# Mindanao State University
# General Santos City
# Introduction to R base commands
# Prepared by: Eugene D. Villaralbo
# March 20, 2023

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command

data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  0.7156967  0.3582907  1.9697389  3.9388802  1.4399580  4.4733058
##  [7] -1.4801422  1.7444057  1.1176271  4.9357245  2.6672891  0.9100458
## [13]  0.9983452  1.5694589  1.7354206  3.0860015  3.1083079 -0.4888019
## [19] -0.7781066  2.4725154
data[1:300] # display the first 300 elements
##   [1]  0.71569675  0.35829073  1.96973891  3.93888015  1.43995796  4.47330576
##   [7] -1.48014219  1.74440566  1.11762706  4.93572451  2.66728915  0.91004575
##  [13]  0.99834525  1.56945890  1.73542055  3.08600152  3.10830794 -0.48880185
##  [19] -0.77810657  2.47251541  1.88783766 -0.18572457  2.28981984  3.23372792
##  [25]  3.35561760  2.10337768  1.35410931  2.35801224  2.56409993  3.76587342
##  [31]  1.07444162 -0.11356258  1.54203812 -0.09369398  2.66182780  3.61136251
##  [37]  1.98197575  2.96837580  4.13644679  2.08021170  2.30047663  2.56796932
##  [43]  2.32359895  2.58630759  3.00465484 -1.70227591  3.46777579 -1.34827040
##  [49] -0.78491132  2.74327561  1.02579470  2.70323667  3.03334599  3.02899938
##  [55]  2.86889273  1.43271817  1.61923122  1.91506101  2.85491441  2.64594277
##  [61]  1.94401832  1.65642746  1.69025364 -0.01668462  4.47779263  4.93240232
##  [67]  1.43506438  1.25241592  2.09194537  1.21488766  1.89799342  1.23784867
##  [73]  0.94415711  0.43642343  0.02745933  1.18584700  3.22266942  1.65389293
##  [79]  2.62606072  4.43454054  2.72764071  4.40877993  1.98744773  3.87100588
##  [85]  3.17528376  2.00514491  3.34288039  3.24103276  1.57723866  3.08886371
##  [91]  1.25575980  0.93019879  3.95060608  3.11463755  2.73414281  2.42778109
##  [97]  1.16328328  2.27928063  1.52937315  2.98208230  3.37903325 -0.41255852
## [103] -0.69337420  1.79538477  2.89030371  3.36663197  2.20185193 -0.74293398
## [109]  4.09816035  0.08160403  0.97657728  1.64676266  2.28769535  2.57407369
## [115]  3.12940447  3.56454008  3.85882842  2.00137739  0.42355719  1.09338418
## [121]  1.88860868  1.55860295  3.60800449  0.62611967 -0.52893103  3.13230145
## [127]  1.46619964  1.11359549  0.35050550  3.00818644  2.27268068  2.36770583
## [133]  2.10485113  3.82813969  2.54240133  4.23231033 -0.65235798  1.73135236
## [139]  2.73109881  1.53362689  3.91569752  1.15707137  2.65102615  3.55693477
## [145]  3.77027872  4.44300043  0.59777553  1.26276942 -2.03150252  2.06687746
## [151]  1.39781757  2.94422908  2.17376601  0.31295034  4.56117798  4.13183908
## [157]  3.18576044  2.12568283  1.09843572  3.13583694  3.26503788  4.66693249
## [163] -0.78094276  1.16074759  1.00096569  2.02781726  1.00361729  2.54565762
## [169]  2.26185644  0.84781244  0.35461146  3.22850495  0.74321199  1.10344527
## [175]  2.46189261  1.91570674  1.68184854  0.17900070  5.56434525  3.35028864
## [181]  3.64313176  0.62535682  2.38139629  1.35353226  1.06128839  2.02443210
## [187]  5.04472461  2.00954027  2.08687154  0.83695744  0.06672484  2.62167613
## [193]  4.00752357  1.35022077  4.14910731  1.34005146  1.99495784  3.78029510
## [199]  2.32889626  3.10892454  3.26914957  3.25948970  4.88925668  1.80526162
## [205]  3.20590286 -1.39643800  4.12955937  1.04472605  0.55709190  1.11547902
## [211]  4.79831158  4.06525082  1.55200954  5.07317651  3.53960586  1.61573837
## [217]  2.85186769  0.58873732  0.26443949  2.90699111  0.30465923  1.96821237
## [223]  2.02491188  4.20843744  2.32623915  2.33794648  3.01848382  4.55018594
## [229]  1.34028110  3.90976216  4.14705216  0.75171337  2.15902325  1.81707842
## [235]  0.92087472  2.48835896  4.56357286  0.92445486  2.53824603  1.00900216
## [241]  1.50294813  0.99326090  4.15884133  3.67107995  2.93177915  2.94933761
## [247]  2.19816945  2.15820061  2.61667364  1.92130503  4.05144649  2.22394257
## [253]  0.89607355  3.26583894 -2.08366875  2.89201338  1.41285417  1.22520082
## [259]  3.57320438 -0.46104599  2.76843446 -0.75766581 -1.61956594  1.34886400
## [265]  3.15088448  0.18057281  1.42308247  1.52402231  0.38317082  1.45589028
## [271]  2.64148138  2.87160266  2.62680052  2.34253254  3.06913694  3.40245723
## [277]  1.65488254  1.83519475  2.00267115  2.55688015 -0.64122644  1.56154280
## [283]  2.95705464  2.26126411  1.54962352 -1.40564181  2.19641883  1.86960012
## [289] -1.18968667  3.31541296  2.14842885 -0.86151116  1.30863739 -1.00075734
## [295] -0.32391683  6.45324311  3.14687952  0.50521955  3.54293839  0.17677285
# Exer2: Draw histogram with one main title and different thickness

maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title

subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?

# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.25948562 -2.17147825 -2.08347089 -1.99546353 -1.90745617 -1.81944881
##   [7] -1.73144145 -1.64343409 -1.55542673 -1.46741937 -1.37941201 -1.29140465
##  [13] -1.20339728 -1.11538992 -1.02738256 -0.93937520 -0.85136784 -0.76336048
##  [19] -0.67535312 -0.58734576 -0.49933840 -0.41133104 -0.32332368 -0.23531631
##  [25] -0.14730895 -0.05930159  0.02870577  0.11671313  0.20472049  0.29272785
##  [31]  0.38073521  0.46874257  0.55674993  0.64475729  0.73276466  0.82077202
##  [37]  0.90877938  0.99678674  1.08479410  1.17280146  1.26080882  1.34881618
##  [43]  1.43682354  1.52483090  1.61283826  1.70084562  1.78885299  1.87686035
##  [49]  1.96486771  2.05287507  2.14088243  2.22888979  2.31689715  2.40490451
##  [55]  2.49291187  2.58091923  2.66892659  2.75693396  2.84494132  2.93294868
##  [61]  3.02095604  3.10896340  3.19697076  3.28497812  3.37298548  3.46099284
##  [67]  3.54900020  3.63700756  3.72501493  3.81302229  3.90102965  3.98903701
##  [73]  4.07704437  4.16505173  4.25305909  4.34106645  4.42907381  4.51708117
##  [79]  4.60508853  4.69309589  4.78110326  4.86911062  4.95711798  5.04512534
##  [85]  5.13313270  5.22114006  5.30914742  5.39715478  5.48516214  5.57316950
##  [91]  5.66117686  5.74918423  5.83719159  5.92519895  6.01320631  6.10121367
##  [97]  6.18922103  6.27722839  6.36523575  6.45324311
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts

hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##         0%        25%        50%        75%       100% 
## -2.2594856  0.9644725  1.9874866  3.0121048  6.4532431
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  0.715696747  0.358290728  1.969738907  3.938880151  1.439957965
##    [6]  4.473305761 -1.480142195  1.744405662  1.117627064  4.935724511
##   [11]  2.667289149  0.910045750  0.998345247  1.569458901  1.735420554
##   [16]  3.086001517  3.108307937 -0.488801854 -0.778106570  2.472515405
##   [21]  1.887837657 -0.185724571  2.289819841  3.233727925  3.355617600
##   [26]  2.103377683  1.354109312  2.358012244  2.564099933  3.765873423
##   [31]  1.074441622 -0.113562582  1.542038117 -0.093693976  2.661827796
##   [36]  3.611362510  1.981975748  2.968375804  4.136446791  2.080211704
##   [41]  2.300476630  2.567969322  2.323598954  2.586307592  3.004654841
##   [46] -1.702275907  3.467775787 -1.348270396 -0.784911317  2.743275615
##   [51]  1.025794699  2.703236667  3.033345993  3.028999384  2.868892727
##   [56]  1.432718171  1.619231220  1.915061013  2.854914413  2.645942767
##   [61]  1.944018319  1.656427464  1.690253644 -0.016684617  4.477792635
##   [66]  4.932402318  1.435064380  1.252415916  2.091945366  1.214887665
##   [71]  1.897993417  1.237848670  0.944157114  0.436423426  0.027459331
##   [76]  1.185847003  3.222669424  1.653892930  2.626060719  4.434540545
##   [81]  2.727640708  4.408779934  1.987447732  3.871005877  3.175283757
##   [86]  2.005144910  3.342880390  3.241032765  1.577238657  3.088863710
##   [91]  1.255759802  0.930198790  3.950606075  3.114637545  2.734142808
##   [96]  2.427781091  1.163283278  2.279280634  1.529373146  2.982082300
##  [101]  3.379033249 -0.412558519 -0.693374203  1.795384769  2.890303712
##  [106]  3.366631967  2.201851933 -0.742933984  4.098160346  0.081604026
##  [111]  0.976577276  1.646762660  2.287695353  2.574073685  3.129404473
##  [116]  3.564540083  3.858828424  2.001377393  0.423557186  1.093384183
##  [121]  1.888608683  1.558602946  3.608004485  0.626119665 -0.528931029
##  [126]  3.132301453  1.466199637  1.113595495  0.350505505  3.008186444
##  [131]  2.272680679  2.367705826  2.104851130  3.828139685  2.542401330
##  [136]  4.232310327 -0.652357982  1.731352362  2.731098811  1.533626888
##  [141]  3.915697520  1.157071374  2.651026149  3.556934768  3.770278721
##  [146]  4.443000430  0.597775526  1.262769422 -2.031502519  2.066877456
##  [151]  1.397817570  2.944229082  2.173766006  0.312950344  4.561177977
##  [156]  4.131839076  3.185760442  2.125682828  1.098435722  3.135836943
##  [161]  3.265037882  4.666932485 -0.780942761  1.160747591  1.000965695
##  [166]  2.027817264  1.003617290  2.545657622  2.261856437  0.847812441
##  [171]  0.354611457  3.228504954  0.743211991  1.103445268  2.461892608
##  [176]  1.915706736  1.681848538  0.179000695  5.564345254  3.350288641
##  [181]  3.643131757  0.625356825  2.381396286  1.353532265  1.061288388
##  [186]  2.024432105  5.044724614  2.009540269  2.086871542  0.836957436
##  [191]  0.066724842  2.621676126  4.007523567  1.350220766  4.149107309
##  [196]  1.340051456  1.994957842  3.780295102  2.328896261  3.108924536
##  [201]  3.269149571  3.259489705  4.889256677  1.805261615  3.205902857
##  [206] -1.396437997  4.129559367  1.044726047  0.557091905  1.115479021
##  [211]  4.798311583  4.065250818  1.552009543  5.073176511  3.539605859
##  [216]  1.615738371  2.851867692  0.588737318  0.264439489  2.906991113
##  [221]  0.304659230  1.968212370  2.024911878  4.208437441  2.326239152
##  [226]  2.337946475  3.018483818  4.550185944  1.340281095  3.909762156
##  [231]  4.147052157  0.751713368  2.159023247  1.817078425  0.920874723
##  [236]  2.488358956  4.563572863  0.924454857  2.538246026  1.009002156
##  [241]  1.502948135  0.993260904  4.158841331  3.671079949  2.931779150
##  [246]  2.949337610  2.198169453  2.158200615  2.616673636  1.921305035
##  [251]  4.051446488  2.223942565  0.896073553  3.265838944 -2.083668751
##  [256]  2.892013376  1.412854175  1.225200823  3.573204382 -0.461045993
##  [261]  2.768434459 -0.757665813 -1.619565939  1.348864000  3.150884484
##  [266]  0.180572808  1.423082471  1.524022311  0.383170817  1.455890280
##  [271]  2.641481377  2.871602661  2.626800518  2.342532539  3.069136939
##  [276]  3.402457229  1.654882543  1.835194746  2.002671148  2.556880150
##  [281] -0.641226444  1.561542802  2.957054639  2.261264110  1.549623518
##  [286] -1.405641805  2.196418830  1.869600122 -1.189686667  3.315412960
##  [291]  2.148428849 -0.861511163  1.308637387 -1.000757344 -0.323916834
##  [296]  6.453243113  3.146879517  0.505219553  3.542938389  0.176772851
##  [301]  3.042998155  5.567151784  2.845745943  0.957825397  3.202580038
##  [306]  1.144323823  1.865174983 -0.293437390  2.349881002  3.379885623
##  [311]  3.952083634  1.464959036  0.602838092  3.934709037  1.646376439
##  [316]  2.237127573 -0.778498914  2.404789554  1.720306530  3.517112250
##  [321]  0.538465163 -1.204520229  3.469848233  0.790112442  4.108448174
##  [326]  3.809062721 -0.571729373  2.602717759  0.881741226  2.236106266
##  [331]  3.831336407  1.167042416  2.104829276  2.451358950  2.951296069
##  [336]  2.205880402  3.446612115  3.052519579  2.185462801  3.338802359
##  [341] -1.056332329  3.539970960  5.683136937  1.638635820  2.631774304
##  [346]  1.642863480  4.346470320  2.601280978  0.839019426  3.887551995
##  [351]  0.346762993  0.301497448  2.259032047  2.372974159  2.927282980
##  [356]  3.151165016  0.506460174  2.827570839  2.895793802  1.598614525
##  [361]  1.086425267  2.337274048  3.190278217  2.305546357  4.297243361
##  [366]  3.420264624  0.379621586  2.522925894  1.643627535  2.428388027
##  [371]  3.494512133  0.441331980  4.067824458  2.009868147  1.395053853
##  [376]  1.251383672  3.969256594  3.000603597  5.399896408  3.902953116
##  [381]  3.310360381  3.061429798  3.212318599  2.669712705  1.199902445
##  [386]  3.681367880  3.538513478  1.366900097  1.827237781  2.247436102
##  [391]  2.320904582  4.592348892  1.880991307 -2.259485615  2.171331525
##  [396]  2.274377856  2.508988926  2.917268288 -0.647195060  0.792508640
##  [401]  2.822077332  4.357129895  0.676388205  0.981689778  1.212344551
##  [406]  2.368971356  0.082110818 -0.467608114  0.196874132  4.920193108
##  [411]  0.454814979  3.695291752  0.960161850  2.413222164  2.237344816
##  [416]  0.363045467  1.067808109  3.522747629  2.373460390 -1.076657929
##  [421]  2.766365936  2.810674894  1.592241618  1.159156084  0.016709898
##  [426]  1.394163142 -0.439586194 -0.738252048  2.155234955  0.281450264
##  [431]  1.403576417  2.831055168  3.755639510  0.537542256  3.500825218
##  [436]  1.096985632  2.430445279  1.687724175  1.362524484  3.595386185
##  [441]  0.542384558  3.491973625  0.559452777  1.205861649  4.017966849
##  [446]  1.489780913 -0.027819917  0.943888897  1.565503210  1.366538907
##  [451]  1.802143939  2.850045115  1.778882853  4.315125261  2.406667988
##  [456]  4.761508990  1.947156182  0.014866351  3.099026876  4.133921979
##  [461]  2.398129482  3.980120834  3.746184310  2.705538764  1.938110208
##  [466]  0.913284585  0.731611955  3.058542309  0.862947351  1.809026584
##  [471]  0.652819959  0.445506268  1.428561587  0.149776818  2.955725371
##  [476] -0.331483618  1.719798650  3.949502493  1.824438075  0.825761979
##  [481] -0.008897354  5.021263275  2.863055250  1.618509811  1.974902981
##  [486] -0.426625524  1.505704599  4.802635921  0.395009111  1.386687017
##  [491] -0.128682890  2.055806447  2.979068535  0.414845411  1.708296481
##  [496]  2.008346819  2.717110281  1.738177694  0.680676172  1.040409276
##  [501]  2.373479181  3.634249460  0.939725912  0.705826544  2.982258368
##  [506]  2.242020955  1.840627779  3.203388102  0.502629659 -0.822554009
##  [511]  2.462485681 -1.330989512  2.222348263  3.224179339  0.503955978
##  [516]  4.109114978 -0.921830577  1.931747313  0.687429626  1.286968084
##  [521]  3.207479315  2.067533728  1.996131261 -0.965475600 -0.289650281
##  [526]  3.599267504  3.802563240  2.266099117  4.248120094  0.174566733
##  [531]  2.106501757  0.385197319  3.479664764  0.711390069  1.565648634
##  [536]  4.621342966 -0.545354448  0.835649680 -1.147130988  3.004830381
##  [541]  1.965576793  0.009083165  2.284729655  2.001470781  1.793550728
##  [546]  2.097168240  1.921592999  0.526181231  1.928574836  0.204487875
##  [551]  1.180321215  3.485128161  0.591563195  0.458290904  2.429481656
##  [556]  1.637908589  2.789529065  3.831399721  2.463028169  3.103618538
##  [561]  5.965380131  2.746061480  3.107765719  3.207541386 -0.312967388
##  [566] -1.990491959  1.315290409  2.096568116  1.890523151  0.817103246
##  [571]  1.738385040  2.486252512  1.877008614  3.605276247  2.274369453
##  [576]  2.720765610  1.455459949  1.959560845  3.898332120  0.140751877
##  [581]  2.692251672  3.035850164  1.639256614  1.297220886  2.405678407
##  [586]  2.394026862  0.790679692 -0.452682185  0.051269691 -0.444154340
##  [591]  1.324696771  1.837859598  3.011333441  0.665421973  0.329540858
##  [596]  2.405338937  3.496076040  2.177583158  2.893308801  3.325072161
##  [601]  1.736183928  5.137742998  0.673399762 -0.596069213  1.730065570
##  [606]  0.173369803  3.107335613 -1.547223964  3.838162889  1.310096955
##  [611]  3.321858571  2.256849655  2.098488802 -0.323547670  1.184496467
##  [616]  1.836716890  2.313158754  2.679320744 -1.063592027  1.535387732
##  [621]  2.851754481  0.512949851  1.168200851  3.887332325  0.378681153
##  [626]  2.940611454  1.974227249  0.818457386  3.088830650  1.037726726
##  [631]  2.053563841  0.950286091  3.127060927  2.136088573  5.136069421
##  [636]  1.939176042  3.085376930  0.565588424  1.993527343  1.570721475
##  [641]  4.368229582  0.914178622  2.152937836  2.217527695 -0.618971782
##  [646] -1.532722694 -0.430350054 -0.154346958  1.135719219  2.037972782
##  [651]  1.332950782  3.281580391 -0.924828344  1.336263804  2.695966450
##  [656]  2.246108722 -1.545197962  1.374777864  2.863863902  4.374940527
##  [661]  0.487938578  1.240082510  2.464081245  1.793642760  0.798434318
##  [666]  2.173642204  4.194390073  4.170673896 -0.485592884  3.085386261
##  [671]  0.133798249  1.057742740  3.137950728  0.124095574  4.023508550
##  [676]  0.295421413 -0.919849847 -0.282983943  1.877046767 -0.408689348
##  [681]  2.626056182  4.861801308  0.901005348  0.564917057  0.386936171
##  [686]  1.432473045  1.115541204  3.098971854  0.901991822  1.117574412
##  [691]  0.114343562  3.742737964  3.298768849  2.254529346  1.046105756
##  [696]  0.181969774  0.359255821 -0.746316283  0.265680413  1.815767535
##  [701]  1.416893331  4.478475770  2.991604702  3.014418829  4.450643205
##  [706]  2.574209347  1.120365285  3.079143791  2.815258909  1.689015641
##  [711] -0.903532178  0.248783776  3.962402886  3.412001570  4.331001931
##  [716] -1.115324520  3.254985019 -0.039382141  1.088562837  4.878662357
##  [721]  5.253766751  0.826643080  0.047333907  2.173483445  2.479431198
##  [726]  3.946876486  4.247154436  0.807984792  1.523955902  2.419252187
##  [731]  0.603340352  1.801356050  3.169158025 -1.024628397  3.427137432
##  [736]  2.478409403 -0.131785609  4.196995254  2.525108554  2.424733946
##  [741]  3.276374280  2.485972283  0.868511643  1.726528154  2.052576493
##  [746]  2.662564447  3.313899398  2.119564702  4.296915069  1.907340030
##  [751]  2.015395355  1.459006590  4.148465660  0.689507751  1.425514936
##  [756]  1.936655702  2.405130181  2.288327975  1.497691519  2.224359159
##  [761]  2.150172232  1.944794209  2.383498365  4.329770187  2.825157331
##  [766]  1.271088913  0.470409045  4.562176113  0.474244339  2.317443794
##  [771]  1.509112033  0.857827953  2.637962656  1.561996935  0.263980910
##  [776]  0.318796477  1.811946515  1.380558801  1.850835449  0.256604893
##  [781] -2.038318228  1.794427632  2.839951908 -0.722059047  3.458620939
##  [786]  3.093315987  1.416034813  2.081385627  5.394037500  1.802780349
##  [791] -1.863770255  1.960329460  1.690674292  1.983217104  1.706736763
##  [796] -0.391636297  3.419480594  1.511186104  1.519074459 -0.194312010
##  [801]  3.106062020  0.051332073  4.662089472  1.595797207  1.675011439
##  [806]  4.538068035  2.102449549  2.551110028  1.463026953  2.772580778
##  [811]  0.786888640  2.846062720  1.255721654  1.931569816 -0.803567871
##  [816]  3.448249081 -1.249060930 -0.685845581  2.727205163  1.408663374
##  [821] -0.204822636 -0.527573309  2.512439458  2.526455982 -0.569522160
##  [826]  2.364791682  1.514933380  3.459688122  3.490914877  4.363474546
##  [831]  1.358890512  1.808221744  4.235568254  1.175572520  4.589620144
##  [836]  3.197636996  1.987525393  1.986963563  1.818944344 -0.555697001
##  [841] -0.664118863  1.223071927 -0.673862584  3.933447057  3.660268163
##  [846]  4.708023963  0.165660127  3.706492636  2.464651823  2.085827472
##  [851]  1.293965578  1.314389341  2.446032942  3.015812455  1.485293049
##  [856]  3.892020243  2.026471379  2.127366773  1.698760666  1.065633485
##  [861]  3.277137104 -1.427950343  0.783176284  5.122996704  0.376731861
##  [866]  3.455889634  1.935211037  0.234359383  1.715080512  1.111413176
##  [871]  2.405964804  2.312069089  0.162285294 -0.809233987  3.349164149
##  [876]  3.142844219  2.234417853  3.136246949  2.855334798  2.052109024
##  [881] -0.841078654  0.048015499  2.073934845  2.110279315  5.136147271
##  [886]  2.646106836  0.115800862  2.511613595  0.356624463  0.296497561
##  [891]  1.321096404  1.033098570  1.772446588  0.458460557  2.569189736
##  [896]  1.913885775  2.133396063 -0.509448654  0.631034092  2.417431327
##  [901]  3.325273829  2.321005284  2.438843517  1.632434930  0.659065169
##  [906]  2.857380800 -1.760750482  0.274063217  3.949921153  3.006760212
##  [911]  2.381230772  1.309640028  0.933040442  5.676483240  3.369650744
##  [916]  1.076169290  3.117952382  3.877190943  1.932992849 -0.935691893
##  [921]  1.764034426  1.909485580  2.454813871 -0.078376328  2.994125098
##  [926]  1.173160426  0.914461416  2.668283078  2.020659291  3.455120017
##  [931]  2.346445447  1.746624102  3.998722087 -0.854959474  0.689708407
##  [936]  3.604668246  2.112081191  1.407507793  1.063106002  3.335396285
##  [941]  0.613686721  1.510057127  3.816803105  1.706480853  2.159988174
##  [946]  0.675210097  2.054569534  4.397200579  3.591190757  3.084537319
##  [951] -0.203263252  2.756510982  2.048041540  4.943151603  3.303393244
##  [956]  0.546194296  4.014422544  3.744924677  1.344842678  1.764820437
##  [961]  1.050852273  1.968506100  1.750576742  0.953720455  0.496188809
##  [966]  2.908749420  1.656939346  3.050287152  3.617554054 -0.208334494
##  [971] -1.843464727  0.960070497  3.418316886  2.811812911  1.631114565
##  [976]  1.242641053  3.211975788  2.165781921  1.167637904  3.993149308
##  [981]  1.484027948  3.976860653  0.294468509 -0.711321146  1.306172026
##  [986]  1.868805737  2.418254673  0.727560298  1.564872837  2.233110849
##  [991]  4.006206671  1.249655524  4.416001529  1.020372116  0.386905349
##  [996]  0.608555523  3.694822089  0.965909391  2.678482016  2.213520266
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.2595  0.9645  1.9875  1.9425  3.0121  6.4532
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##        5% 
## -0.711858
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.347003
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)

(Cutoff <- quantile(data,prob = 0.05))
##        5% 
## -0.711858
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##   [49]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [289]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [517]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [817]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -1.4801422 -0.7781066 -1.7022759 -1.3482704 -0.7849113 -0.7429340
##  [7] -2.0315025 -0.7809428 -1.3964380 -2.0836688 -0.7576658 -1.6195659
## [13] -1.4056418 -1.1896867 -0.8615112 -1.0007573 -0.7784989 -1.2045202
## [19] -1.0563323 -2.2594856 -1.0766579 -0.7382520 -0.8225540 -1.3309895
## [25] -0.9218306 -0.9654756 -1.1471310 -1.9904920 -1.5472240 -1.0635920
## [31] -1.5327227 -0.9248283 -1.5451980 -0.9198498 -0.7463163 -0.9035322
## [37] -1.1153245 -1.0246284 -2.0383182 -0.7220590 -1.8637703 -0.8035679
## [43] -1.2490609 -1.4279503 -0.8092340 -0.8410787 -1.7607505 -0.9356919
## [49] -0.8549595 -1.8434647
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.347003
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [301] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [637] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [721]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [805] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [949] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 4.473306 4.935725 4.477793 4.932402 4.434541 4.408780 4.443000 4.561178
##  [9] 4.666932 5.564345 5.044725 4.889257 4.798312 5.073177 4.550186 4.563573
## [17] 6.453243 5.567152 5.683137 5.399896 4.592349 4.357130 4.920193 4.761509
## [25] 5.021263 4.802636 4.621343 5.965380 5.137743 5.136069 4.368230 4.374941
## [33] 4.861801 4.478476 4.450643 4.878662 5.253767 4.562176 5.394037 4.662089
## [41] 4.538068 4.363475 4.589620 4.708024 5.122997 5.136147 5.676483 4.397201
## [49] 4.943152 4.416002