Regresion de poisson y logistica multiple para muestra unificada (2 de Noviembre)

Prevalencia (prevere) y Extensión (cpodbere) por ciudad, con IC y p valor de Wald test, creo que para extensión solo miramos los intervalos de confianza.

Regresión Logística Uni-variada para prevere: 1) país 2) sexo 3) Escolmaerecat23 4) tipoesc 5) freqescovacat 6) usocreme 7) fluorprof Regresión Poisson Uni-variada para cpodbere: 1) país 2) sexo 3) Escolmaerecat23 4) tipoesc 5) freqescovacat 6) usocreme 7) fluorprof Si todo es parecido prevoms y cpodoms La Multi-variada en ambos modelos irían: 1) país 3) escmaerecat23 4) tipoesc 5) freqescovat Van todas las que queden <0,10 en la uni-variada. Por eso va variable país. Espero, que puedas el finde…..Besos Anun


# 2 de Noviembre 2013

#
# load('~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(28102013).RData')
load("~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(02112013).RData")

library(survey)
## 
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
##     dotchart
levels(disenio_urubra$variables$prevbere)
## [1] "1-LC"  "2-NTL"
addmargins(table(disenio_urubra$variables$prevbere, disenio_urubra$variables$pais))
##        
##          Bra  Uru  Sum
##   1-LC   986  764 1750
##   2-NTL  542  390  932
##   Sum   1528 1154 2682

addmargins(table(disenio_urubra$variables$cpodbere, disenio_urubra$variables$pais))
##      
##        Bra  Uru  Sum
##   0    542  390  932
##   1    272  131  403
##   2    228  104  332
##   3    154   98  252
##   4    129  107  236
##   5     77  100  177
##   6     50   64  114
##   7     23   56   79
##   8     18   27   45
##   9     14   23   37
##   10    11   22   33
##   11     4   11   15
##   12     2   10   12
##   13     1    1    2
##   14     0    4    4
##   15     0    1    1
##   17     1    1    2
##   18     2    1    3
##   20     0    1    1
##   21     0    1    1
##   26     0    1    1
##   Sum 1528 1154 2682
round(svymean(~prevbere, disenio_urubra, deff = TRUE) * 100, 2)
##                  mean      SE DEff
## prevbere1-LC  65.1000  0.0184 4.23
## prevbere2-NTL 34.9000  0.0184 4.23
round(confint(svymean(~prevbere, disenio_urubra, deff = TRUE) * 100), 2)
##               2.5 % 97.5 %
## prevbere1-LC  65.06  65.14
## prevbere2-NTL 34.86  34.94

round(svymean(~cpodbere, disenio_urubra, deff = TRUE), 2) * 1
##           mean    SE DEff
## cpodbere 2.440 0.145 7.43
round(confint(svymean(~cpodbere, disenio_urubra, deff = TRUE)), 2)
##          2.5 % 97.5 %
## cpodbere  2.15   2.72


round(svyby(~prevbere, ~pais, disenio_urubra, svymean, deff = TRUE)[, 2:4] * 
    100, 2)
##     prevbere1-LC prevbere2-NTL se.prevbere1-LC
## Bra        63.53         36.47            2.06
## Uru        66.29         33.71            2.76
round(confint(svyby(~prevbere, ~pais, disenio_urubra, svymean, deff = TRUE)) * 
    100, 2)
##                   2.5 % 97.5 %
## Bra:prevbere1-LC  59.49  67.56
## Uru:prevbere1-LC  60.89  71.70
## Bra:prevbere2-NTL 32.44  40.51
## Uru:prevbere2-NTL 28.30  39.11

round(svyby(~cpodbere, ~pais, disenio_urubra, svymean, deff = TRUE)[, 2:4] * 
    1, 2)
##     cpodbere   se DEff.cpodbere
## Bra     1.96 0.10          3.05
## Uru     2.80 0.22          6.12
round(confint(svyby(~cpodbere, ~pais, disenio_urubra, svymean, deff = TRUE)) * 
    1, 2)
##     2.5 % 97.5 %
## Bra  1.76   2.16
## Uru  2.37   3.24

TABLAS

tabla1 <- svyby(~prevbere, ~pais, disenio_urubra, svymean, na.rm = TRUE, deff = TRUE)
round(tabla1[, 2:4] * 100, 1)
##     prevbere1-LC prevbere2-NTL se.prevbere1-LC
## Bra         63.5          36.5             2.1
## Uru         66.3          33.7             2.8
round(confint(tabla1) * 100, 2)
##                   2.5 % 97.5 %
## Bra:prevbere1-LC  59.49  67.56
## Uru:prevbere1-LC  60.89  71.70
## Bra:prevbere2-NTL 32.44  40.51
## Uru:prevbere2-NTL 28.30  39.11

svychisq(~prevbere + pais, disenio_urubra, statistic = "Chisq")
## 
##  Pearson's X^2: Rao & Scott adjustment
## 
## data:  svychisq(~prevbere + pais, disenio_urubra, statistic = "Chisq") 
## X-squared = 2.218, df = 1, p-value = 0.4239

levels(disenio_urubra$variables$sexoinv) <- c("M", "F")
tabla2 <- svyby(~prevbere, ~sexoinv + pais, disenio_urubra, svymean, keep.var = TRUE, 
    na.rm = TRUE, deff = TRUE)

round(tabla2[, 3:5] * 100, 1)
##       prevbere1-LC prevbere2-NTL se.prevbere1-LC
## M.Bra         60.6          39.4             2.5
## F.Bra         66.5          33.5             2.3
## M.Uru         67.4          32.6             3.9
## F.Uru         65.1          34.9             3.3



tabla3 <- svyby(~prevbere, ~socioecon4cat + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla3[, 3:5] * 100, 1)
##                  prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1-alto.Bra               52.0          48.0             3.5
## 2-medio-alto.Bra         54.6          45.4             2.7
## 3-medio-bajo.Bra         68.3          31.7             2.0
## 4-bajo.Bra               72.1          27.9             4.5
## 1-alto.Uru               47.2          52.8             6.0
## 2-medio-alto.Uru         65.2          34.8             4.2
## 3-medio-bajo.Uru         72.4          27.6             3.6
## 4-bajo.Uru               80.0          20.0             3.4




tabla4 <- svyby(~prevbere, ~socioecon3cat + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla4[, 3:5] * 100, 1)
##             prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1-alto.Bra          52.0          48.0             3.5
## 2-medio.Bra         64.1          35.9             2.0
## 3-bajo.Bra          72.1          27.9             4.5
## 1-alto.Uru          51.4          48.6             4.6
## 2-medio.Uru         71.0          29.0             2.5
## 3-bajo.Uru          80.0          20.0             3.4

tabla5 <- svyby(~prevbere, ~escolmaerecat23cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla5[, 3:5] * 100, 1)
##                          prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1-college-university.Bra         51.9          48.1             4.1
## 2-high school.Bra                58.5          41.5             2.7
## 3-elementary school.Bra          71.2          28.8             2.2
## 1-college-university.Uru         53.0          47.0             5.7
## 2-high school.Uru                67.4          32.6             2.6
## 3-elementary school.Uru          78.9          21.1             3.2




tabla5a <- svyby(~prevbere, ~escolmae13cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla5a[, 3:5] * 100, 1)
##                          prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1-college-university.Bra         52.2          47.8             4.0
## 2-high school.Bra                53.8          46.2             2.7
## 3-Elementary School.Bra          70.9          29.1             2.1
## 1-college-university.Uru         44.6          55.4             4.2
## 2-high school.Uru                63.6          36.4             5.5
## 3-Elementary School.Uru          73.8          26.2             2.6


tabla6 <- svyby(~prevbere, ~freqescovacat + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla6[, 3:5] * 100, 1)
##                                prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1-menos de 1 vez al d\xeda.Bra         74.7          25.3             2.8
## 2-veces al d\xeda.Bra                  61.5          38.5             2.5
## 3-veces al d\xeda.Bra                  59.2          40.8             3.0
## 1-menos de 1 vez al d\xeda.Uru         73.8          26.2             4.0
## 2-veces al d\xeda.Uru                  66.1          33.9             4.0
## 3-veces al d\xeda.Uru                  63.3          36.7             3.3

tabla7 <- svyby(~prevbere, ~usocreme + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla7[, 3:5] * 100, 1)
##          prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1-Si.Bra         63.3          36.7             2.0
## 2-No.Bra         75.8          24.2             9.0
## 1-Si.Uru         66.1          33.9             2.8
## 2-No.Uru         73.8          26.2            10.9

tabla8 <- svyby(~prevbere, ~visidentcatonde + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla8[, 3:5] * 100, 1)
##                             prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1-Convenio particular.Bra           57.9          42.1             2.1
## 2-Publico.Bra                       71.5          28.5             2.6
## 3-Nunca fue al dentista.Bra         65.3          34.7             3.1
## 1-Convenio particular.Uru           58.3          41.7             3.4
## 2-Publico.Uru                       78.5          21.5             2.7
## 3-Nunca fue al dentista.Uru         76.3          23.7             5.1

tabla9 <- svyby(~prevbere, ~visiquando + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla9[, 3:5] * 100, 1)
##                            prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1- menos de 1 a\xf1o.Bra           63.4          36.6             2.4
## 2- m\xe1s de 2 a\xf1os.Bra         62.1          37.9             2.8
## 3- nunca fue.Bra                   65.3          34.7             3.1
## 1- menos de 1 a\xf1o.Uru           63.6          36.4             3.0
## 2- m\xe1s de 2 a\xf1os.Uru         70.2          29.8             5.5
## 3- nunca fue.Uru                   77.4          22.6             5.1

tabla10 <- svyby(~prevbere, ~fluorprof + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla10[, 3:5] * 100, 1)
##          prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1-Si.Bra         62.7          37.3             2.1
## 2-No.Bra         65.0          35.0             2.9
## 1-Si.Uru         65.6          34.4             3.6
## 2-No.Uru         65.8          34.2             3.9

tabla11 <- svyby(~prevbere, ~isg20 + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla11[, 3:5] * 100, 1)
##                prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1- <=20.Bra            60.5          39.5             7.4
## 2- 20 a 60.Bra         57.9          42.1             2.2
## 3- >=60.Bra            75.6          24.4             2.1
## 1- <=20.Uru            65.0          35.0             4.3
## 2- 20 a 60.Uru         66.5          33.5             3.4
## 3- >=60.Uru            73.2          26.8             5.2

tabla12 <- svyby(~prevbere, ~isg45 + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla12[, 3:5] * 100, 1)
##                prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1- <=45.Bra            52.9          47.1             2.8
## 2- 45 a 60.Bra         63.1          36.9             2.5
## 3- >=60.Bra            75.6          24.4             2.1
## 1- <=45.Uru            64.3          35.7             3.3
## 2- 45 a 60.Uru         74.4          25.6             4.6
## 3- >=60.Uru            73.2          26.8             5.2

tabla13 <- svyby(~prevbere, ~tipoesc + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla13[, 3:5] * 100, 1)
##                  prevbere1-LC prevbere2-NTL se.prevbere1-LC
## 1-Particular.Bra         47.9          52.1             2.9
## 2-Publica.Bra            67.9          32.1             1.9
## 1-Particular.Uru         53.8          46.2             4.0
## 2-Publica.Uru            70.9          29.1             2.7

tabla13 <- svyby(~cpodbere, ~pais, disenio_urubra, svymean, na.rm = TRUE, deff = TRUE)
round(tabla13[, 2:4] * 1, 1)
##     cpodbere  se DEff.cpodbere
## Bra      2.0 0.1           3.0
## Uru      2.8 0.2           6.1
round(confint(tabla13) * 1, 2)
##     2.5 % 97.5 %
## Bra  1.76   2.16
## Uru  2.37   3.24




tabla14 <- svyby(~cpodbere, ~sexoinv + pais, disenio_urubra, svymean, keep.var = TRUE, 
    na.rm = TRUE, deff = TRUE)

round(tabla14[, 3:5] * 1, 1)
##       cpodbere  se DEff.cpodbere
## M.Bra      1.9 0.1           2.3
## F.Bra      2.0 0.1           1.7
## M.Uru      2.8 0.3           4.3
## F.Uru      2.8 0.2           4.2



tabla15 <- svyby(~cpodbere, ~socioecon4cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla15[, 3:5] * 1, 1)
##                  cpodbere  se DEff.cpodbere
## 1-alto.Bra            1.2 0.1           0.9
## 2-medio-alto.Bra      1.5 0.1           0.9
## 3-medio-bajo.Bra      2.2 0.1           2.0
## 4-bajo.Bra            2.4 0.2           1.1
## 1-alto.Uru            1.7 0.4           3.3
## 2-medio-alto.Uru      2.7 0.4           7.1
## 3-medio-bajo.Uru      3.5 0.4           3.4
## 4-bajo.Uru            3.2 0.3           2.8




tabla16 <- svyby(~cpodbere, ~socioecon3cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla16[, 3:5] * 1, 1)
##             cpodbere  se DEff.cpodbere
## 1-alto.Bra       1.2 0.1           0.9
## 2-medio.Bra      2.0 0.1           2.2
## 3-bajo.Bra       2.4 0.2           1.1
## 1-alto.Uru       2.0 0.3           3.5
## 2-medio.Uru      3.2 0.2           3.4
## 3-bajo.Uru       3.2 0.3           2.8

tabla17 <- svyby(~cpodbere, ~escolmaerecat23cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla17[, 3:5] * 1, 1)
##                          cpodbere  se DEff.cpodbere
## 1-college-university.Bra      1.2 0.1           1.8
## 2-high school.Bra             1.7 0.1           0.8
## 3-elementary school.Bra       2.4 0.1           2.1
## 1-college-university.Uru      2.0 0.4           4.7
## 2-high school.Uru             2.9 0.2           2.0
## 3-elementary school.Uru       3.5 0.4           4.7

tabla17a <- svyby(~cpodbere, ~escolmae13cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla17a[, 3:5] * 1, 1)
##                          cpodbere  se DEff.cpodbere
## 1-college-university.Bra      1.2 0.1           0.9
## 2-high school.Bra             1.5 0.1           1.1
## 3-Elementary School.Bra       2.4 0.1           2.0
## 1-college-university.Uru      1.6 0.3           2.3
## 2-high school.Uru             2.6 0.4           4.5
## 3-Elementary School.Uru       3.2 0.2           3.6

tabla18 <- svyby(~cpodbere, ~freqescovacat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla18[, 3:5] * 1, 1)
##                                cpodbere  se DEff.cpodbere
## 1-menos de 1 vez al d\xeda.Bra      2.5 0.1           0.8
## 2-veces al d\xeda.Bra               1.9 0.1           2.5
## 3-veces al d\xeda.Bra               1.6 0.1           1.5
## 1-menos de 1 vez al d\xeda.Uru      3.4 0.3           2.0
## 2-veces al d\xeda.Uru               2.8 0.3           3.9
## 3-veces al d\xeda.Uru               2.6 0.3           3.8

tabla19 <- svyby(~cpodbere, ~usocreme + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla19[, 3:5] * 1, 1)
##          cpodbere  se DEff.cpodbere
## 1-Si.Bra      1.9 0.1           2.9
## 2-No.Bra      2.7 0.6           1.4
## 1-Si.Uru      2.8 0.2           5.9
## 2-No.Uru      2.6 0.8           1.8

tabla20 <- svyby(~cpodbere, ~visidentcatonde + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla20[, 3:5] * 1, 1)
##                             cpodbere  se DEff.cpodbere
## 1-Convenio particular.Bra        1.7 0.1           1.7
## 2-Publico.Bra                    2.4 0.2           1.9
## 3-Nunca fue al dentista.Bra      2.1 0.2           2.0
## 1-Convenio particular.Uru        2.4 0.3           7.1
## 2-Publico.Uru                    3.3 0.3           2.7
## 3-Nunca fue al dentista.Uru      3.6 0.4           2.9

tabla21 <- svyby(~cpodbere, ~visiquando + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla21[, 3:5] * 1, 1)
##                            cpodbere  se DEff.cpodbere
## 1- menos de 1 a\xf1o.Bra        1.9 0.1           2.3
## 2- m\xe1s de 2 a\xf1os.Bra      1.9 0.1           1.4
## 3- nunca fue.Bra                2.1 0.2           2.0
## 1- menos de 1 a\xf1o.Uru        2.6 0.3           7.0
## 2- m\xe1s de 2 a\xf1os.Uru      3.1 0.5           4.1
## 3- nunca fue.Uru                3.6 0.4           2.8

tabla22 <- svyby(~cpodbere, ~fluorprof + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla22[, 3:5] * 1, 2)
##          cpodbere   se DEff.cpodbere
## 1-Si.Bra     1.83 0.10          2.08
## 2-No.Bra     2.20 0.16          2.15
## 1-Si.Uru     2.80 0.27          4.81
## 2-No.Uru     2.77 0.29          3.79

tabla23 <- svyby(~cpodbere, ~isg20 + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla23[, 3:5] * 1, 1)
##                cpodbere  se DEff.cpodbere
## 1- <=20.Bra         1.7 0.4           1.4
## 2- 20 a 60.Bra      1.6 0.1           2.4
## 3- >=60.Bra         2.8 0.2           1.6
## 1- <=20.Uru         2.6 0.3           7.5
## 2- 20 a 60.Uru      2.9 0.2           2.4
## 3- >=60.Uru         3.7 0.4           1.3

tabla24 <- svyby(~cpodbere, ~isg45 + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla24[, 3:5] * 1, 1)
##                cpodbere  se DEff.cpodbere
## 1- <=45.Bra         1.4 0.1           1.7
## 2- 45 a 60.Bra      1.8 0.1           1.7
## 3- >=60.Bra         2.8 0.2           1.6
## 1- <=45.Uru         2.6 0.3           7.4
## 2- 45 a 60.Uru      3.3 0.4           1.4
## 3- >=60.Uru         3.7 0.4           1.3

tabla25 <- svyby(~cpodbere, ~escolmae13cat + pais, disenio_urubra, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla25[, 3:5] * 1, 1)
##                          cpodbere  se DEff.cpodbere
## 1-college-university.Bra      1.2 0.1           0.9
## 2-high school.Bra             1.5 0.1           1.1
## 3-Elementary School.Bra       2.4 0.1           2.0
## 1-college-university.Uru      1.6 0.3           2.3
## 2-high school.Uru             2.6 0.4           4.5
## 3-Elementary School.Uru       3.2 0.2           3.6


tabla26 <- svyby(~cpodbere, ~tipoesc + pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla26[, 3:5] * 1, 1)
##                  cpodbere  se DEff.cpodbere
## 1-Particular.Bra      1.2 0.1           1.0
## 2-Publica.Bra         2.2 0.1           2.0
## 1-Particular.Uru      1.9 0.1           0.8
## 2-Publica.Uru         3.1 0.3           6.0

RL Univariada

1) país 2) sexo 3) Escolmaerecat23 4) tipoesc 5) freqescovacat 6) usocreme 7) fluorprof


modelo1.bin <- svyglm(prevbere ~ pais, disenio_urubra, family = quasibinomial())
summary(modelo1.bin)
## 
## Call:
## svyglm(formula = prevbere ~ pais, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.5548     0.0888   -6.25  1.9e-08 ***
## paisUru      -0.1216     0.1521   -0.80     0.43    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo1.bin)
##               2.5 %  97.5 %
## (Intercept) -0.7288 -0.3808
## paisUru     -0.4196  0.1765

modelo2.bin <- svyglm(prevbere ~ pais + sexoinv, disenio_urubra, family = quasibinomial())
summary(modelo2.bin)
## 
## Call:
## svyglm(formula = prevbere ~ pais + sexoinv, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.5293     0.1120   -4.73  9.8e-06 ***
## paisUru      -0.1221     0.1519   -0.80     0.42    
## sexoinvF     -0.0519     0.1334   -0.39     0.70    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo2.bin)
##               2.5 %  97.5 %
## (Intercept) -0.7489 -0.3098
## paisUru     -0.4198  0.1756
## sexoinvF    -0.3134  0.2096

modelo3.bin <- svyglm(prevbere ~ pais + escolmaerecat23cat, disenio_urubra, 
    famil3y = quasibinomial())
## Error: unused argument(s) (famil3y = list(family = "quasibinomial", link = "logit", linkfun = function (mu) 
## .Call(C_logit_link, mu), linkinv = function (eta) 
## .Call(C_logit_linkinv, eta), variance = function (mu) 
## mu * (1 - mu), dev.resids = function (y, mu, wt) 
## 2 * wt * (y * log(ifelse(y == 0, 1, y/mu)) + (1 - y) * log(ifelse(y == 1, 1, (1 - y)/(1 - mu)))), aic = function (y, n, mu, wt, dev) 
## NA, mu.eta = function (eta) 
## .Call(C_logit_mu_eta, eta), initialize = expression({
##     if (NCOL(y) == 1) {
##         if (is.factor(y)) y <- y != levels(y)[1]
##         n <- rep.int(1, nobs)
##         if (any(y < 0 | y > 1)) stop("y values must be 0 <= y <= 1")
##         mustart <- (weights * y + 0.5)/(weights + 1)
##     } else if (NCOL(y) == 2) {
##         n <- y[, 1] + y[, 2]
##         y <- ifelse(n == 0, 0, y[, 1]/n)
##         weights <- weights * n
##         mustart <- (n * y + 0.5)/(n + 1)
##     } else stop("for the quasibinomial family, y must be a vector of 0 and 1's\n", "or a 2 column matrix where col 1 is no. successes and col 2 is no. failures")
## }), validmu = function (mu) 
## all(mu > 0) && all(mu < 1), valideta = function (eta) 
## TRUE))
summary(modelo3.bin)
## Error: object 'modelo3.bin' not found
confint(modelo3.bin)
## Error: object 'modelo3.bin' not found

modelo4.bin <- svyglm(prevbere ~ pais + tipoesc, disenio_urubra, family = quasibinomial())
summary(modelo4.bin)
## 
## Call:
## svyglm(formula = prevbere ~ pais + tipoesc, disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.0387     0.1145    0.34     0.74    
## paisUru           -0.1645     0.1333   -1.23     0.22    
## tipoesc2-Publica  -0.7747     0.1296   -5.98  6.3e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo4.bin)
##                    2.5 %   97.5 %
## (Intercept)      -0.1856  0.26312
## paisUru          -0.4256  0.09671
## tipoesc2-Publica -1.0288 -0.52055

modelo5.bin <- svyglm(prevbere ~ pais + freqescovacat, disenio_urubra, family = quasibinomial())
summary(modelo5.bin)
## 
## Call:
## svyglm(formula = prevbere ~ pais + freqescovacat, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      -0.983      0.133   -7.41  1.3e-10 ***
## paisUru                          -0.148      0.156   -0.94  0.34774    
## freqescovacat2-veces al d\xeda    0.490      0.139    3.52  0.00073 ***
## freqescovacat3-veces al d\xeda    0.596      0.142    4.20  7.0e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo5.bin)
##                                  2.5 %  97.5 %
## (Intercept)                    -1.2435 -0.7235
## paisUru                        -0.4545  0.1589
## freqescovacat2-veces al d\xeda  0.2169  0.7636
## freqescovacat3-veces al d\xeda  0.3178  0.8740

modelo6.bin <- svyglm(prevbere ~ pais + usocreme, disenio_urubra, family = quasibinomial())
summary(modelo6.bin)
## 
## Call:
## svyglm(formula = prevbere ~ pais + usocreme, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -0.5471     0.0877   -6.24    2e-08 ***
## paisUru       -0.1191     0.1528   -0.78     0.44    
## usocreme2-No  -0.4658     0.3971   -1.17     0.24    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.002)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo6.bin)
##                2.5 %  97.5 %
## (Intercept)  -0.7190 -0.3752
## paisUru      -0.4185  0.1804
## usocreme2-No -1.2441  0.3126

modelo7.bin <- svyglm(prevbere ~ pais + fluorprof, disenio_urubra, family = quasibinomial())
summary(modelo7.bin)
## 
## Call:
## svyglm(formula = prevbere ~ pais + fluorprof, disenio_urubra, 
##     family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.5377     0.0964   -5.58  3.3e-07 ***
## paisUru        -0.0933     0.1569   -0.59     0.55    
## fluorprof2-No  -0.0488     0.1280   -0.38     0.70    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9991)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo7.bin)
##                 2.5 %  97.5 %
## (Intercept)   -0.7267 -0.3488
## paisUru       -0.4009  0.2143
## fluorprof2-No -0.2997  0.2021

R POISSON UNIVARIADA


modelo1.poi <- svyglm(cpodbere ~ pais, disenio_urubra, family = quasipoisson())
summary(modelo1.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ pais, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.6716     0.0516   13.02  < 2e-16 ***
## paisUru       0.3590     0.0946    3.79  0.00029 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.184)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo1.poi)
##              2.5 % 97.5 %
## (Intercept) 0.5706 0.7727
## paisUru     0.1735 0.5445

modelo2.poi <- svyglm(cpodbere ~ pais + sexoinv, disenio_urubra, family = quasipoisson())
summary(modelo2.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ pais + sexoinv, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.66724    0.06367   10.48  < 2e-16 ***
## paisUru      0.35905    0.09456    3.80  0.00029 ***
## sexoinvF     0.00891    0.07063    0.13  0.89989    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.185)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo2.poi)
##               2.5 % 97.5 %
## (Intercept)  0.5425 0.7920
## paisUru      0.1737 0.5444
## sexoinvF    -0.1295 0.1473

modelo3.poi <- svyglm(cpodbere ~ pais + escolmaerecat23cat, disenio_urubra, 
    famil3y = quasipoisson())
## Error: unused argument(s) (famil3y = list(family = "quasipoisson", link = "log", linkfun = function (mu) 
## log(mu), linkinv = function (eta) 
## pmax(exp(eta), .Machine$double.eps), variance = function (mu) 
## mu, dev.resids = function (y, mu, wt) 
## 2 * wt * (y * log(ifelse(y == 0, 1, y/mu)) - (y - mu)), aic = function (y, n, mu, wt, dev) 
## NA, mu.eta = function (eta) 
## pmax(exp(eta), .Machine$double.eps), initialize = expression({
##     if (any(y < 0)) stop("negative values not allowed for the quasiPoisson family")
##     n <- rep.int(1, nobs)
##     mustart <- y + 0.1
## }), validmu = function (mu) 
## all(mu > 0), valideta = function (eta) 
## TRUE))
summary(modelo3.poi)
## Error: object 'modelo3.poi' not found
confint(modelo3.poi)
## Error: object 'modelo3.poi' not found

modelo4.poi <- svyglm(cpodbere ~ pais + tipoesc, disenio_urubra, family = quasipoisson())
summary(modelo4.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ pais + tipoesc, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.2191     0.0750    2.92   0.0046 ** 
## paisUru            0.3816     0.0817    4.67  1.2e-05 ***
## tipoesc2-Publica   0.5502     0.0776    7.09  5.0e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.05)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo4.poi)
##                    2.5 % 97.5 %
## (Intercept)      0.07206 0.3662
## paisUru          0.22146 0.5416
## tipoesc2-Publica 0.39806 0.7023

modelo5.poi <- svyglm(cpodbere ~ pais + freqescovacat, disenio_urubra, family = quasipoisson())
summary(modelo5.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ pais + freqescovacat, disenio_urubra, 
##     family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      0.8705     0.0661   13.16  < 2e-16 ***
## paisUru                          0.3779     0.0933    4.05  0.00012 ***
## freqescovacat2-veces al d\xeda  -0.2190     0.0766   -2.86  0.00543 ** 
## freqescovacat3-veces al d\xeda  -0.3189     0.0851   -3.75  0.00034 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.096)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo5.poi)
##                                  2.5 %   97.5 %
## (Intercept)                     0.7409  1.00015
## paisUru                         0.1951  0.56080
## freqescovacat2-veces al d\xeda -0.3691 -0.06892
## freqescovacat3-veces al d\xeda -0.4857 -0.15209

modelo6.poi <- svyglm(cpodbere ~ pais + usocreme, disenio_urubra, family = quasipoisson())
summary(modelo6.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ pais + usocreme, disenio_urubra, 
##     family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.6703     0.0511   13.11  < 2e-16 ***
## paisUru        0.3570     0.0949    3.76  0.00032 ***
## usocreme2-No   0.0725     0.2102    0.35  0.73097    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.188)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo6.poi)
##                2.5 % 97.5 %
## (Intercept)   0.5701 0.7705
## paisUru       0.1710 0.5429
## usocreme2-No -0.3395 0.4845

modelo7.poi <- svyglm(cpodbere ~ pais + fluorprof, disenio_urubra, family = quasipoisson())
summary(modelo7.poi)
## 
## Call:
## svyglm(formula = cpodbere ~ pais + fluorprof, disenio_urubra, 
##     family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.6500     0.0553   11.75  < 2e-16 ***
## paisUru         0.3523     0.0990    3.56  0.00063 ***
## fluorprof2-No   0.0604     0.0754    0.80  0.42531    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.183)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo7.poi)
##                  2.5 % 97.5 %
## (Intercept)    0.54158 0.7584
## paisUru        0.15836 0.5462
## fluorprof2-No -0.08738 0.2083