Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
library(glmmTMB)
Warning in checkDepPackageVersion(dep_pkg = "TMB"): Package version inconsistency detected.
glmmTMB was built with TMB version 1.9.1
Current TMB version is 1.9.2
Please re-install glmmTMB from source or restore original 'TMB' package (see '?reinstalling' for more information)
library(effects)
Loading required package: carData
lattice theme set by effectsTheme()
See ?effectsTheme for details.
# Original code for feeding effectsbehavior_23Feb23 <-read.csv("behavior_23Feb23.csv")behavior <- behavior_23Feb23m01 <-glm(formula = feeding~temp+day_of_experiment+infected+total_alive, family ="poisson", data = behavior)summary(m01)
Call:
glm(formula = feeding ~ temp + day_of_experiment + infected +
total_alive, family = "poisson", data = behavior)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5306 -0.9771 -0.5120 0.5452 3.6374
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.863806 0.341015 -20.128 < 2e-16 ***
temp 0.184612 0.006789 27.193 < 2e-16 ***
day_of_experiment -0.008101 0.003073 -2.636 0.008388 **
infected 0.152720 0.052340 2.918 0.003525 **
total_alive 0.072359 0.018847 3.839 0.000123 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 2710.2 on 1279 degrees of freedom
Residual deviance: 1402.7 on 1275 degrees of freedom
(728 observations deleted due to missingness)
AIC: 3187.4
Number of Fisher Scoring iterations: 6
m01
Call: glm(formula = feeding ~ temp + day_of_experiment + infected +
total_alive, family = "poisson", data = behavior)
Coefficients:
(Intercept) temp day_of_experiment infected
-6.863806 0.184612 -0.008101 0.152720
total_alive
0.072359
Degrees of Freedom: 1279 Total (i.e. Null); 1275 Residual
(728 observations deleted due to missingness)
Null Deviance: 2710
Residual Deviance: 1403 AIC: 3187
plot(allEffects(m01))
# Change behavior from count to prop. with total_alive # Start with feeding and go from there lol behaviorprop<- behavior_23Feb23xtabs(formula=~feeding, data=behaviorprop)
# Try adding new column and making it feeding/total alive for each replicatefeedingprop = (behaviorprop$feeding/behaviorprop$total_alive)behaviorprop<-cbind(behaviorprop,feedingprop)# HELL YEAH I THINK THIS WORKS # Now redo that model, the 50+ warnings cannot hurt me if I can't see them m02 <-glm(formula = feedingprop~temp+day_of_experiment+infected+total_alive, family ="binomial", data = behaviorprop)
Warning in eval(family$initialize): non-integer #successes in a binomial glm!
m02
Call: glm(formula = feedingprop ~ temp + day_of_experiment + infected +
total_alive, family = "binomial", data = behaviorprop)
Coefficients:
(Intercept) temp day_of_experiment infected
-8.49353 0.22110 -0.01178 0.20148
total_alive
-0.10265
Degrees of Freedom: 1279 Total (i.e. Null); 1275 Residual
(728 observations deleted due to missingness)
Null Deviance: 373.5
Residual Deviance: 189.5 AIC: 504.8
plot(allEffects(m02))
# Interaction of number of bees feeding infected vs uninfected across thermal gradient # Feeding y, temp x, one line for infected and one for uninfected ggplot(data=behavior, aes(x=temp, y=feeding, color=as.character(infected)))+geom_point()+geom_jitter()+geom_smooth(method="lm")+theme_classic()+scale_color_discrete(na.translate=FALSE)
# Combine incubating and feeding by temperature, two lines for infected/uninfected feedingplot<-ggplot(behavior, aes(x=temp, y=feeding, color=as.character(infected)))+geom_point()+geom_smooth(method="lm")+theme_classic()+scale_color_discrete(na.translate=FALSE)incubatingplot<-ggplot(behavior, aes(x=temp, y=incubating, color=as.character(infected)))+geom_point()+geom_smooth(method="lm")+theme_classic()+scale_color_discrete(na.translate=FALSE)library(patchwork)(feedingplot+incubatingplot)