cat("\014") # clean terminal
rm(list = ls()) # clean workspace
try(dev.off(), silent = TRUE) # close all plots
library(ggplot2)
library(GGally)
theme_set(
theme_minimal()
)
p3_data <- read.csv('P3_by_subject.csv')
# p3_data[p3_data$RUT == 1943801019, ]$RUT <- 194380119
# p3_data[p3_data$RUT == 167788139, ]$RUT <- 16788139
# p3_data[p3_data$RUT == 170508165, ]$RUT <- 17050816
names(p3_data)[names(p3_data) == "uv_mean"] <- "P3"
n400_data <- read.csv('N400_difference_by_subject.csv')
# n400_data[n400_data$RUT == 167788139, ]$RUT <- 16788139
# n400_data[n400_data$RUT == 170508165, ]$RUT <- 17050816
p10_data <- read.csv('P10_DF_joined (copy).csv')
p10_data$RUT <- gsub('.', '', p10_data$id, fixed = TRUE)
p10_data$RUT <- gsub('-', '', p10_data$RUT)
p10_data$RUT <- gsub(' ', '', p10_data$RUT)
p17_data <- read.csv('P17_DF_joined (copy).csv')
p17_data$RUT <- gsub('.', '', p17_data$id, fixed = TRUE)
p17_data$RUT <- gsub('-', '', p17_data$RUT)
p17_data$RUT <- gsub(' ', '', p17_data$RUT)
corr_data <- merge(p3_data[c('RUT', 'ERPset', 'num_id', 'vulnerability', 'belief', 'sex', 'P3')], n400_data[c('RUT', 'N400_diff_LeftFrontal', 'N400_diff_Central')], by = 'RUT', all = TRUE)
corr_data <- merge(corr_data, p10_data[c('RUT', 'SASS_DIRt', 'IBT_DIRt')], by = 'RUT', all.x = TRUE)
corr_data <- merge(corr_data, p17_data[c('RUT', 'AIM_TramoIngreso_DIRd')], by = 'RUT', all.x = TRUE)
corr_data[sapply(corr_data, is.character)] <- lapply(corr_data[sapply(corr_data, is.character)], as.factor)
write.csv(corr_data, file.path('corr_data.csv'), row.names = FALSE)
General
description
options(width = 100)
summary(corr_data[c('RUT', 'ERPset', 'num_id', 'vulnerability', 'belief', 'sex', 'P3', 'N400_diff_LeftFrontal', 'N400_diff_Central', 'SASS_DIRt', 'IBT_DIRt', 'AIM_TramoIngreso_DIRd')])
RUT ERPset num_id vulnerability belief
13270311 : 1 S001VulCrF20957113_odd : 1 Min. : 1.0 Invulnerable:65 Believer :40
132947996: 1 S003nVulCrM18466555_odd: 1 1st Qu.: 47.5 Vulnerable :13 Unbeliever:38
13683981 : 1 S006nVulCrM17923449_odd: 1 Median : 76.5
138291510: 1 S015nVulCrM18833005_odd: 1 Mean : 72.1
13853986 : 1 S016VulCrF19423156_odd : 1 3rd Qu.:100.8
14467090 : 1 S018nVulCrF17671904_odd: 1 Max. :120.0
(Other) :72 (Other) :72
sex P3 N400_diff_LeftFrontal N400_diff_Central SASS_DIRt
Female:48 Min. :-1.692 Min. :-11.0315 Min. :-8.42034 Min. :24.00
Male :30 1st Qu.: 2.352 1st Qu.: -1.9378 1st Qu.:-1.58816 1st Qu.:36.00
Median : 4.057 Median : 0.1340 Median :-0.07557 Median :41.50
Mean : 4.081 Mean : -0.1216 Mean :-0.15826 Mean :40.73
3rd Qu.: 5.203 3rd Qu.: 2.1211 3rd Qu.: 1.38196 3rd Qu.:45.00
Max. : 9.750 Max. : 7.0360 Max. : 6.21919 Max. :54.00
NA's :1 NA's :1 NA's :4
IBT_DIRt AIM_TramoIngreso_DIRd
Min. : 9.00 Min. :1.000
1st Qu.:17.00 1st Qu.:3.000
Median :23.50 Median :5.000
Mean :23.76 Mean :4.377
3rd Qu.:29.00 3rd Qu.:6.000
Max. :44.00 Max. :7.000
NA's :4 NA's :1
Correlations
options(width = 100)
variables <- c('P3', 'N400_diff_LeftFrontal', 'N400_diff_Central', 'SASS_DIRt', 'IBT_DIRt', 'AIM_TramoIngreso_DIRd')
variables_pairs <- ggpairs(corr_data,
columns = variables,
aes(colour = belief, alpha = .25),
progress = FALSE,
lower = list(continuous = wrap("points")))
suppressWarnings(print(variables_pairs))

cor.test(corr_data$SASS_DIRt, corr_data$AIM_TramoIngreso_DIRd)
Pearson's product-moment correlation
data: corr_data$SASS_DIRt and corr_data$AIM_TramoIngreso_DIRd
t = 2.22, df = 72, p-value = 0.02957
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.02612297 0.45527836
sample estimates:
cor
0.2531109
cor.test(corr_data$SASS_DIRt[corr_data$belief == 'Believer'], corr_data$AIM_TramoIngreso_DIRd[corr_data$belief == 'Believer'])
Pearson's product-moment correlation
data: corr_data$SASS_DIRt[corr_data$belief == "Believer"] and corr_data$AIM_TramoIngreso_DIRd[corr_data$belief == "Believer"]
t = 2.5379, df = 38, p-value = 0.01537
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.07850468 0.61882507
sample estimates:
cor
0.3807039
cor.test(corr_data$SASS_DIRt[corr_data$belief == 'Unbeliever'], corr_data$AIM_TramoIngreso_DIRd[corr_data$belief == 'Unbeliever'])
Pearson's product-moment correlation
data: corr_data$SASS_DIRt[corr_data$belief == "Unbeliever"] and corr_data$AIM_TramoIngreso_DIRd[corr_data$belief == "Unbeliever"]
t = 0.4002, df = 32, p-value = 0.6917
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.2741383 0.3992084
sample estimates:
cor
0.07056953
LS0tCnRpdGxlOiAiQ29ycmVsYXRpb25zIFBlTXlDcmVQIgphdXRob3I6ICJBbHZhcm8gUml2ZXJhLVJlaSIKZGF0ZTogImByIGZvcm1hdChTeXMudGltZSgpLCAnJWQgJUIsICVZJylgIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgaGlnaGxpZ2h0OiB0YW5nbwogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMKICAgIHRoZW1lOiBjZXJ1bGVhbgogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDoKICAgICAgY29sbGFwc2VkOiBubwogICAgICBzbW9vdGhfc2Nyb2xsOiBubwogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCnN1YnRpdGxlOiBub3QgbXVjaCB0byBzZWUuLi4KLS0tCgpgYGB7ciBDbGVhbiBhbmQgTG9hZCBMaWJyYXJpZXN9CmNhdCgiXDAxNCIpICAgICAjIGNsZWFuIHRlcm1pbmFsCnJtKGxpc3QgPSBscygpKSAjIGNsZWFuIHdvcmtzcGFjZQp0cnkoZGV2Lm9mZigpLCBzaWxlbnQgPSBUUlVFKSAjIGNsb3NlIGFsbCBwbG90cwpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoR0dhbGx5KQpgYGAKCmBgYHtyIFNldCBEZWZhdWx0c30KdGhlbWVfc2V0KAogIHRoZW1lX21pbmltYWwoKQopCmBgYAoKYGBge3IgTG9hZCBvZGRiYWxsIGRhdGF9CnAzX2RhdGEgICA8LSByZWFkLmNzdignUDNfYnlfc3ViamVjdC5jc3YnKQojIHAzX2RhdGFbcDNfZGF0YSRSVVQgPT0gMTk0MzgwMTAxOSwgXSRSVVQgPC0gMTk0MzgwMTE5CiMgcDNfZGF0YVtwM19kYXRhJFJVVCA9PSAxNjc3ODgxMzksIF0kUlVUIDwtIDE2Nzg4MTM5CiMgcDNfZGF0YVtwM19kYXRhJFJVVCA9PSAxNzA1MDgxNjUsIF0kUlVUIDwtIDE3MDUwODE2Cm5hbWVzKHAzX2RhdGEpW25hbWVzKHAzX2RhdGEpID09ICJ1dl9tZWFuIl0gPC0gIlAzIgpuNDAwX2RhdGEgPC0gcmVhZC5jc3YoJ040MDBfZGlmZmVyZW5jZV9ieV9zdWJqZWN0LmNzdicpCiMgbjQwMF9kYXRhW240MDBfZGF0YSRSVVQgPT0gMTY3Nzg4MTM5LCBdJFJVVCA8LSAxNjc4ODEzOQojIG40MDBfZGF0YVtuNDAwX2RhdGEkUlVUID09IDE3MDUwODE2NSwgXSRSVVQgPC0gMTcwNTA4MTYKcDEwX2RhdGEgIDwtIHJlYWQuY3N2KCdQMTBfREZfam9pbmVkIChjb3B5KS5jc3YnKQpwMTBfZGF0YSRSVVQgPC0gZ3N1YignLicsICcnLCBwMTBfZGF0YSRpZCwgZml4ZWQgPSBUUlVFKQpwMTBfZGF0YSRSVVQgPC0gZ3N1YignLScsICcnLCBwMTBfZGF0YSRSVVQpCnAxMF9kYXRhJFJVVCA8LSBnc3ViKCcgJywgJycsIHAxMF9kYXRhJFJVVCkKcDE3X2RhdGEgIDwtIHJlYWQuY3N2KCdQMTdfREZfam9pbmVkIChjb3B5KS5jc3YnKQpwMTdfZGF0YSRSVVQgPC0gZ3N1YignLicsICcnLCBwMTdfZGF0YSRpZCwgZml4ZWQgPSBUUlVFKQpwMTdfZGF0YSRSVVQgPC0gZ3N1YignLScsICcnLCBwMTdfZGF0YSRSVVQpCnAxN19kYXRhJFJVVCA8LSBnc3ViKCcgJywgJycsIHAxN19kYXRhJFJVVCkKY29ycl9kYXRhIDwtIG1lcmdlKHAzX2RhdGFbYygnUlVUJywgJ0VSUHNldCcsICdudW1faWQnLCAndnVsbmVyYWJpbGl0eScsICdiZWxpZWYnLCAnc2V4JywgJ1AzJyldLCBuNDAwX2RhdGFbYygnUlVUJywgJ040MDBfZGlmZl9MZWZ0RnJvbnRhbCcsICdONDAwX2RpZmZfQ2VudHJhbCcpXSwgYnkgPSAnUlVUJywgYWxsID0gVFJVRSkKY29ycl9kYXRhIDwtIG1lcmdlKGNvcnJfZGF0YSwgcDEwX2RhdGFbYygnUlVUJywgJ1NBU1NfRElSdCcsICdJQlRfRElSdCcpXSwgYnkgPSAnUlVUJywgYWxsLnggPSBUUlVFKQpjb3JyX2RhdGEgPC0gbWVyZ2UoY29ycl9kYXRhLCBwMTdfZGF0YVtjKCdSVVQnLCAnQUlNX1RyYW1vSW5ncmVzb19ESVJkJyldLCBieSA9ICdSVVQnLCBhbGwueCA9IFRSVUUpCmNvcnJfZGF0YVtzYXBwbHkoY29ycl9kYXRhLCBpcy5jaGFyYWN0ZXIpXSA8LSBsYXBwbHkoY29ycl9kYXRhW3NhcHBseShjb3JyX2RhdGEsIGlzLmNoYXJhY3RlcildLCBhcy5mYWN0b3IpCndyaXRlLmNzdihjb3JyX2RhdGEsICBmaWxlLnBhdGgoJ2NvcnJfZGF0YS5jc3YnKSwgIHJvdy5uYW1lcyA9IEZBTFNFKQpgYGAKCiMgR2VuZXJhbCBkZXNjcmlwdGlvbgpgYGB7ciBnZW5lcmFsLCBmaWcud2lkdGggPSAxMn0Kb3B0aW9ucyh3aWR0aCA9IDEwMCkKc3VtbWFyeShjb3JyX2RhdGFbYygnUlVUJywgJ0VSUHNldCcsICdudW1faWQnLCAndnVsbmVyYWJpbGl0eScsICdiZWxpZWYnLCAnc2V4JywgJ1AzJywgJ040MDBfZGlmZl9MZWZ0RnJvbnRhbCcsICdONDAwX2RpZmZfQ2VudHJhbCcsICdTQVNTX0RJUnQnLCAnSUJUX0RJUnQnLCAnQUlNX1RyYW1vSW5ncmVzb19ESVJkJyldKQpgYGAKCiMjIENvcnJlbGF0aW9ucwpgYGB7ciB2YXJpYWJsZXMsIGZpZy53aWR0aCA9IDEyfQpvcHRpb25zKHdpZHRoID0gMTAwKQp2YXJpYWJsZXMgPC0gYygnUDMnLCAnTjQwMF9kaWZmX0xlZnRGcm9udGFsJywgJ040MDBfZGlmZl9DZW50cmFsJywgJ1NBU1NfRElSdCcsICdJQlRfRElSdCcsICdBSU1fVHJhbW9JbmdyZXNvX0RJUmQnKQp2YXJpYWJsZXNfcGFpcnMgPC0gZ2dwYWlycyhjb3JyX2RhdGEsCiAgICAgICAgICAgICAgICAgICAgICAgY29sdW1ucyA9IHZhcmlhYmxlcywKICAgICAgICAgICAgICAgICAgICAgICBhZXMoY29sb3VyID0gYmVsaWVmLCBhbHBoYSA9IC4yNSksCiAgICAgICAgICAgICAgICAgICAgICAgcHJvZ3Jlc3MgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICBsb3dlciA9IGxpc3QoY29udGludW91cyA9IHdyYXAoInBvaW50cyIpKSkKc3VwcHJlc3NXYXJuaW5ncyhwcmludCh2YXJpYWJsZXNfcGFpcnMpKQoKY29yLnRlc3QoY29ycl9kYXRhJFNBU1NfRElSdCwgY29ycl9kYXRhJEFJTV9UcmFtb0luZ3Jlc29fRElSZCkKY29yLnRlc3QoY29ycl9kYXRhJFNBU1NfRElSdFtjb3JyX2RhdGEkYmVsaWVmID09ICdCZWxpZXZlciddLCBjb3JyX2RhdGEkQUlNX1RyYW1vSW5ncmVzb19ESVJkW2NvcnJfZGF0YSRiZWxpZWYgPT0gJ0JlbGlldmVyJ10pCmNvci50ZXN0KGNvcnJfZGF0YSRTQVNTX0RJUnRbY29ycl9kYXRhJGJlbGllZiA9PSAnVW5iZWxpZXZlciddLCBjb3JyX2RhdGEkQUlNX1RyYW1vSW5ncmVzb19ESVJkW2NvcnJfZGF0YSRiZWxpZWYgPT0gJ1VuYmVsaWV2ZXInXSkKYGBgCg==