Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
library(glmmTMB)
Warning in checkDepPackageVersion(dep_pkg = "TMB"): Package version inconsistency detected.
glmmTMB was built with TMB version 1.9.1
Current TMB version is 1.9.2
Please re-install glmmTMB from source or restore original 'TMB' package (see '?reinstalling' for more information)
library(effects)
Loading required package: carData
lattice theme set by effectsTheme()
See ?effectsTheme for details.
library(car)
Attaching package: 'car'
The following object is masked from 'package:dplyr':
recode
The following object is masked from 'package:purrr':
some
library(bbmle)
Loading required package: stats4
Attaching package: 'bbmle'
The following object is masked from 'package:dplyr':
slice
behaviorprop<- behavior_23Feb23feedingprop = (behaviorprop$feeding/behaviorprop$total_alive)behaviorprop<-cbind(behaviorprop,feedingprop)m1.32<-glmer(formula = feedingprop~temp+day_of_experiment+total_alive+(1|parent), family ="binomial", data = behaviorprop)
Warning in eval(family$initialize, rho): non-integer #successes in a binomial
glm!
boundary (singular) fit: see help('isSingular')
m1.32
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: feedingprop ~ temp + day_of_experiment + total_alive + (1 | parent)
Data: behaviorprop
AIC BIC logLik deviance df.resid
307.7433 333.5163 -148.8716 297.7433 1275
Random effects:
Groups Name Std.Dev.
parent (Intercept) 0
Number of obs: 1280, groups: parent, 6
Fixed Effects:
(Intercept) temp day_of_experiment total_alive
-45.44305 1.15394 0.02816 -0.18938
optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
plot(allEffects(m1.32))
Warning in eval(family$initialize): non-integer #successes in a binomial glm!
Warning in eval(family$initialize): non-integer #successes in a binomial glm!
Warning in eval(family$initialize): non-integer #successes in a binomial glm!
behaviorprop$notfeeding <- behaviorprop$total_alive-behaviorprop$feedingm1.5<-glmer(formula =cbind(feeding,notfeeding)~temp+day_of_experiment+infected+total_alive+(1|parent), family ="binomial", data = behaviorprop)summary(m1.5)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: cbind(feeding, notfeeding) ~ temp + day_of_experiment + infected +
total_alive + (1 | parent)
Data: behaviorprop
AIC BIC logLik deviance df.resid
3246.2 3277.1 -1617.1 3234.2 1274
Scaled residuals:
Min 1Q Median 3Q Max
-2.2909 -0.6928 -0.3336 0.5829 8.7238
Random effects:
Groups Name Variance Std.Dev.
parent (Intercept) 0.04107 0.2027
Number of obs: 1280, groups: parent, 6
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.807860 0.421473 -18.525 < 2e-16 ***
temp 0.207411 0.008000 25.925 < 2e-16 ***
day_of_experiment -0.012638 0.003617 -3.494 0.000476 ***
infected 0.115561 0.066453 1.739 0.082037 .
total_alive -0.123430 0.025461 -4.848 1.25e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) temp dy_f_x infctd
temp -0.784
dy_f_xprmnt -0.302 0.082
infected -0.122 0.059 0.156
total_alive -0.694 0.162 0.297 -0.008