colony <- read_excel("../00_data/myData.xlsx")
set.seed(123)
colony_small <- colony %>%
sample_n(10) %>%
select(year, state, colony_lost, colony_added)
colony_small
## # A tibble: 10 × 4
## year state colony_lost colony_added
## <dbl> <chr> <dbl> <chr>
## 1 2017 Utah 2700 2900
## 2 2017 Vermont 170 390
## 3 2015 Texas 25000 13000
## 4 2017 Hawaii 130 970
## 5 2016 Florida 45000 36000
## 6 2019 Wyoming 3300 100
## 7 2021 Kansas 1400 2300
## 8 2020 California 69000 61000
## 9 2018 Florida 30000 53000
## 10 2018 Texas 22000 118000
colony_small %>%
summarise(sum(str_detect(year, "7$")))
## # A tibble: 1 × 1
## `sum(str_detect(year, "7$"))`
## <int>
## 1 3
str_detect(colony_small$year, "7$")
## [1] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
sum(str_detect(colony_small$year, "7$"))
## [1] 3
states <- c("Texas", "Florida", "California", "Kansas", "Wyoming", "Florida", "Hawaii", "Texas", "Vermont", "Utah")
state_match <- str_c(states, collapse = "|")
state_match
## [1] "Texas|Florida|California|Kansas|Wyoming|Florida|Hawaii|Texas|Vermont|Utah"
str_extract(states, "Florida")
## [1] NA "Florida" NA NA NA "Florida" NA
## [8] NA NA NA
colony_small %>% mutate(colony_lost %>% str_replace_all("[0]", "-"))
## # A tibble: 10 × 5
## year state colony_lost colony_added colony_lost %>% str_replace_all("…¹
## <dbl> <chr> <dbl> <chr> <chr>
## 1 2017 Utah 2700 2900 27--
## 2 2017 Vermont 170 390 17-
## 3 2015 Texas 25000 13000 25---
## 4 2017 Hawaii 130 970 13-
## 5 2016 Florida 45000 36000 45---
## 6 2019 Wyoming 3300 100 33--
## 7 2021 Kansas 1400 2300 14--
## 8 2020 California 69000 61000 69---
## 9 2018 Florida 30000 53000 3----
## 10 2018 Texas 22000 118000 22---
## # … with abbreviated variable name
## # ¹`colony_lost %>% str_replace_all("[0]", "-")`