Does the data show people rating stuff higher as a function of their
baseline rating?
data.aggr <- arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% group_by(participant,cueing,baseline) %>% summarise(meanRating=mean(rating, na.rm=TRUE)) %>% na.omit()
## `summarise()` has grouped output by 'participant', 'cueing'. You can override
## using the `.groups` argument.
library(afex)
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - NEWS: emmeans() for ANOVA models now uses model = 'multivariate' as default.
## - Get and set global package options with: afex_options()
## - Set orthogonal sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
##
## Attaching package: 'afex'
##
## The following object is masked from 'package:lme4':
##
## lmer
aw <- aov_ez("participant", "meanRating", data.aggr %>% na.omit(), within = c("cueing", "baseline"))
## Warning: Missing values for following ID(s):
## PT03, PT05, PT07, PT08, PT12, PT17, PT18, PT19
## Removing those cases from the analysis.
library(ggplot2)
ggplot(data.aggr, aes(x = baseline, y = meanRating, group = cueing, color = cueing)) +
stat_summary(fun = "mean", geom = "point", size = 1.5) +
stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1) +
labs(x = "Baseline", y = "Mean Rating", color = "Cueing") +
theme_minimal()

data.aggr <- arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% group_by(participant,cueing,baseline,session) %>% summarise(meanRating=mean(rating, na.rm=TRUE)) %>% na.omit()
## `summarise()` has grouped output by 'participant', 'cueing', 'baseline'. You
## can override using the `.groups` argument.
ggplot(data.aggr, aes(x = baseline, y = meanRating, group = cueing, color = cueing)) +
stat_summary(fun = "mean", geom = "point", size = 1.5) +
stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1) +
labs(x = "Baseline", y = "Mean Rating", color = "Cueing") +
theme_minimal() + facet_wrap(~session)

ggplot(arousal.extended.wbaseline, aes(x=factor(rating), group=cueing,fill=cueing))+
geom_bar(stat="count", position=position_dodge())+
theme_minimal()

ggplot(arousal.extended.wbaseline, aes(x=factor(rating), group=cueing,fill=cueing))+
geom_bar(stat="count", position=position_dodge())+
theme_minimal() + facet_wrap(~session) + coord_flip()

ggplot(arousal.extended.wbaseline %>% filter(baseline >= 4), aes(x=factor(rating), group=cueing,fill=cueing))+
geom_bar(stat="count", position=position_dodge())+
theme_minimal() + facet_wrap(~session) + coord_flip()

m3.0 <- lmer(rating ~ cueing + baseline + session + (1 | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
m3.1 <- lmer(rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
## boundary (singular) fit: see help('isSingular')
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
## boundary (singular) fit: see help('isSingular')
m3.x2 <- lmer(rating ~ cueing* baseline + cueing*session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
## boundary (singular) fit: see help('isSingular')
anova(m3.0,m3.1 ,m3.x,m3.x2)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x2: rating ~ cueing * baseline + cueing * session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 7 3889.1 3926.3 -1937.5 3875.1
## m3.1 9 3883.6 3931.5 -1932.8 3865.6 9.4372 2 0.008928 **
## m3.x 10 3877.0 3930.2 -1928.5 3857.0 8.6259 1 0.003314 **
## m3.x2 11 3878.9 3937.5 -1928.5 3856.9 0.0769 1 0.781603
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 7 3889.1 3926.3 -1937.5 3875.1
## m3.x 10 3877.0 3930.2 -1928.5 3857.0 18.063 3 0.0004269 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x,m3.x2)
|
|
rating
|
rating
|
rating
|
rating
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
1.88
|
1.58 – 2.18
|
<0.001
|
1.87
|
1.55 – 2.20
|
<0.001
|
2.05
|
1.69 – 2.40
|
<0.001
|
2.04
|
1.69 – 2.39
|
<0.001
|
|
cueing [Uncued]
|
0.01
|
-0.07 – 0.10
|
0.742
|
0.02
|
-0.09 – 0.13
|
0.755
|
-0.32
|
-0.58 – -0.07
|
0.012
|
-0.31
|
-0.58 – -0.05
|
0.020
|
|
baseline
|
0.38
|
0.34 – 0.43
|
<0.001
|
0.39
|
0.34 – 0.43
|
<0.001
|
0.33
|
0.27 – 0.39
|
<0.001
|
0.33
|
0.27 – 0.39
|
<0.001
|
|
session [4]
|
-0.27
|
-0.36 – -0.18
|
<0.001
|
-0.27
|
-0.36 – -0.18
|
<0.001
|
-0.27
|
-0.35 – -0.18
|
<0.001
|
-0.26
|
-0.38 – -0.14
|
<0.001
|
cueing [Uncued] × baseline
|
|
|
|
|
|
|
0.11
|
0.04 – 0.18
|
0.003
|
0.11
|
0.04 – 0.18
|
0.003
|
cueing [Uncued] × session [4]
|
|
|
|
|
|
|
|
|
|
-0.02
|
-0.19 – 0.14
|
0.783
|
|
Random Effects
|
|
σ2
|
0.68
|
0.68
|
0.67
|
0.67
|
|
τ00
|
0.14 item
|
0.14 item
|
0.14 item
|
0.14 item
|
|
|
0.25 participant
|
0.32 participant
|
0.34 participant
|
0.34 participant
|
|
τ11
|
|
0.02 participant.cueingUncued
|
0.03 participant.cueingUncued
|
0.03 participant.cueingUncued
|
|
ρ01
|
|
-1.00 participant
|
-1.00 participant
|
-1.00 participant
|
|
ICC
|
0.36
|
|
0.37
|
|
|
N
|
17 participant
|
17 participant
|
17 participant
|
17 participant
|
|
|
48 item
|
48 item
|
48 item
|
48 item
|
|
Observations
|
1517
|
1517
|
1517
|
1517
|
|
Marginal R2 / Conditional R2
|
0.180 / 0.477
|
0.260 / NA
|
0.183 / 0.484
|
0.262 / NA
|
m3.0 <- lmer(rating ~ cueing + baseline + session + (1 | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
m3.1 <- lmer(rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
anova(m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 7 2601.7 2636.2 -1293.8 2587.7
## m3.1 9 2589.6 2634.0 -1285.8 2571.6 16.0376 2 0.0003292 ***
## m3.x 10 2591.2 2640.5 -1285.6 2571.2 0.4486 1 0.5029881
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 7 2601.7 2636.2 -1293.8 2587.7
## m3.x 10 2591.2 2640.5 -1285.6 2571.2 16.486 3 0.0009012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x)
|
|
rating
|
rating
|
rating
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
1.67
|
1.25 – 2.08
|
<0.001
|
1.62
|
1.18 – 2.07
|
<0.001
|
1.71
|
1.19 – 2.24
|
<0.001
|
|
cueing [Uncued]
|
0.06
|
-0.04 – 0.17
|
0.232
|
0.09
|
-0.06 – 0.25
|
0.249
|
-0.08
|
-0.62 – 0.46
|
0.772
|
|
baseline
|
0.44
|
0.36 – 0.52
|
<0.001
|
0.44
|
0.37 – 0.52
|
<0.001
|
0.42
|
0.31 – 0.53
|
<0.001
|
|
session [4]
|
-0.26
|
-0.36 – -0.16
|
<0.001
|
-0.26
|
-0.36 – -0.16
|
<0.001
|
-0.26
|
-0.36 – -0.16
|
<0.001
|
cueing [Uncued] × baseline
|
|
|
|
|
|
|
0.04
|
-0.09 – 0.18
|
0.516
|
|
Random Effects
|
|
σ2
|
0.65
|
0.64
|
0.64
|
|
τ00
|
0.12 item
|
0.12 item
|
0.12 item
|
|
|
0.28 participant
|
0.41 participant
|
0.41 participant
|
|
τ11
|
|
0.06 participant.cueingUncued
|
0.06 participant.cueingUncued
|
|
ρ01
|
|
-0.93 participant
|
-0.94 participant
|
|
ICC
|
0.38
|
0.39
|
0.39
|
|
N
|
17 participant
|
17 participant
|
17 participant
|
|
|
48 item
|
48 item
|
48 item
|
|
Observations
|
1024
|
1024
|
1024
|
|
Marginal R2 / Conditional R2
|
0.111 / 0.450
|
0.115 / 0.461
|
0.115 / 0.461
|
#without baseline
m3.0 <- lmer(rating ~ cueing + session + (1 | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
m3.1 <- lmer(rating ~ cueing + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 3))
anova(m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 6 2704.4 2734.0 -1346.2 2692.4
## m3.1 8 2696.9 2736.3 -1340.5 2680.9 11.528 2 0.003139 **
## m3.x 10 2591.2 2640.5 -1285.6 2571.2 109.736 2 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 6 2704.4 2734.0 -1346.2 2692.4
## m3.x 10 2591.2 2640.5 -1285.6 2571.2 121.26 4 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x)
|
|
rating
|
rating
|
rating
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
3.30
|
2.98 – 3.62
|
<0.001
|
3.28
|
2.92 – 3.65
|
<0.001
|
1.71
|
1.19 – 2.24
|
<0.001
|
|
cueing [Uncued]
|
0.04
|
-0.06 – 0.15
|
0.416
|
0.07
|
-0.09 – 0.22
|
0.380
|
-0.08
|
-0.62 – 0.46
|
0.772
|
|
session [4]
|
-0.26
|
-0.37 – -0.16
|
<0.001
|
-0.26
|
-0.37 – -0.16
|
<0.001
|
-0.26
|
-0.36 – -0.16
|
<0.001
|
|
baseline
|
|
|
|
|
|
|
0.42
|
0.31 – 0.53
|
<0.001
|
cueing [Uncued] × baseline
|
|
|
|
|
|
|
0.04
|
-0.09 – 0.18
|
0.516
|
|
Random Effects
|
|
σ2
|
0.70
|
0.69
|
0.64
|
|
τ00
|
0.23 item
|
0.23 item
|
0.12 item
|
|
|
0.34 participant
|
0.46 participant
|
0.41 participant
|
|
τ11
|
|
0.06 participant.cueingUncued
|
0.06 participant.cueingUncued
|
|
ρ01
|
|
-0.85 participant
|
-0.94 participant
|
|
ICC
|
0.45
|
0.46
|
0.39
|
|
N
|
17 participant
|
17 participant
|
17 participant
|
|
|
48 item
|
48 item
|
48 item
|
|
Observations
|
1024
|
1024
|
1024
|
|
Marginal R2 / Conditional R2
|
0.014 / 0.457
|
0.014 / 0.465
|
0.115 / 0.461
|
m3.0 <- lmer(rating ~ cueing + baseline + session + (1 | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
m3.1 <- lmer(rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
## boundary (singular) fit: see help('isSingular')
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
## boundary (singular) fit: see help('isSingular')
anova(m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 7 3508.6 3545.1 -1747.3 3494.6
## m3.1 9 3498.6 3545.5 -1740.3 3480.6 13.9750 2 0.0009233 ***
## m3.x 10 3498.3 3550.4 -1739.2 3478.3 2.2889 1 0.1302984
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 7 3508.6 3545.1 -1747.3 3494.6
## m3.x 10 3498.3 3550.4 -1739.2 3478.3 16.264 3 0.001001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x)
|
|
rating
|
rating
|
rating
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
1.74
|
1.42 – 2.07
|
<0.001
|
1.72
|
1.36 – 2.08
|
<0.001
|
1.84
|
1.45 – 2.23
|
<0.001
|
|
cueing [Uncued]
|
0.05
|
-0.04 – 0.14
|
0.311
|
0.06
|
-0.07 – 0.19
|
0.345
|
-0.17
|
-0.50 – 0.15
|
0.300
|
|
baseline
|
0.42
|
0.37 – 0.47
|
<0.001
|
0.42
|
0.37 – 0.48
|
<0.001
|
0.39
|
0.32 – 0.46
|
<0.001
|
|
session [4]
|
-0.28
|
-0.37 – -0.19
|
<0.001
|
-0.28
|
-0.37 – -0.19
|
<0.001
|
-0.28
|
-0.37 – -0.19
|
<0.001
|
cueing [Uncued] × baseline
|
|
|
|
|
|
|
0.07
|
-0.02 – 0.16
|
0.125
|
|
Random Effects
|
|
σ2
|
0.69
|
0.68
|
0.68
|
|
τ00
|
0.12 item
|
0.12 item
|
0.12 item
|
|
|
0.26 participant
|
0.37 participant
|
0.37 participant
|
|
τ11
|
|
0.03 participant.cueingUncued
|
0.04 participant.cueingUncued
|
|
ρ01
|
|
-1.00 participant
|
-1.00 participant
|
|
ICC
|
0.36
|
|
|
|
N
|
17 participant
|
17 participant
|
17 participant
|
|
|
48 item
|
48 item
|
48 item
|
|
Observations
|
1360
|
1360
|
1360
|
|
Marginal R2 / Conditional R2
|
0.162 / 0.462
|
0.236 / NA
|
0.236 / NA
|
#without baseline
m3.0 <- lmer(rating ~ cueing + session + (1 | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
m3.1 <- lmer(rating ~ cueing + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
## boundary (singular) fit: see help('isSingular')
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 2))
## boundary (singular) fit: see help('isSingular')
anova(m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 6 3713.7 3745.0 -1850.9 3701.7
## m3.1 8 3707.7 3749.4 -1845.8 3691.7 10.027 2 0.006648 **
## m3.x 10 3498.3 3550.4 -1739.2 3478.3 213.403 2 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0 6 3713.7 3745.0 -1850.9 3701.7
## m3.x 10 3498.3 3550.4 -1739.2 3478.3 223.43 4 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0,m3.1 ,m3.x)
|
|
rating
|
rating
|
rating
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
3.13
|
2.79 – 3.47
|
<0.001
|
3.13
|
2.75 – 3.50
|
<0.001
|
1.84
|
1.45 – 2.23
|
<0.001
|
|
cueing [Uncued]
|
0.05
|
-0.04 – 0.15
|
0.276
|
0.07
|
-0.06 – 0.19
|
0.304
|
-0.17
|
-0.50 – 0.15
|
0.300
|
|
session [4]
|
-0.28
|
-0.38 – -0.18
|
<0.001
|
-0.28
|
-0.38 – -0.18
|
<0.001
|
-0.28
|
-0.37 – -0.19
|
<0.001
|
|
baseline
|
|
|
|
|
|
|
0.39
|
0.32 – 0.46
|
<0.001
|
cueing [Uncued] × baseline
|
|
|
|
|
|
|
0.07
|
-0.02 – 0.16
|
0.125
|
|
Random Effects
|
|
σ2
|
0.78
|
0.78
|
0.68
|
|
τ00
|
0.30 item
|
0.29 item
|
0.12 item
|
|
|
0.38 participant
|
0.48 participant
|
0.37 participant
|
|
τ11
|
|
0.03 participant.cueingUncued
|
0.04 participant.cueingUncued
|
|
ρ01
|
|
-1.00 participant
|
-1.00 participant
|
|
ICC
|
0.46
|
0.46
|
|
|
N
|
17 participant
|
17 participant
|
17 participant
|
|
|
48 item
|
48 item
|
48 item
|
|
Observations
|
1360
|
1360
|
1360
|
|
Marginal R2 / Conditional R2
|
0.014 / 0.469
|
0.014 / 0.472
|
0.236 / NA
|
m3.0y <- lmer(rating ~ cueing + session + (1 | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 4))
m3.0 <- lmer(rating ~ cueing + baseline + session + (1 | participant) + (1 | item), data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 4))
m3.1 <- lmer(rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 4))
m3.x <- lmer(rating ~ cueing* baseline + session + (1 + cueing | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% filter(baseline >= 4))
anova(m3.0y,m3.0,m3.1 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0y: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.1: rating ~ cueing + baseline + session + (1 + cueing | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0y 6 1591.0 1617.5 -789.52 1579.0
## m3.0 7 1555.5 1586.3 -770.73 1541.5 37.5843 1 8.754e-10 ***
## m3.1 9 1544.5 1584.2 -763.25 1526.5 14.9574 2 0.000565 ***
## m3.x 10 1545.4 1589.5 -762.69 1525.4 1.1192 1 0.290082
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m3.0y,m3.0 ,m3.x)
## refitting model(s) with ML (instead of REML)
## Data: arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), ...
## Models:
## m3.0y: rating ~ cueing + session + (1 | participant) + (1 | item)
## m3.0: rating ~ cueing + baseline + session + (1 | participant) + (1 | item)
## m3.x: rating ~ cueing * baseline + session + (1 + cueing | participant) + (1 | item)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## m3.0y 6 1591.0 1617.5 -789.52 1579.0
## m3.0 7 1555.5 1586.3 -770.73 1541.5 37.584 1 8.754e-10 ***
## m3.x 10 1545.4 1589.5 -762.69 1525.4 16.077 3 0.001094 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(m3.0y,m3.0,m3.1 ,m3.x)
|
|
rating
|
rating
|
rating
|
rating
|
|
Predictors
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
3.58
|
3.25 – 3.90
|
<0.001
|
1.50
|
0.77 – 2.22
|
<0.001
|
1.40
|
0.66 – 2.15
|
<0.001
|
1.07
|
0.10 – 2.04
|
0.031
|
|
cueing [Uncued]
|
0.10
|
-0.03 – 0.24
|
0.129
|
0.12
|
-0.01 – 0.25
|
0.078
|
0.16
|
-0.06 – 0.38
|
0.161
|
0.83
|
-0.44 – 2.09
|
0.202
|
|
session [4]
|
-0.31
|
-0.45 – -0.18
|
<0.001
|
-0.31
|
-0.44 – -0.18
|
<0.001
|
-0.31
|
-0.44 – -0.18
|
<0.001
|
-0.31
|
-0.44 – -0.18
|
<0.001
|
|
baseline
|
|
|
|
0.49
|
0.33 – 0.64
|
<0.001
|
0.50
|
0.35 – 0.65
|
<0.001
|
0.58
|
0.37 – 0.79
|
<0.001
|
cueing [Uncued] × baseline
|
|
|
|
|
|
|
|
|
|
-0.15
|
-0.44 – 0.13
|
0.293
|
|
Random Effects
|
|
σ2
|
0.65
|
0.62
|
0.59
|
0.59
|
|
τ00
|
0.19 item
|
0.14 item
|
0.14 item
|
0.14 item
|
|
|
0.34 participant
|
0.32 participant
|
0.49 participant
|
0.49 participant
|
|
τ11
|
|
|
0.13 participant.cueingUncued
|
0.12 participant.cueingUncued
|
|
ρ01
|
|
|
-0.81 participant
|
-0.80 participant
|
|
ICC
|
0.45
|
0.43
|
0.45
|
0.45
|
|
N
|
17 participant
|
17 participant
|
17 participant
|
17 participant
|
|
|
48 item
|
48 item
|
48 item
|
48 item
|
|
Observations
|
610
|
610
|
610
|
610
|
|
Marginal R2 / Conditional R2
|
0.023 / 0.460
|
0.071 / 0.469
|
0.075 / 0.493
|
0.076 / 0.494
|
Plotting observed and predicted data
m3.x <- lmer(rating ~ cueing* baseline + session*cueing + (1 | participant) + (1 | item) , data=arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)))
data.aggr <- arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% group_by(session,participant,cueing,baseline) %>% summarise(predicted=mean(rating, na.rm=TRUE)) %>% na.omit() %>% mutate(x = baseline, group_col=cueing)
## `summarise()` has grouped output by 'session', 'participant', 'cueing'. You can
## override using the `.groups` argument.
tmp <- tibble(get_model_data(m3.x, type = "pred", terms = c("baseline[all]","cueing")))
#aggregated across session
ggplot(tmp, aes(x = x, y = predicted, color = group_col,fill=group_col)) +
geom_line() +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.3) +
xlab("Baseline") +
ylab("Rating") + stat_summary(data=data.aggr, fun = "mean", geom = "point", size = 1.5) +
stat_summary(data=data.aggr,fun.data = mean_se, geom = "errorbar", width = 0.1) + theme_apa(base_size = 14) + labs(color=NULL, fill=NULL)

#model is still the same but we split the behavior by session
ggplot(tmp, aes(x = x, y = predicted, color = group_col,fill=group_col)) +
geom_line() +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.3) +
xlab("Baseline") +
ylab("Rating") + stat_summary(data=data.aggr, fun = "mean", geom = "point", size = 1.5) +
stat_summary(data=data.aggr,fun.data = mean_se, geom = "errorbar", width = 0.1) + theme_apa(base_size = 14) + facet_wrap(~session) + labs(color=NULL, fill=NULL)

# session specific model predictions + with session specific behavior
tmp <- tibble(get_model_data(m3.x, type = "pred", terms = c("baseline[all]","cueing","session")))
data.aggr <- arousal.extended.wbaseline %>% mutate(rating = as.numeric(rating), baseline=as.numeric(baseline)) %>% group_by(session,participant,cueing,baseline) %>% summarise(predicted=mean(rating, na.rm=TRUE)) %>% na.omit() %>% mutate(x = baseline, group_col=cueing, facet=session)
## `summarise()` has grouped output by 'session', 'participant', 'cueing'. You can
## override using the `.groups` argument.
ggplot(tmp, aes(x = x, y = predicted, color = group_col,fill=group_col)) +
geom_line() +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.3) +
xlab("Baseline") +
ylab("Rating") + stat_summary(data=data.aggr, fun = "mean", geom = "point", size = 1.5) +
stat_summary(data=data.aggr,fun.data = mean_se, geom = "errorbar", width = 0.1) + theme_apa(base_size = 14) + labs(color=NULL, fill=NULL) + facet_wrap(~facet)
