Instrucciones:

  1. Crear un vector x con los datos 10, 11, 13, -1, 6,3
x <- c(10, 11, 13, -1, 6,3)
  1. Calcula estadísticas simples de x. Calcular la media, la desviación estándar y la varianza. Crear un objeto (tipo vector) con el nombre est.x en el que guardar los 3 estadísticos.
media = mean(x)
desv_std = sd(x)
varianza = var(x)

est.x = c(media, desv_std, varianza)
print(est.x)
## [1]  7.000000  5.329165 28.400000
  1. Escribe un programa R para crear una secuencia de números del 20 al 50 y encuentre la media de los números del 20 al 60 y la suma de los números del 51 al 91. Tip: utiliza las funciones de R.
secuencia1 = c(20:50)
secuencia2 = mean(20:60)
secuencia3= sum(51:91)

secuencia1
##  [1] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
## [26] 45 46 47 48 49 50
secuencia2
## [1] 40
secuencia3
## [1] 2911
  1. Escribe un programa R para crear un vector que contenga 10 valores enteros aleatorios entre -100 y +50. Revisa la función sample.
Al<-c(-100:50)
Samp<-sample(Al,10)
print(Samp)
##  [1] -47  41  24 -42   0   8 -73 -41 -91 -72
  1. Escribe un programa R para obtener los primeros 10 números de Fibonacci. Como código base tienes:
fufb <- numeric(10)

a=0
b=1
for (n in 1:10) {
c=b
b=a
a=a+c
print(a)
}
## [1] 1
## [1] 1
## [1] 2
## [1] 3
## [1] 5
## [1] 8
## [1] 13
## [1] 21
## [1] 34
## [1] 55
# Sustituye este texto por el código de tu respuesta

Practica usando un for para terminar tu código.

6.  Escribe un programa R para encontrar el valor máximo y mínimo de un vector dado. Debes probar con:

a. c(10, 20, 30, 4, 50, -60)
b. c(-10, 20, 30, 4, 50, 60)
maxmin <- function(ar){
  maximo<-max(ar)
  minimo<-min(ar)
  sprintf("Max: %s maximo, Min: %s",maximo,minimo)
  
} # completa argumentos y codido de la función
maxmin(c(10, 20, 30, 4, 50, -60)) # prueba la función con a
## [1] "Max: 50 maximo, Min: -60"
maxmin(c(-10, 20, 30, 4, 50, 60)) # prueba la función con b
## [1] "Max: 60 maximo, Min: -10"
  1. Escribe una función R para multiplicar dos vectores de tipo entero y longitud n, de la misma longitud ambos.

multiplica(c(10, 20), c(3,4)) # salida: [1] 30 80

multiplica <- function(x,y){
  x*y
} # completa argumentos y codido de la función
multiplica(c(10, 20), c(3,4)) # prueba la función
## [1] 30 80
  1. Escribe una función R para contar el valor específico en un vector dado.

cuenta(c(10, 20, 10, 7, 24,7, 5),7) # salid a: [1] 2

cuenta = function(v,n)
{
  count = 0
  for(i in v){
    if(i == n)
      count = count + 1
  }
  count
}

print(cuenta(c(10,20,10,7,24,7,5),7))
## [1] 2
  1. Escribe una función en R para extraer cada enésimo elemento de un vector dado. Un prueba es:
  1. v <- 1:100
  2. enesimo(v, 5)
  3. Salida: [1] 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

enesimo = function(vec, num)
{
  vec2 = seq(min(vec),max(vec), by=num)
  vec2
}

v = 1:100
enesimo(v,5)
##  [1]  1  6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96