Briefs by Gloria Guzman (2020)

R Mapping reference




The darker the color, the greater the relative inequality.


# 2009
p2009 <- plot_usmap(data = filter(mainstates, 
                                  year == 2009 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2009", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2009

# 2010
p2010 <- plot_usmap(data = filter(mainstates, 
                                  year == 2010 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2010", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2010

# 2011
p2011 <- plot_usmap(data = filter(mainstates, 
                                  year == 2011 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2011", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2011

# 2012
p2012 <- plot_usmap(data = filter(mainstates, 
                                  year == 2012 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2012", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2012

# 2013
p2013 <- plot_usmap(data = filter(mainstates, 
                                  year == 2013 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2013", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2013

# 2014
p2014 <- plot_usmap(data = filter(mainstates, 
                                  year == 2014 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2014", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2014

# 2015
p2015 <- plot_usmap(data = filter(mainstates, 
                                  year == 2015 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2015", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2015

# 2016
p2016 <- plot_usmap(data = filter(mainstates, 
                                  year == 2016 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2016", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2016

# 2017
p2017 <- plot_usmap(data = filter(mainstates, 
                                  year == 2017 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2017", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2017

# 2018
p2018 <- plot_usmap(data = filter(mainstates, 
                                  year == 2018 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2018", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2018

# 2019
p2019 <- plot_usmap(data = filter(mainstates, 
                                  year == 2019 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2019", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2019

# 2020
p2020 <- plot_usmap(data = filter(mainstates, 
                                  year == 2020 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2020", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2020

# 2021
p2021 <- plot_usmap(data = filter(mainstates, 
                                  year == 2021 | is.na(year)),
                    regions="counties",
                    values = "rrank",
                    color = "darkblue") +
  scale_fill_continuous(low = "yellow1", 
                        high = "purple3", 
                        name = "Equality Ranking",
                        na.value="white") +
  theme(legend.position = "right",
        text = element_text(family = "Georgia")) +
  labs(title = "Economic Gender Equality 2021", 
       subtitle = "Made by Heeyoung (hlee25@albany.edu)\n\nPueple = Low equality & Yellow = High equality", 
       size = "Magnitude") 
p2021