arousal.extended.wbaseline <- readRDS("arousal.extended.wbaseline.RDS")
m3 <- lmer(rating ~ cueing*baseline + session + (1 + cueing | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
## boundary (singular) fit: see help('isSingular')
tab_model(m3)
  rating
Predictors Estimates CI p
(Intercept) 2.05 1.69 – 2.40 <0.001
cueing [Uncued] -0.32 -0.58 – -0.07 0.012
baseline 0.33 0.27 – 0.39 <0.001
session [4] -0.27 -0.35 – -0.18 <0.001
cueing [Uncued] ×
baseline
0.11 0.04 – 0.18 0.003
Random Effects
σ2 0.67
τ00 item 0.14
τ00 participant 0.34
τ11 participant.cueingUncued 0.03
ρ01 participant -1.00
ICC 0.37
N participant 17
N item 48
Observations 1517
Marginal R2 / Conditional R2 0.183 / 0.484
tab_model(m3, show.reflvl = TRUE)
  rating
Predictors Estimates CI p
(Intercept) 2.05 1.69 – 2.40 <0.001
baseline 0.33 0.27 – 0.39 <0.001
Cued Reference
Uncued -0.32 -0.58 – -0.07 0.012
cueingUncued:baseline 0.11 0.04 – 0.18 0.003
session4 -0.27 -0.35 – -0.18 <0.001
Random Effects
σ2 0.67
τ00 item 0.14
τ00 participant 0.34
τ11 participant.cueingUncued 0.03
ρ01 participant -1.00
ICC 0.37
N participant 17
N item 48
Observations 1517
Marginal R2 / Conditional R2 0.183 / 0.484
emmeans(m3,"cueing")
## NOTE: Results may be misleading due to involvement in interactions
##  cueing emmean    SE   df lower.CL upper.CL
##  Cued     2.94 0.154 20.5     2.62     3.26
##  Uncued   2.96 0.117 24.9     2.72     3.20
## 
## Results are averaged over the levels of: session 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
# set "female" as the reference level for "gender"
m3 <- lmer(rating ~ cueing*baseline + session + (1 + cueing | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% set_ref_level(cueing , "Uncued") )
## boundary (singular) fit: see help('isSingular')
tab_model(m3)
  rating
Predictors Estimates CI p
(Intercept) 1.72 1.43 – 2.01 <0.001
cueing [Cued] 0.32 0.07 – 0.58 0.012
baseline 0.44 0.38 – 0.49 <0.001
session [4] -0.27 -0.35 – -0.18 <0.001
cueing [Cued] × baseline -0.11 -0.18 – -0.04 0.003
Random Effects
σ2 0.67
τ00 item 0.14
τ00 participant 0.17
τ11 participant.cueingCued 0.03
ρ01 participant 1.00
N participant 17
N item 48
Observations 1517
Marginal R2 / Conditional R2 0.262 / NA
tab_model(m3, show.reflvl = TRUE)
  rating
Predictors Estimates CI p
(Intercept) 1.72 1.43 – 2.01 <0.001
baseline 0.44 0.38 – 0.49 <0.001
Uncued Reference
cueingCued:baseline -0.11 -0.18 – -0.04 0.003
Cued 0.32 0.07 – 0.58 0.012
session4 -0.27 -0.35 – -0.18 <0.001
Random Effects
σ2 0.67
τ00 item 0.14
τ00 participant 0.17
τ11 participant.cueingCued 0.03
ρ01 participant 1.00
N participant 17
N item 48
Observations 1517
Marginal R2 / Conditional R2 0.262 / NA
emmeans(m3,"cueing")
## NOTE: Results may be misleading due to involvement in interactions
##  cueing emmean    SE   df lower.CL upper.CL
##  Uncued   2.96 0.117 24.9     2.72     3.20
##  Cued     2.94 0.154 20.5     2.62     3.26
## 
## Results are averaged over the levels of: session 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
plot_model(m3,type = "pred",terms = c("baseline","cueing"))

Does the data show people rating stuff higher as a function of their baseline rating?

data.aggr <- arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% group_by(participant,cueing,baseline) %>% summarise(meanRating=mean(rating, na.rm=TRUE)) %>% na.omit()
## `summarise()` has grouped output by 'participant', 'cueing'. You can override
## using the `.groups` argument.
library(afex)
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - NEWS: emmeans() for ANOVA models now uses model = 'multivariate' as default.
## - Get and set global package options with: afex_options()
## - Set orthogonal sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
## 
## Attaching package: 'afex'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
aw <- aov_ez("participant", "meanRating", data.aggr %>% na.omit(), within = c("cueing", "baseline"))
## Warning: Missing values for following ID(s):
## PT03, PT05, PT07, PT08, PT12, PT17, PT18, PT19
## Removing those cases from the analysis.
library(ggplot2)

ggplot(data.aggr, aes(x = baseline, y = meanRating, group = cueing, color = cueing)) +
  stat_summary(fun = "mean", geom = "point", size = 1.5) +
  stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1) +

  labs(x = "Baseline", y = "Mean Rating", color = "Cueing") +
  theme_minimal()

data.aggr <- arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% group_by(participant,cueing,baseline,session) %>% summarise(meanRating=mean(rating, na.rm=TRUE)) %>% na.omit()
## `summarise()` has grouped output by 'participant', 'cueing', 'baseline'. You
## can override using the `.groups` argument.
ggplot(data.aggr, aes(x = baseline, y = meanRating, group = cueing, color = cueing)) +
  stat_summary(fun = "mean", geom = "point", size = 1.5) +
  stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1) +

  labs(x = "Baseline", y = "Mean Rating", color = "Cueing") +
  theme_minimal() + facet_wrap(~session)

ggplot(arousal.extended.wbaseline, aes(x=factor(rating), group=cueing,fill=cueing))+
  geom_bar(stat="count", position=position_dodge())+
  theme_minimal()

ggplot(arousal.extended.wbaseline, aes(x=factor(rating), group=cueing,fill=cueing))+
  geom_bar(stat="count", position=position_dodge())+
  theme_minimal() + facet_wrap(~session) + coord_flip()

ggplot(arousal.extended.wbaseline %>% filter(baseline >= 4), aes(x=factor(rating), group=cueing,fill=cueing))+
  geom_bar(stat="count", position=position_dodge())+
  theme_minimal() + facet_wrap(~session) + coord_flip()

m3.0 <- lmer(rating ~ cueing + baseline + session + (1  | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
m3.1 <- lmer(rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
## boundary (singular) fit: see help('isSingular')
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
## boundary (singular) fit: see help('isSingular')
m3.x2 <- lmer(rating ~ cueing* baseline + cueing*session + (1 + cueing | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
## boundary (singular) fit: see help('isSingular')
anova(m3.0,m3.1 ,m3.x,m3.x2)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x2: rating ~ cueing * baseline + cueing * session + (1 + cueing | participant) + (1 | item)
##       npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## m3.0     7 3889.1 3926.3 -1937.5   3875.1                        
## m3.1     9 3883.6 3931.5 -1932.8   3865.6 9.4372  2   0.008928 **
## m3.x    10 3877.0 3930.2 -1928.5   3857.0 8.6259  1   0.003314 **
## m3.x2   11 3878.9 3937.5 -1928.5   3856.9 0.0769  1   0.781603   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## m3.0    7 3889.1 3926.3 -1937.5   3875.1                         
## m3.x   10 3877.0 3930.2 -1928.5   3857.0 18.063  3  0.0004269 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x,m3.x2)
  rating rating rating rating
Predictors Estimates CI p Estimates CI p Estimates CI p Estimates CI p
(Intercept) 1.88 1.58 – 2.18 <0.001 1.87 1.55 – 2.20 <0.001 2.05 1.69 – 2.40 <0.001 2.04 1.69 – 2.39 <0.001
cueing [Uncued] 0.01 -0.07 – 0.10 0.742 0.02 -0.09 – 0.13 0.755 -0.32 -0.58 – -0.07 0.012 -0.31 -0.58 – -0.05 0.020
baseline 0.38 0.34 – 0.43 <0.001 0.39 0.34 – 0.43 <0.001 0.33 0.27 – 0.39 <0.001 0.33 0.27 – 0.39 <0.001
session [4] -0.27 -0.36 – -0.18 <0.001 -0.27 -0.36 – -0.18 <0.001 -0.27 -0.35 – -0.18 <0.001 -0.26 -0.38 – -0.14 <0.001
cueing [Uncued] ×
baseline
0.11 0.04 – 0.18 0.003 0.11 0.04 – 0.18 0.003
cueing [Uncued] × session
[4]
-0.02 -0.19 – 0.14 0.783
Random Effects
σ2 0.68 0.68 0.67 0.67
τ00 0.14 item 0.14 item 0.14 item 0.14 item
0.25 participant 0.32 participant 0.34 participant 0.34 participant
τ11   0.02 participant.cueingUncued 0.03 participant.cueingUncued 0.03 participant.cueingUncued
ρ01   -1.00 participant -1.00 participant -1.00 participant
ICC 0.36   0.37  
N 17 participant 17 participant 17 participant 17 participant
48 item 48 item 48 item 48 item
Observations 1517 1517 1517 1517
Marginal R2 / Conditional R2 0.180 / 0.477 0.260 / NA 0.183 / 0.484 0.262 / NA
m3.0 <- lmer(rating ~ cueing + baseline + session + (1  | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
m3.1 <- lmer(rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))

anova(m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##      npar    AIC    BIC  logLik deviance   Chisq Df Pr(>Chisq)    
## m3.0    7 2601.7 2636.2 -1293.8   2587.7                          
## m3.1    9 2589.6 2634.0 -1285.8   2571.6 16.0376  2  0.0003292 ***
## m3.x   10 2591.2 2640.5 -1285.6   2571.2  0.4486  1  0.5029881    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## m3.0    7 2601.7 2636.2 -1293.8   2587.7                         
## m3.x   10 2591.2 2640.5 -1285.6   2571.2 16.486  3  0.0009012 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x)
  rating rating rating
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 1.67 1.25 – 2.08 <0.001 1.62 1.18 – 2.07 <0.001 1.71 1.19 – 2.24 <0.001
cueing [Uncued] 0.06 -0.04 – 0.17 0.232 0.09 -0.06 – 0.25 0.249 -0.08 -0.62 – 0.46 0.772
baseline 0.44 0.36 – 0.52 <0.001 0.44 0.37 – 0.52 <0.001 0.42 0.31 – 0.53 <0.001
session [4] -0.26 -0.36 – -0.16 <0.001 -0.26 -0.36 – -0.16 <0.001 -0.26 -0.36 – -0.16 <0.001
cueing [Uncued] ×
baseline
0.04 -0.09 – 0.18 0.516
Random Effects
σ2 0.65 0.64 0.64
τ00 0.12 item 0.12 item 0.12 item
0.28 participant 0.41 participant 0.41 participant
τ11   0.06 participant.cueingUncued 0.06 participant.cueingUncued
ρ01   -0.93 participant -0.94 participant
ICC 0.38 0.39 0.39
N 17 participant 17 participant 17 participant
48 item 48 item 48 item
Observations 1024 1024 1024
Marginal R2 / Conditional R2 0.111 / 0.450 0.115 / 0.461 0.115 / 0.461
#without baseline
m3.0 <- lmer(rating ~ cueing  + session + (1  | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
m3.1 <- lmer(rating ~ cueing  + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))

anova(m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##      npar    AIC    BIC  logLik deviance   Chisq Df Pr(>Chisq)    
## m3.0    6 2704.4 2734.0 -1346.2   2692.4                          
## m3.1    8 2696.9 2736.3 -1340.5   2680.9  11.528  2   0.003139 ** 
## m3.x   10 2591.2 2640.5 -1285.6   2571.2 109.736  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## m3.0    6 2704.4 2734.0 -1346.2   2692.4                         
## m3.x   10 2591.2 2640.5 -1285.6   2571.2 121.26  4  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x)
  rating rating rating
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 3.30 2.98 – 3.62 <0.001 3.28 2.92 – 3.65 <0.001 1.71 1.19 – 2.24 <0.001
cueing [Uncued] 0.04 -0.06 – 0.15 0.416 0.07 -0.09 – 0.22 0.380 -0.08 -0.62 – 0.46 0.772
session [4] -0.26 -0.37 – -0.16 <0.001 -0.26 -0.37 – -0.16 <0.001 -0.26 -0.36 – -0.16 <0.001
baseline 0.42 0.31 – 0.53 <0.001
cueing [Uncued] ×
baseline
0.04 -0.09 – 0.18 0.516
Random Effects
σ2 0.70 0.69 0.64
τ00 0.23 item 0.23 item 0.12 item
0.34 participant 0.46 participant 0.41 participant
τ11   0.06 participant.cueingUncued 0.06 participant.cueingUncued
ρ01   -0.85 participant -0.94 participant
ICC 0.45 0.46 0.39
N 17 participant 17 participant 17 participant
48 item 48 item 48 item
Observations 1024 1024 1024
Marginal R2 / Conditional R2 0.014 / 0.457 0.014 / 0.465 0.115 / 0.461
m3.0 <- lmer(rating ~ cueing + baseline + session + (1  | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
m3.1 <- lmer(rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
## boundary (singular) fit: see help('isSingular')
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
## boundary (singular) fit: see help('isSingular')
anova(m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##      npar    AIC    BIC  logLik deviance   Chisq Df Pr(>Chisq)    
## m3.0    7 3508.6 3545.1 -1747.3   3494.6                          
## m3.1    9 3498.6 3545.5 -1740.3   3480.6 13.9750  2  0.0009233 ***
## m3.x   10 3498.3 3550.4 -1739.2   3478.3  2.2889  1  0.1302984    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## m3.0    7 3508.6 3545.1 -1747.3   3494.6                        
## m3.x   10 3498.3 3550.4 -1739.2   3478.3 16.264  3   0.001001 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x)
  rating rating rating
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 1.74 1.42 – 2.07 <0.001 1.72 1.36 – 2.08 <0.001 1.84 1.45 – 2.23 <0.001
cueing [Uncued] 0.05 -0.04 – 0.14 0.311 0.06 -0.07 – 0.19 0.345 -0.17 -0.50 – 0.15 0.300
baseline 0.42 0.37 – 0.47 <0.001 0.42 0.37 – 0.48 <0.001 0.39 0.32 – 0.46 <0.001
session [4] -0.28 -0.37 – -0.19 <0.001 -0.28 -0.37 – -0.19 <0.001 -0.28 -0.37 – -0.19 <0.001
cueing [Uncued] ×
baseline
0.07 -0.02 – 0.16 0.125
Random Effects
σ2 0.69 0.68 0.68
τ00 0.12 item 0.12 item 0.12 item
0.26 participant 0.37 participant 0.37 participant
τ11   0.03 participant.cueingUncued 0.04 participant.cueingUncued
ρ01   -1.00 participant -1.00 participant
ICC 0.36    
N 17 participant 17 participant 17 participant
48 item 48 item 48 item
Observations 1360 1360 1360
Marginal R2 / Conditional R2 0.162 / 0.462 0.236 / NA 0.236 / NA
#without baseline
m3.0 <- lmer(rating ~ cueing  + session + (1  | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
m3.1 <- lmer(rating ~ cueing  + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
## boundary (singular) fit: see help('isSingular')
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
## boundary (singular) fit: see help('isSingular')
anova(m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##      npar    AIC    BIC  logLik deviance   Chisq Df Pr(>Chisq)    
## m3.0    6 3713.7 3745.0 -1850.9   3701.7                          
## m3.1    8 3707.7 3749.4 -1845.8   3691.7  10.027  2   0.006648 ** 
## m3.x   10 3498.3 3550.4 -1739.2   3478.3 213.403  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## m3.0    6 3713.7 3745.0 -1850.9   3701.7                         
## m3.x   10 3498.3 3550.4 -1739.2   3478.3 223.43  4  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x)
  rating rating rating
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 3.13 2.79 – 3.47 <0.001 3.13 2.75 – 3.50 <0.001 1.84 1.45 – 2.23 <0.001
cueing [Uncued] 0.05 -0.04 – 0.15 0.276 0.07 -0.06 – 0.19 0.304 -0.17 -0.50 – 0.15 0.300
session [4] -0.28 -0.38 – -0.18 <0.001 -0.28 -0.38 – -0.18 <0.001 -0.28 -0.37 – -0.19 <0.001
baseline 0.39 0.32 – 0.46 <0.001
cueing [Uncued] ×
baseline
0.07 -0.02 – 0.16 0.125
Random Effects
σ2 0.78 0.78 0.68
τ00 0.30 item 0.29 item 0.12 item
0.38 participant 0.48 participant 0.37 participant
τ11   0.03 participant.cueingUncued 0.04 participant.cueingUncued
ρ01   -1.00 participant -1.00 participant
ICC 0.46 0.46  
N 17 participant 17 participant 17 participant
48 item 48 item 48 item
Observations 1360 1360 1360
Marginal R2 / Conditional R2 0.014 / 0.469 0.014 / 0.472 0.236 / NA
m3.0y <- lmer(rating ~ cueing + session + (1  | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 4))
m3.0 <- lmer(rating ~ cueing + baseline + session + (1  | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 4))
m3.1 <- lmer(rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 4))
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 4))

anova(m3.0y,m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0y: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##       npar    AIC    BIC  logLik deviance   Chisq Df Pr(>Chisq)    
## m3.0y    6 1591.0 1617.5 -789.52   1579.0                          
## m3.0     7 1555.5 1586.3 -770.73   1541.5 37.5843  1  8.754e-10 ***
## m3.1     9 1544.5 1584.2 -763.25   1526.5 14.9574  2   0.000565 ***
## m3.x    10 1545.4 1589.5 -762.69   1525.4  1.1192  1   0.290082    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0y,m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating),  ...
## Models:
## m3.0y: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
##       npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## m3.0y    6 1591.0 1617.5 -789.52   1579.0                         
## m3.0     7 1555.5 1586.3 -770.73   1541.5 37.584  1  8.754e-10 ***
## m3.x    10 1545.4 1589.5 -762.69   1525.4 16.077  3   0.001094 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0y,m3.0,m3.1 ,m3.x)
  rating rating rating rating
Predictors Estimates CI p Estimates CI p Estimates CI p Estimates CI p
(Intercept) 3.58 3.25 – 3.90 <0.001 1.50 0.77 – 2.22 <0.001 1.40 0.66 – 2.15 <0.001 1.07 0.10 – 2.04 0.031
cueing [Uncued] 0.10 -0.03 – 0.24 0.129 0.12 -0.01 – 0.25 0.078 0.16 -0.06 – 0.38 0.161 0.83 -0.44 – 2.09 0.202
session [4] -0.31 -0.45 – -0.18 <0.001 -0.31 -0.44 – -0.18 <0.001 -0.31 -0.44 – -0.18 <0.001 -0.31 -0.44 – -0.18 <0.001
baseline 0.49 0.33 – 0.64 <0.001 0.50 0.35 – 0.65 <0.001 0.58 0.37 – 0.79 <0.001
cueing [Uncued] ×
baseline
-0.15 -0.44 – 0.13 0.293
Random Effects
σ2 0.65 0.62 0.59 0.59
τ00 0.19 item 0.14 item 0.14 item 0.14 item
0.34 participant 0.32 participant 0.49 participant 0.49 participant
τ11     0.13 participant.cueingUncued 0.12 participant.cueingUncued
ρ01     -0.81 participant -0.80 participant
ICC 0.45 0.43 0.45 0.45
N 17 participant 17 participant 17 participant 17 participant
48 item 48 item 48 item 48 item
Observations 610 610 610 610
Marginal R2 / Conditional R2 0.023 / 0.460 0.071 / 0.469 0.075 / 0.493 0.076 / 0.494

Plotting observed and predicted data

m3.x <- lmer(rating ~ cueing* baseline + session*cueing + (1 | participant)  + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))

data.aggr <- arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% group_by(session,participant,cueing,baseline) %>% summarise(predicted=mean(rating, na.rm=TRUE)) %>% na.omit() %>% mutate(x = baseline, group_col=cueing)
## `summarise()` has grouped output by 'session', 'participant', 'cueing'. You can
## override using the `.groups` argument.
tmp <- tibble(get_model_data(m3.x, type = "pred", terms = c("baseline[all]","cueing")))

#aggregated across session
ggplot(tmp, aes(x = x, y = predicted, color = group_col,fill=group_col)) + 
  geom_line() + 
  geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.3) +
  xlab("Baseline") +
  ylab("Rating") +   stat_summary(data=data.aggr, fun = "mean", geom = "point", size = 1.5) +
  stat_summary(data=data.aggr,fun.data = mean_se, geom = "errorbar", width = 0.1)   + theme_apa(base_size = 14)  + labs(color=NULL, fill=NULL)

#model is still the same but we split the behavior by session
ggplot(tmp, aes(x = x, y = predicted, color = group_col,fill=group_col)) + 
  geom_line() + 
  geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.3) +
  xlab("Baseline") +
  ylab("Rating") +   stat_summary(data=data.aggr, fun = "mean", geom = "point", size = 1.5) +
  stat_summary(data=data.aggr,fun.data = mean_se, geom = "errorbar", width = 0.1)   + theme_apa(base_size = 14) + facet_wrap(~session) + labs(color=NULL, fill=NULL)

# session specific model predictions + with session specific behavior
tmp <- tibble(get_model_data(m3.x, type = "pred", terms = c("baseline[all]","cueing","session")))
data.aggr <- arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% group_by(session,participant,cueing,baseline) %>% summarise(predicted=mean(rating, na.rm=TRUE)) %>% na.omit() %>% mutate(x = baseline, group_col=cueing, facet=session)
## `summarise()` has grouped output by 'session', 'participant', 'cueing'. You can
## override using the `.groups` argument.
ggplot(tmp, aes(x = x, y = predicted, color = group_col,fill=group_col)) + 
  geom_line() + 
  geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.3) +
  xlab("Baseline") +
  ylab("Rating") +   stat_summary(data=data.aggr, fun = "mean", geom = "point", size = 1.5) +
  stat_summary(data=data.aggr,fun.data = mean_se, geom = "errorbar", width = 0.1)   + theme_apa(base_size = 14) + labs(color=NULL, fill=NULL) + facet_wrap(~facet)