3547725725  0.6052240185  0.7460008149  3.0980297193  0.9639395397
##  [501] -1.6933448000  3.9242209791  1.7669026540  1.5582204651  3.2498753566
##  [506]  2.4874043872  3.1723169386  2.8037565142  1.7564924814 -0.7258742703
##  [511]  3.4500225868  2.1987015150  3.6511247271 -0.3106294355  0.3527361142
##  [516]  1.4828168828  1.4243276305  2.0086863169  2.8581016370  1.4909444684
##  [521]  3.0304954682  5.0612152733  2.4927846819  2.8709683607  0.8751823154
##  [526]  0.3743916397  2.6930076056  0.4406440571  3.0711542773 -0.7355695036
##  [531] -0.4580836097 -0.3735181055  2.3351573848  1.2157225389  4.1082943187
##  [536] -1.5861383198  1.2416162961  3.5226870044  4.5667564556  1.5672281862
##  [541]  3.6395772926  2.5399663909  6.4634128766  1.2632813648  2.2047859929
##  [546]  1.3951956466  3.1752756451  4.7650051681  3.1824333200  0.4011428003
##  [551]  2.4511095387  4.0084374752  2.0838066223 -0.1619608647  2.6664919249
##  [556]  0.4404140939  0.6045874159  4.2111949701  3.6686101414  1.4057946899
##  [561]  5.6597219534  2.9206439096  1.8034025814  1.9901297350  4.2951974891
##  [566]  3.7595089825  1.3364125307  1.8160617629  2.7039655926  2.0509789773
##  [571]  0.9651028406  3.9836688445  1.1830178692  1.2010860441  2.3324532941
##  [576]  2.8452204441  7.6038189529  3.5053918072  1.4273934677 -0.9407798355
##  [581]  3.9248811673  1.3798515323  2.8801366107  2.8208701483  2.8532470107
##  [586]  0.0425060231  0.6638768981  1.3852042788  2.4093275534  2.9489640269
##  [591]  1.4595071029  3.9927183397  1.3240354721  1.6778498291 -0.7812219100
##  [596]  1.7849035890  2.4362990954  1.8798306326  3.0115663633  2.9107328100
##  [601]  2.4934247835  3.9206589704  2.8539334629  3.5030161113  1.3079884282
##  [606] -0.3377140233 -1.2540975762  1.4961953094  0.4161534616 -0.3870903504
##  [611]  1.7850070811 -0.0757522066  1.6812921302  3.2718081238  1.2439621118
##  [616]  0.4579760533  1.1777421400  6.1318993301  0.1294240650  2.4429581873
##  [621]  3.8758876093  1.6997636447  3.3498376907  2.1220707224  3.1967621746
##  [626]  2.6905824683  1.8255488135  4.1684427116  2.1702292738  2.1707120772
##  [631]  2.0137632333  5.3444482317  0.9926333254  3.8353753784  3.2880204871
##  [636]  1.1290590542  3.8682327721  3.6552464241  1.2450426832  1.8638475050
##  [641]  0.7819034073  2.5775373241  3.5658250268  0.4454522572  0.2751717967
##  [646]  3.1406741149  2.9950214939  0.9892870508  4.4014391038  0.4662975708
##  [651]  5.1063107410  2.7328230977  2.2372786688  0.2939222536  2.2785046020
##  [656]  2.6994343811  3.1706701833  2.4321721049  0.9893028829  3.4931735442
##  [661] -0.7493007579  3.0629945019  1.6690662285  0.9383859692 -1.7829209159
##  [666]  3.4755306877  2.6911171131 -0.2273484782  1.2611288450  2.4994095303
##  [671]  0.8664953858  0.5649582470  0.0791677204  0.5981985066  1.8064753547
##  [676]  0.7890538936  3.7614945326  1.4312488110  1.4442364429  2.6971661249
##  [681]  0.6790698148  2.2621065751  3.1953234783  0.5535787290  2.7689474980
##  [686]  1.2658648202  3.2452870241  1.1401204020  1.7867495468  2.2008205331
##  [691]  0.9329878126  2.6374597354  3.1701755476  1.3981013103  1.1977589959
##  [696]  2.3234839838  1.3590552202  0.8966624552 -1.1097570861  1.6776458002
##  [701]  0.9498946482  0.5155529015  1.1997042807  1.4114944583  4.6963255728
##  [706]  2.0675314124  1.8841840634  4.1537962290 -0.0122609229 -0.3913859501
##  [711] -0.3291613799  2.9981696795  2.6313950315  2.0213852684  3.6371917688
##  [716]  2.9500582984  4.0664730358  0.4509932520 -0.0737254157  2.3899600881
##  [721]  3.5021767620  2.1820060169  2.3181315799  1.5407892800  2.5338152940
##  [726]  4.3506910500  2.7755012599  1.9441738062 -0.9283487192  1.4891395133
##  [731]  0.8791718698  1.4682715256  2.1334747760  1.5033534274  0.8552243590
##  [736] -3.6603363551  4.6062046433  0.7139735683  0.0903671353  3.2996018976
##  [741]  0.6627436468  3.0919128378  3.1478608431  4.2746936691  1.1444211051
##  [746]  1.6829584042  1.2899328375  0.8710122676  0.0713242266  2.8743522040
##  [751]  4.3984074846  3.7679367910  0.2316712853  3.9542723163  3.4823279440
##  [756]  4.9994362543  2.3388149865  2.2488961911  3.1769669320  1.0229517724
##  [761]  0.1645278219  0.1752545997  1.8947667875  0.9866287848  3.0971686938
##  [766]  2.7102535403  2.6237660299  0.5128181638  3.0393277210  4.9689965122
##  [771]  3.0546788937 -0.0159395307  3.9136995286  3.4024517436  1.2186065791
##  [776]  0.5420060793  3.8965190917  4.5548779320  1.1236109731  1.1392320721
##  [781]  1.1308367391  0.7075210022  0.3793246026  2.3291196154  4.7426664260
##  [786]  2.6259260039  4.0645704180  3.0427971347  0.8655791339  3.3529861371
##  [791]  2.4392113561  2.1783358547  3.3147234815  2.9232012985  1.3216926862
##  [796]  2.9817616030  1.8186578892  1.3817023038  2.3118915452  1.9758218858
##  [801] -0.0732277313  0.0796623313  4.0194594668  3.6729473331  2.5368000957
##  [806]  2.6907484771  3.4227447564  2.1124424864  1.2931507622  0.6373643831
##  [811]  2.8486125880 -0.7292311197  0.1795991870  2.6094074071 -0.6895182653
##  [816]  1.3775998172  1.9481149269  3.0601638582  1.9120162040 -0.8319772979
##  [821]  1.5528902211  2.5291136876  1.3835083186  1.2743313753  4.8248441440
##  [826]  2.5384526257  0.8535104374  0.9693792064  3.3002537546  1.0315290196
##  [831]  5.0657256868  2.4461473400  0.9992374755  2.3376506467  0.2007569340
##  [836]  1.1354658542  2.4477184039  2.7708716631  3.2998226435  3.0674023189
##  [841]  5.4539298990  3.3668998815  0.3415644890  3.1941678208  4.1041213217
##  [846]  2.0607846061 -1.0160615782  0.6437176202  2.3322452564  1.2026444888
##  [851]  1.0583059629 -0.4750889022  3.1916861765 -0.5218072835  2.6539712042
##  [856] -0.2747317608  0.7289652780  2.1827239465  3.1833225052  2.3781262319
##  [861]  3.2821499572  2.9607861810  1.8264040948  2.7670046734  0.3439987228
##  [866]  1.3363154868  0.2770983355  2.3180639289  1.8654376808  0.3775114202
##  [871]  2.6294810069 -1.9447149415  0.4045502791  1.8862650328  1.6709603230
##  [876]  1.0121541156  1.5272713362  1.3623863754  1.0394988653  0.3949740553
##  [881]  0.4783141114  3.3730708312 -0.3681353569  2.4313916421  3.3296541572
##  [886]  1.0982904623  1.2391265881  0.4126673417  2.7742872695  0.0593332301
##  [891] -0.4790045452  2.6534185172  0.5625213262  1.6864494939  1.4795327586
##  [896]  4.1113253140  0.2073343053  1.8451399510  3.5007128441  1.9336147010
##  [901]  1.0098555047  1.8258657790 -2.2854831407  1.6285177123  0.7889378206
##  [906]  0.2954436337  0.7523460625  1.9032660090  2.0410877167  2.5916859091
##  [911]  1.7345725412  1.2318118051  3.5384567124  4.3144054949  0.4622608610
##  [916]  2.9270936990  2.9273674320  5.7863549594 -0.3944431180  4.9589725089
##  [921]  0.4892404830  2.5368171999  3.5207319869  2.0373695335  3.7781873638
##  [926]  2.4035918242  1.9838298183  0.8632462271  2.7221740492  4.1490194723
##  [931]  0.8939101994  0.8985197180 -0.4314265136  2.1858060217  2.8033586887
##  [936]  3.7075435414  3.2192522378  0.8141339156  0.6829263639  2.4269252954
##  [941]  3.2401688962  3.3017601862 -0.2309773999  2.2211432317  2.9711273250
##  [946]  2.1537066806  0.3951092771  3.0413604651  1.1979604519  1.5723676692
##  [951]  0.8968947728  3.8922221101  1.1261360262  1.9368463392  1.3689692057
##  [956]  3.3856238873  0.6545584518  3.2210556110  2.5905522925  0.6936648040
##  [961]  1.4839490445  3.1002374276  0.8990298018 -0.5045069064  2.6353999348
##  [966]  2.2396548524  3.9704872658  2.3751208637  2.1483206198  2.7951631116
##  [971]  3.5026355544  3.1349445439  1.2452192652 -1.2930110864  1.3398565955
##  [976]  1.9694776071  0.1250438567 -0.2663985860  3.0094552881  2.4882875392
##  [981]  0.1174713531  1.0727148134  0.8388373594  3.6675143868  0.9849710492
##  [986]  1.7028655596  0.7817408381  3.3238203350  1.8509268181 -0.4854226391
##  [991]  3.1978350269 -0.4208617069  1.8795491055 -0.9991700129  3.9860620141
##  [996]  0.2418991703  1.6222345398  3.9158062908 -0.9988344475  4.6961281121
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -3.6603  0.9099  1.9577  1.9469  2.9916  7.6038
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve) 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.4790842
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.398559
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.4790842
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [817] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [997] FALSE FALSE  TRUE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -3.0527715 -1.1780204 -2.2602771 -1.5646240 -2.7534103 -0.9053940
##  [7] -0.5740664 -0.6811290 -1.1771007 -0.8644620 -1.0386639 -0.9777856
## [13] -1.0528641 -1.3909943 -3.4841054 -2.1060415 -1.6091983 -1.1034161
## [19] -0.7013683 -0.6529396 -1.6902961 -1.3009293 -1.7004515 -1.7828088
## [25] -1.0134325 -0.4805968 -1.6933448 -0.7258743 -0.7355695 -1.5861383
## [31] -0.9407798 -0.7812219 -1.2540976 -0.7493008 -1.7829209 -1.1097571
## [37] -0.9283487 -3.6603364 -0.7292311 -0.6895183 -0.8319773 -1.0160616
## [43] -0.5218073 -1.9447149 -2.2854831 -0.5045069 -1.2930111 -0.4854226
## [49] -0.9991700 -0.9988344
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.398559
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [253]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [277]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [541] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [829] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE  TRUE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 4.860414 4.577001 5.630442 4.662974 5.440326 4.708204 4.586702 4.675780
##  [9] 4.887421 6.050934 5.253300 6.626647 5.386834 5.150063 4.543252 4.470199
## [17] 5.076414 5.513774 5.920695 4.526021 4.953773 4.845101 4.867953 5.316949
## [25] 6.099934 4.470343 4.842927 4.819126 5.061215 4.566756 6.463413 4.765005
## [33] 5.659722 7.603819 6.131899 5.344448 4.401439 5.106311 4.696326 4.606205
## [41] 4.999436 4.968997 4.554878 4.742666 4.824844 5.065726 5.453930 5.786355
## [49] 4.958973 4.696128