cat("\014")     # clean terminal

rm(list = ls()) # clean workspace
try(dev.off(), silent = TRUE) # close all plots
library(ggplot2)
library(GGally)
theme_set(
  theme_minimal()
)
p3_data   <- read.csv('P3_by_subject.csv')
# p3_data[p3_data$RUT == 1943801019, ]$RUT <- 194380119
# p3_data[p3_data$RUT == 167788139, ]$RUT <- 16788139
# p3_data[p3_data$RUT == 170508165, ]$RUT <- 17050816
names(p3_data)[names(p3_data) == "uv_mean"] <- "P3"
n400_data <- read.csv('N400_difference_by_subject.csv')
# n400_data[n400_data$RUT == 167788139, ]$RUT <- 16788139
# n400_data[n400_data$RUT == 170508165, ]$RUT <- 17050816
p10_data  <- read.csv('P10_DF_joined (copy).csv')
p10_data$RUT <- gsub('.', '', p10_data$id, fixed = TRUE)
p10_data$RUT <- gsub('-', '', p10_data$RUT)
p10_data$RUT <- gsub(' ', '', p10_data$RUT)
p17_data  <- read.csv('P17_DF_joined (copy).csv')
p17_data$RUT <- gsub('.', '', p17_data$id, fixed = TRUE)
p17_data$RUT <- gsub('-', '', p17_data$RUT)
p17_data$RUT <- gsub(' ', '', p17_data$RUT)
corr_data <- merge(p3_data[c('RUT', 'ERPset', 'num_id', 'vulnerability', 'belief', 'sex', 'P3')], n400_data[c('RUT', 'N400_diff_LeftFrontal', 'N400_diff_Central')], by = 'RUT', all = TRUE)
corr_data <- merge(corr_data, p10_data[c('RUT', 'SASS_DIRt', 'IBT_DIRt')], by = 'RUT', all.x = TRUE)
corr_data <- merge(corr_data, p17_data[c('RUT', 'AIM_TramoIngreso_DIRd')], by = 'RUT', all.x = TRUE)
corr_data[sapply(corr_data, is.character)] <- lapply(corr_data[sapply(corr_data, is.character)], as.factor)
write.csv(corr_data,  file.path('corr_data.csv'),  row.names = FALSE)

1 General description

options(width = 100)
summary(corr_data[c('RUT', 'ERPset', 'num_id', 'vulnerability', 'belief', 'sex', 'P3', 'N400_diff_LeftFrontal', 'N400_diff_Central', 'SASS_DIRt', 'IBT_DIRt', 'AIM_TramoIngreso_DIRd')])
        RUT                         ERPset       num_id           vulnerability        belief  
 13270311 : 1   S001VulCrF20957113_odd : 1   Min.   :  1.0   Invulnerable:65    Believer  :40  
 132947996: 1   S003nVulCrM18466555_odd: 1   1st Qu.: 47.5   Vulnerable  :13    Unbeliever:38  
 13683981 : 1   S006nVulCrM17923449_odd: 1   Median : 76.5                                     
 138291510: 1   S015nVulCrM18833005_odd: 1   Mean   : 72.1                                     
 13853986 : 1   S016VulCrF19423156_odd : 1   3rd Qu.:100.8                                     
 14467090 : 1   S018nVulCrF17671904_odd: 1   Max.   :120.0                                     
 (Other)  :72   (Other)                :72                                                     
     sex           P3         N400_diff_LeftFrontal N400_diff_Central    SASS_DIRt    
 Female:48   Min.   :-1.692   Min.   :-11.0315      Min.   :-8.42034   Min.   :24.00  
 Male  :30   1st Qu.: 2.352   1st Qu.: -1.9378      1st Qu.:-1.58816   1st Qu.:36.00  
             Median : 4.057   Median :  0.1340      Median :-0.07557   Median :41.50  
             Mean   : 4.081   Mean   : -0.1216      Mean   :-0.15826   Mean   :40.73  
             3rd Qu.: 5.203   3rd Qu.:  2.1211      3rd Qu.: 1.38196   3rd Qu.:45.00  
             Max.   : 9.750   Max.   :  7.0360      Max.   : 6.21919   Max.   :54.00  
                              NA's   :1             NA's   :1          NA's   :4      
    IBT_DIRt     AIM_TramoIngreso_DIRd
 Min.   : 9.00   Min.   :1.000        
 1st Qu.:17.00   1st Qu.:3.000        
 Median :23.50   Median :5.000        
 Mean   :23.76   Mean   :4.377        
 3rd Qu.:29.00   3rd Qu.:6.000        
 Max.   :44.00   Max.   :7.000        
 NA's   :4       NA's   :1            

1.1 Correlations

options(width = 100)
variables <- c('P3', 'N400_diff_LeftFrontal', 'N400_diff_Central', 'SASS_DIRt', 'IBT_DIRt', 'AIM_TramoIngreso_DIRd')
variables_pairs <- ggpairs(corr_data,
                       columns = variables,
                       aes(colour = belief, alpha = .25),
                       progress = FALSE,
                       lower = list(continuous = wrap("points")))
suppressWarnings(print(variables_pairs))


cor.test(corr_data$SASS_DIRt, corr_data$AIM_TramoIngreso_DIRd)

    Pearson's product-moment correlation

data:  corr_data$SASS_DIRt and corr_data$AIM_TramoIngreso_DIRd
t = 2.22, df = 72, p-value = 0.02957
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.02612297 0.45527836
sample estimates:
      cor 
0.2531109 
cor.test(corr_data$SASS_DIRt[corr_data$belief == 'Believer'], corr_data$AIM_TramoIngreso_DIRd[corr_data$belief == 'Believer'])

    Pearson's product-moment correlation

data:  corr_data$SASS_DIRt[corr_data$belief == "Believer"] and corr_data$AIM_TramoIngreso_DIRd[corr_data$belief == "Believer"]
t = 2.5379, df = 38, p-value = 0.01537
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.07850468 0.61882507
sample estimates:
      cor 
0.3807039 
cor.test(corr_data$SASS_DIRt[corr_data$belief == 'Unbeliever'], corr_data$AIM_TramoIngreso_DIRd[corr_data$belief == 'Unbeliever'])

    Pearson's product-moment correlation

data:  corr_data$SASS_DIRt[corr_data$belief == "Unbeliever"] and corr_data$AIM_TramoIngreso_DIRd[corr_data$belief == "Unbeliever"]
t = 0.4002, df = 32, p-value = 0.6917
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.2741383  0.3992084
sample estimates:
       cor 
0.07056953 
LS0tCnRpdGxlOiAiQ29ycmVsYXRpb25zIFBlTXlDcmVQIgphdXRob3I6ICJBbHZhcm8gUml2ZXJhLVJlaSIKZGF0ZTogImByIGZvcm1hdChTeXMudGltZSgpLCAnJWQgJUIsICVZJylgIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgaGlnaGxpZ2h0OiB0YW5nbwogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMKICAgIHRoZW1lOiBjZXJ1bGVhbgogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDoKICAgICAgY29sbGFwc2VkOiBubwogICAgICBzbW9vdGhfc2Nyb2xsOiBubwogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCnN1YnRpdGxlOiBub3QgbXVjaCB0byBzZWUuLi4KLS0tCgpgYGB7ciBDbGVhbiBhbmQgTG9hZCBMaWJyYXJpZXN9CmNhdCgiXDAxNCIpICAgICAjIGNsZWFuIHRlcm1pbmFsCnJtKGxpc3QgPSBscygpKSAjIGNsZWFuIHdvcmtzcGFjZQp0cnkoZGV2Lm9mZigpLCBzaWxlbnQgPSBUUlVFKSAjIGNsb3NlIGFsbCBwbG90cwpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoR0dhbGx5KQpgYGAKCmBgYHtyIFNldCBEZWZhdWx0c30KdGhlbWVfc2V0KAogIHRoZW1lX21pbmltYWwoKQopCmBgYAoKYGBge3IgTG9hZCBvZGRiYWxsIGRhdGF9CnAzX2RhdGEgICA8LSByZWFkLmNzdignUDNfYnlfc3ViamVjdC5jc3YnKQojIHAzX2RhdGFbcDNfZGF0YSRSVVQgPT0gMTk0MzgwMTAxOSwgXSRSVVQgPC0gMTk0MzgwMTE5CiMgcDNfZGF0YVtwM19kYXRhJFJVVCA9PSAxNjc3ODgxMzksIF0kUlVUIDwtIDE2Nzg4MTM5CiMgcDNfZGF0YVtwM19kYXRhJFJVVCA9PSAxNzA1MDgxNjUsIF0kUlVUIDwtIDE3MDUwODE2Cm5hbWVzKHAzX2RhdGEpW25hbWVzKHAzX2RhdGEpID09ICJ1dl9tZWFuIl0gPC0gIlAzIgpuNDAwX2RhdGEgPC0gcmVhZC5jc3YoJ040MDBfZGlmZmVyZW5jZV9ieV9zdWJqZWN0LmNzdicpCiMgbjQwMF9kYXRhW240MDBfZGF0YSRSVVQgPT0gMTY3Nzg4MTM5LCBdJFJVVCA8LSAxNjc4ODEzOQojIG40MDBfZGF0YVtuNDAwX2RhdGEkUlVUID09IDE3MDUwODE2NSwgXSRSVVQgPC0gMTcwNTA4MTYKcDEwX2RhdGEgIDwtIHJlYWQuY3N2KCdQMTBfREZfam9pbmVkIChjb3B5KS5jc3YnKQpwMTBfZGF0YSRSVVQgPC0gZ3N1YignLicsICcnLCBwMTBfZGF0YSRpZCwgZml4ZWQgPSBUUlVFKQpwMTBfZGF0YSRSVVQgPC0gZ3N1YignLScsICcnLCBwMTBfZGF0YSRSVVQpCnAxMF9kYXRhJFJVVCA8LSBnc3ViKCcgJywgJycsIHAxMF9kYXRhJFJVVCkKcDE3X2RhdGEgIDwtIHJlYWQuY3N2KCdQMTdfREZfam9pbmVkIChjb3B5KS5jc3YnKQpwMTdfZGF0YSRSVVQgPC0gZ3N1YignLicsICcnLCBwMTdfZGF0YSRpZCwgZml4ZWQgPSBUUlVFKQpwMTdfZGF0YSRSVVQgPC0gZ3N1YignLScsICcnLCBwMTdfZGF0YSRSVVQpCnAxN19kYXRhJFJVVCA8LSBnc3ViKCcgJywgJycsIHAxN19kYXRhJFJVVCkKY29ycl9kYXRhIDwtIG1lcmdlKHAzX2RhdGFbYygnUlVUJywgJ0VSUHNldCcsICdudW1faWQnLCAndnVsbmVyYWJpbGl0eScsICdiZWxpZWYnLCAnc2V4JywgJ1AzJyldLCBuNDAwX2RhdGFbYygnUlVUJywgJ040MDBfZGlmZl9MZWZ0RnJvbnRhbCcsICdONDAwX2RpZmZfQ2VudHJhbCcpXSwgYnkgPSAnUlVUJywgYWxsID0gVFJVRSkKY29ycl9kYXRhIDwtIG1lcmdlKGNvcnJfZGF0YSwgcDEwX2RhdGFbYygnUlVUJywgJ1NBU1NfRElSdCcsICdJQlRfRElSdCcpXSwgYnkgPSAnUlVUJywgYWxsLnggPSBUUlVFKQpjb3JyX2RhdGEgPC0gbWVyZ2UoY29ycl9kYXRhLCBwMTdfZGF0YVtjKCdSVVQnLCAnQUlNX1RyYW1vSW5ncmVzb19ESVJkJyldLCBieSA9ICdSVVQnLCBhbGwueCA9IFRSVUUpCmNvcnJfZGF0YVtzYXBwbHkoY29ycl9kYXRhLCBpcy5jaGFyYWN0ZXIpXSA8LSBsYXBwbHkoY29ycl9kYXRhW3NhcHBseShjb3JyX2RhdGEsIGlzLmNoYXJhY3RlcildLCBhcy5mYWN0b3IpCndyaXRlLmNzdihjb3JyX2RhdGEsICBmaWxlLnBhdGgoJ2NvcnJfZGF0YS5jc3YnKSwgIHJvdy5uYW1lcyA9IEZBTFNFKQpgYGAKCiMgR2VuZXJhbCBkZXNjcmlwdGlvbgpgYGB7ciBnZW5lcmFsLCBmaWcud2lkdGggPSAxMn0Kb3B0aW9ucyh3aWR0aCA9IDEwMCkKc3VtbWFyeShjb3JyX2RhdGFbYygnUlVUJywgJ0VSUHNldCcsICdudW1faWQnLCAndnVsbmVyYWJpbGl0eScsICdiZWxpZWYnLCAnc2V4JywgJ1AzJywgJ040MDBfZGlmZl9MZWZ0RnJvbnRhbCcsICdONDAwX2RpZmZfQ2VudHJhbCcsICdTQVNTX0RJUnQnLCAnSUJUX0RJUnQnLCAnQUlNX1RyYW1vSW5ncmVzb19ESVJkJyldKQpgYGAKCiMjIENvcnJlbGF0aW9ucwpgYGB7ciB2YXJpYWJsZXMsIGZpZy53aWR0aCA9IDEyfQpvcHRpb25zKHdpZHRoID0gMTAwKQp2YXJpYWJsZXMgPC0gYygnUDMnLCAnTjQwMF9kaWZmX0xlZnRGcm9udGFsJywgJ040MDBfZGlmZl9DZW50cmFsJywgJ1NBU1NfRElSdCcsICdJQlRfRElSdCcsICdBSU1fVHJhbW9JbmdyZXNvX0RJUmQnKQp2YXJpYWJsZXNfcGFpcnMgPC0gZ2dwYWlycyhjb3JyX2RhdGEsCiAgICAgICAgICAgICAgICAgICAgICAgY29sdW1ucyA9IHZhcmlhYmxlcywKICAgICAgICAgICAgICAgICAgICAgICBhZXMoY29sb3VyID0gYmVsaWVmLCBhbHBoYSA9IC4yNSksCiAgICAgICAgICAgICAgICAgICAgICAgcHJvZ3Jlc3MgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICBsb3dlciA9IGxpc3QoY29udGludW91cyA9IHdyYXAoInBvaW50cyIpKSkKc3VwcHJlc3NXYXJuaW5ncyhwcmludCh2YXJpYWJsZXNfcGFpcnMpKQoKY29yLnRlc3QoY29ycl9kYXRhJFNBU1NfRElSdCwgY29ycl9kYXRhJEFJTV9UcmFtb0luZ3Jlc29fRElSZCkKY29yLnRlc3QoY29ycl9kYXRhJFNBU1NfRElSdFtjb3JyX2RhdGEkYmVsaWVmID09ICdCZWxpZXZlciddLCBjb3JyX2RhdGEkQUlNX1RyYW1vSW5ncmVzb19ESVJkW2NvcnJfZGF0YSRiZWxpZWYgPT0gJ0JlbGlldmVyJ10pCmNvci50ZXN0KGNvcnJfZGF0YSRTQVNTX0RJUnRbY29ycl9kYXRhJGJlbGllZiA9PSAnVW5iZWxpZXZlciddLCBjb3JyX2RhdGEkQUlNX1RyYW1vSW5ncmVzb19ESVJkW2NvcnJfZGF0YSRiZWxpZWYgPT0gJ1VuYmVsaWV2ZXInXSkKYGBgCg==