soccer <- read_csv("../00_data/myData.csv")
## Rows: 900 Columns: 15
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (11): country, city, stage, home_team, away_team, outcome, win_conditio...
## dbl (3): year, home_score, away_score
## date (1): date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
The primary keys in my data is the year or X.
Divide it using dplyr::select in a way the two have a common variable, which you could use to join the two.
soccer1half <- soccer %>% select(year:outcome)
soccer2half <- soccer %>% select(outcome:winning_team)
Use tidyr::left_join or other joining functions.
left_join(soccer1half, soccer2half)
## Joining with `by = join_by(outcome)`
## Warning in left_join(soccer1half, soccer2half): Each row in `x` is expected to match at most 1 row in `y`.
## ℹ Row 1 of `x` matches multiple rows.
## ℹ If multiple matches are expected, set `multiple = "all"` to silence this
## warning.
## # A tibble: 303,806 × 11
## year country city stage home_…¹ away_…² home_…³ away_…⁴ outcome win_c…⁵
## <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
## 1 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## 2 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## 3 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## 4 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## 5 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## 6 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## 7 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## 8 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## 9 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## 10 1930 Uruguay Montevid… Grou… France Mexico 4 1 H <NA>
## # … with 303,796 more rows, 1 more variable: winning_team <chr>, and
## # abbreviated variable names ¹home_team, ²away_team, ³home_score,
## # ⁴away_score, ⁵win_conditions
x <- c("apple", "banana", "pear")
str_detect(x, "e")
## [1] TRUE FALSE TRUE
length(sentences)
## [1] 720
head(sentences)
## [1] "The birch canoe slid on the smooth planks."
## [2] "Glue the sheet to the dark blue background."
## [3] "It's easy to tell the depth of a well."
## [4] "These days a chicken leg is a rare dish."
## [5] "Rice is often served in round bowls."
## [6] "The juice of lemons makes fine punch."
colours <- c("red", "orange", "yellow", "green", "blue", "purple")
colour_match <- str_c(colours, collapse = "|")
colour_match
## [1] "red|orange|yellow|green|blue|purple"
has_colour <- str_subset(sentences, colour_match)
matches <- str_extract(has_colour, colour_match)
head(matches)
## [1] "blue" "blue" "red" "red" "red" "blue"
more <- sentences[str_count(sentences, colour_match) > 1]
str_view_all(more, colour_match)
## Warning: `str_view()` was deprecated in stringr 1.5.0.
## ℹ Please use `str_view_all()` instead.
## [1] │ It is hard to erase <blue> or <red> ink.
## [2] │ The <green> light in the brown box flicke<red>.
## [3] │ The sky in the west is tinged with <orange> <red>.
x <- c("apple", "pear", "banana")
str_replace(x, "[aeiou]", "-")
## [1] "-pple" "p-ar" "b-nana"
str_replace_all(x, "[aeiou]", "-")
## [1] "-ppl-" "p--r" "b-n-n-"