# Mindanao State University
# General Santos City
# Introduction to R base commands
# Submitted by: Jen Marie B. Talaugon
# Submitted to: Prof. Carlito O. Daarol
# Math Department
# March 23, 2023

# Processing of continuous data
# Using random number generators
# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm()command

data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1] 1.4959250 0.2727201 1.8854381 1.4972984 4.3246445 3.1098109 5.8561149
##  [8] 1.3830068 4.6353211 0.4230150 5.0610136 2.1788557 1.7175754 2.7068618
## [15] 4.5963158 2.8119726 1.6884906 1.6366055 1.6138264 2.1719013
data[1:300] # display the first 300 elements
##   [1]  1.49592502  0.27272006  1.88543808  1.49729840  4.32464449  3.10981094
##   [7]  5.85611487  1.38300676  4.63532111  0.42301498  5.06101364  2.17885575
##  [13]  1.71757540  2.70686178  4.59631585  2.81197264  1.68849065  1.63660546
##  [19]  1.61382642  2.17190126  1.99805695  1.53103577  3.20984498  4.87581679
##  [25]  3.63822792  0.22615004  1.91465276  2.10689492 -1.24820632  1.46986637
##  [31]  0.80450187  2.15331208  2.85276519  4.31043217  2.38784676  2.08824724
##  [37]  1.74564119  0.17056910  2.75701516  2.01536333  1.01680996  5.42294350
##  [43]  1.20357473  3.60863773  0.65595981  0.72438535 -0.34773246  3.52083136
##  [49] -0.18511918  4.58549647  2.15531275  1.77341984  2.30819536  2.67421388
##  [55]  1.00511012 -0.15396848 -1.16515608  3.16596713  0.74180588  1.33361249
##  [61]  1.59845663  1.95548152  1.88967293  2.16816749  0.54269997 -0.81440800
##  [67]  3.81330783  4.68901362  2.70370453  0.25747165  7.04756732  2.08272154
##  [73]  1.46202129  0.78795377  4.47966422  1.38192002  2.50044157  1.38118325
##  [79]  0.46937936 -0.18702809  0.15906436  1.03028880 -0.31564815  3.50969581
##  [85]  4.60552890  3.45457619  0.68416533  3.30547505  5.51976432  4.24253493
##  [91]  0.53055761  0.82181002  3.65877682  2.69751103  1.23369241  1.14334968
##  [97] -0.02002216  1.89754112  1.77668208  4.15611564  0.28825281  3.50826706
## [103]  0.73450214  3.28462618  0.50504377  3.52005010  1.43365439  1.31898452
## [109]  2.61903580  1.88757020  3.67423095  3.35003618  2.15275064  0.07716550
## [115]  2.38277084  2.36017894  2.08513382  0.75208865  3.60065606  0.68608964
## [121]  1.07852778  0.63329967  3.33565572  0.91710338  1.84044748  2.56507939
## [127]  5.02492613  4.79765911  1.84367109  4.49305338 -2.01264277  3.79634012
## [133]  4.95084107  1.44939141  2.10501757 -0.09621848 -0.55063707  3.78367874
## [139]  1.95722244 -1.16496469  1.84008134  3.18434640  1.86422449  3.05413800
## [145]  2.88241841  2.34727292  1.30950067  2.75936698  3.66305276 -0.03624156
## [151]  2.48875385  3.12925969  1.22315607  1.42407417  5.57301721 -0.47885923
## [157]  3.05389153  1.12492805  1.92789316  3.23667666  3.58455010  3.37993028
## [163]  3.13910742  4.83558765  1.41649909  1.56991582  1.69395260  2.13479020
## [169]  3.28590745  4.35250398  1.45329989  0.17292007  1.30286782 -0.68408066
## [175]  2.05208077  1.38954180  0.90003854  5.39057683  0.04594060 -0.60354676
## [181]  1.66679746  1.08419187  2.65046512  4.31081246  1.20341039  1.43400384
## [187]  1.31244487  1.97130646  1.72736064  0.49163574  3.64761695  0.34058376
## [193] -0.27006217  2.91108931  4.78078066  3.25212155  1.03361882  2.89137403
## [199]  1.71925510  0.01388928  2.24988802  3.60575867  0.70085147  0.24318487
## [205]  2.91674829  3.85883645  2.42027937  1.13157817  2.37734008  3.42218178
## [211]  3.16072897  4.86180680  2.42632571  1.43016032  5.22110132  0.74697794
## [217]  3.47088331  0.87843996  2.16193766  1.81701788  0.85495740  0.35129257
## [223]  3.07604255  1.86889882  2.45926011  3.23757222  2.96009007  2.97232353
## [229]  1.23383267  1.42343560  2.88959786  0.73765962 -0.32442438  1.17106474
## [235] -0.31048630  2.66426349  0.65503271 -2.16851878  3.94427620  2.44993063
## [241]  1.79926721  0.28781473  0.90888941  2.04508064  5.69374290  4.47002871
## [247]  2.00026180  2.39618672  3.79707025  1.41684691  3.08000229  4.78863989
## [253]  2.41432556  2.75068040  5.16386154  4.59837105  2.78776067  2.29679933
## [259]  1.99318336  1.37951084  4.42839291  1.76687919  0.92094840  4.21338826
## [265]  1.64493798  4.94811433  1.37584605  1.20837599  4.30732285  3.12010222
## [271]  2.27733478  3.40405523  1.53230073  3.34809995  1.34689734  1.87802230
## [277]  2.66201857  0.89228641  4.99443006  2.98018287  1.87656497  5.26052615
## [283]  1.64158645 -0.23750994 -0.45692300  0.46098077  1.93349224  2.05600160
## [289]  0.70201156  2.43198427  3.10083235  1.35875243  1.51774460  2.83245032
## [295] -1.13280645  3.98019723  1.76465008  4.64694996  5.32018389  0.29305790
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title

subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?

# Exer4: Draw histogram with main title and sub title

subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title

subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -3.00086939 -2.89937002 -2.79787066 -2.69637130 -2.59487194 -2.49337258
##   [7] -2.39187322 -2.29037386 -2.18887450 -2.08737514 -1.98587578 -1.88437642
##  [13] -1.78287706 -1.68137770 -1.57987834 -1.47837898 -1.37687962 -1.27538025
##  [19] -1.17388089 -1.07238153 -0.97088217 -0.86938281 -0.76788345 -0.66638409
##  [25] -0.56488473 -0.46338537 -0.36188601 -0.26038665 -0.15888729 -0.05738793
##  [31]  0.04411143  0.14561079  0.24711016  0.34860952  0.45010888  0.55160824
##  [37]  0.65310760  0.75460696  0.85610632  0.95760568  1.05910504  1.16060440
##  [43]  1.26210376  1.36360312  1.46510248  1.56660184  1.66810120  1.76960056
##  [49]  1.87109993  1.97259929  2.07409865  2.17559801  2.27709737  2.37859673
##  [55]  2.48009609  2.58159545  2.68309481  2.78459417  2.88609353  2.98759289
##  [61]  3.08909225  3.19059161  3.29209097  3.39359034  3.49508970  3.59658906
##  [67]  3.69808842  3.79958778  3.90108714  4.00258650  4.10408586  4.20558522
##  [73]  4.30708458  4.40858394  4.51008330  4.61158266  4.71308202  4.81458138
##  [79]  4.91608074  5.01758011  5.11907947  5.22057883  5.32207819  5.42357755
##  [85]  5.52507691  5.62657627  5.72807563  5.82957499  5.93107435  6.03257371
##  [91]  6.13407307  6.23557243  6.33707179  6.43857115  6.54007051  6.64156988
##  [97]  6.74306924  6.84456860  6.94606796  7.04756732
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"), col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -3.000869  1.003440  1.999159  2.973210  7.047567
## 0% 25% 50% 75% 100%
## -2.2512646 0.9161359 1.9863926 2.9767851 6.0366483
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution

data
##    [1]  1.495925023  0.272720057  1.885438084  1.497298404  4.324644492
##    [6]  3.109810943  5.856114870  1.383006756  4.635321107  0.423014977
##   [11]  5.061013645  2.178855745  1.717575399  2.706861779  4.596315846
##   [16]  2.811972636  1.688490649  1.636605460  1.613826424  2.171901261
##   [21]  1.998056948  1.531035774  3.209844981  4.875816792  3.638227925
##   [26]  0.226150043  1.914652759  2.106894922 -1.248206322  1.469866372
##   [31]  0.804501870  2.153312078  2.852765188  4.310432167  2.387846763
##   [36]  2.088247238  1.745641191  0.170569102  2.757015158  2.015363334
##   [41]  1.016809960  5.422943504  1.203574729  3.608637733  0.655959808
##   [46]  0.724385354 -0.347732457  3.520831364 -0.185119180  4.585496472
##   [51]  2.155312752  1.773419840  2.308195356  2.674213877  1.005110124
##   [56] -0.153968478 -1.165156077  3.165967131  0.741805876  1.333612487
##   [61]  1.598456630  1.955481525  1.889672929  2.168167488  0.542699973
##   [66] -0.814407998  3.813307835  4.689013624  2.703704534  0.257471646
##   [71]  7.047567318  2.082721536  1.462021286  0.787953772  4.479664217
##   [76]  1.381920018  2.500441566  1.381183252  0.469379364 -0.187028087
##   [81]  0.159064362  1.030288803 -0.315648151  3.509695813  4.605528899
##   [86]  3.454576187  0.684165325  3.305475045  5.519764322  4.242534932
##   [91]  0.530557613  0.821810023  3.658776815  2.697511027  1.233692409
##   [96]  1.143349681 -0.020022159  1.897541125  1.776682079  4.156115638
##  [101]  0.288252809  3.508267062  0.734502144  3.284626176  0.505043766
##  [106]  3.520050102  1.433654395  1.318984524  2.619035800  1.887570205
##  [111]  3.674230949  3.350036181  2.152750645  0.077165497  2.382770841
##  [116]  2.360178944  2.085133815  0.752088651  3.600656063  0.686089640
##  [121]  1.078527780  0.633299673  3.335655718  0.917103385  1.840447483
##  [126]  2.565079386  5.024926126  4.797659112  1.843671091  4.493053384
##  [131] -2.012642770  3.796340119  4.950841065  1.449391412  2.105017573
##  [136] -0.096218479 -0.550637067  3.783678738  1.957222442 -1.164964686
##  [141]  1.840081343  3.184346401  1.864224489  3.054137998  2.882418407
##  [146]  2.347272923  1.309500671  2.759366984  3.663052763 -0.036241559
##  [151]  2.488753847  3.129259687  1.223156069  1.424074172  5.573017206
##  [156] -0.478859230  3.053891525  1.124928055  1.927893159  3.236676657
##  [161]  3.584550100  3.379930282  3.139107422  4.835587652  1.416499094
##  [166]  1.569915818  1.693952600  2.134790201  3.285907451  4.352503980
##  [171]  1.453299886  0.172920073  1.302867825 -0.684080663  2.052080766
##  [176]  1.389541804  0.900038543  5.390576828  0.045940600 -0.603546755
##  [181]  1.666797462  1.084191871  2.650465119  4.310812458  1.203410389
##  [186]  1.434003835  1.312444871  1.971306459  1.727360644  0.491635741
##  [191]  3.647616948  0.340583758 -0.270062166  2.911089313  4.780780662
##  [196]  3.252121554  1.033618815  2.891374034  1.719255100  0.013889283
##  [201]  2.249888020  3.605758674  0.700851470  0.243184869  2.916748291
##  [206]  3.858836452  2.420279370  1.131578168  2.377340084  3.422181775
##  [211]  3.160728972  4.861806804  2.426325706  1.430160316  5.221101323
##  [216]  0.746977938  3.470883307  0.878439961  2.161937659  1.817017877
##  [221]  0.854957402  0.351292568  3.076042555  1.868898825  2.459260109
##  [226]  3.237572220  2.960090065  2.972323530  1.233832674  1.423435598
##  [231]  2.889597863  0.737659624 -0.324424378  1.171064739 -0.310486304
##  [236]  2.664263491  0.655032709 -2.168518782  3.944276203  2.449930629
##  [241]  1.799267205  0.287814731  0.908889410  2.045080640  5.693742899
##  [246]  4.470028715  2.000261801  2.396186723  3.797070251  1.416846915
##  [251]  3.080002293  4.788639892  2.414325556  2.750680397  5.163861544
##  [256]  4.598371049  2.787760674  2.296799335  1.993183356  1.379510844
##  [261]  4.428392910  1.766879193  0.920948399  4.213388256  1.644937980
##  [266]  4.948114331  1.375846050  1.208375994  4.307322853  3.120102220
##  [271]  2.277334781  3.404055231  1.532300730  3.348099949  1.346897340
##  [276]  1.878022295  2.662018566  0.892286414  4.994430063  2.980182866
##  [281]  1.876564967  5.260526145  1.641586455 -0.237509942 -0.456922999
##  [286]  0.460980768  1.933492238  2.056001597  0.702011563  2.431984268
##  [291]  3.100832347  1.358752427  1.517744602  2.832450319 -1.132806451
##  [296]  3.980197233  1.764650075  4.646949958  5.320183887  0.293057897
##  [301]  2.447685780  1.692973436  5.304386923  1.870028339 -0.582515708
##  [306]  1.518058034  2.564437732  5.262266734  2.721041258  0.350831861
##  [311]  0.582136502  2.375978693  3.457455520 -0.665793451  2.820864274
##  [316]  0.938516331  1.298991136  4.860043724  1.239609891  2.793249498
##  [321]  2.440720459  1.305103951  0.139429914  2.215350924  1.731173259
##  [326] -0.072671270  4.716598354 -1.502474704  4.535715493  2.230577343
##  [331]  4.435418282  1.796701881  2.421364826  0.414653566  4.140505577
##  [336]  3.740657128  2.267530308  1.446215975  2.673831848  2.265301626
##  [341]  0.337879307  0.298042150  0.983140795 -0.615149564  4.128374161
##  [346]  1.039124703  0.969322449 -0.487413521  1.003772430  1.772013677
##  [351]  2.710817012  4.193473116  4.622510731  2.047776341  2.869074805
##  [356] -0.651413447  0.780669693  2.418152646  3.494430258  2.972277146
##  [361]  2.416863060  1.665437432  0.047700988  0.698532766  3.006420044
##  [366]  1.624851932  2.624894865  1.670525557  1.045761071  3.213658720
##  [371]  2.232026967  1.385953920  3.699249622  2.056825092  6.522366976
##  [376]  3.047024698  1.144925629  3.157630583  4.440405322  1.790709577
##  [381]  1.867779995  1.002443844  3.801310399  3.184862787  2.975804959
##  [386] -0.895682169  0.901634717  4.672739787  3.145538499  2.663461407
##  [391]  4.801868041  1.638444202  3.825120320 -0.763649621  1.513594571
##  [396]  2.457075816  3.863568461  3.989167295  2.609482529  0.077813411
##  [401]  2.737856190  3.310079617  1.825701993  0.012823619  2.156632919
##  [406]  1.705342750 -1.162690091  1.341850834  1.724084658  3.350085755
##  [411]  5.074654768  3.802328044  1.765149177  3.099073838  3.431301182
##  [416]  2.664032897  0.434324842  0.680506826  0.615466769  0.780483793
##  [421]  1.490228218  0.853118068  0.150947625  1.201705566  3.714075326
##  [426]  1.145153707  1.399957760  2.605834139  1.751981833 -0.350981836
##  [431]  1.973478480  0.498905663  2.537771536  1.178238437  4.556932500
##  [436]  3.814142590  2.408255370  0.861621562  0.450561854  3.077494217
##  [441]  3.456574926  2.362620619  1.835106810  1.885384410  2.518544506
##  [446]  2.583073248 -0.250467455  1.760647079  3.949892441  2.258454386
##  [451]  2.623505140  2.269445495  3.318123289  2.499095302  4.040750462
##  [456]  2.440685523 -0.024417106  2.937064586 -0.640954076  4.669074442
##  [461]  1.945612902  0.861914495  4.573297060  1.187568915  1.816057593
##  [466]  1.503647037  2.082526746  3.565251832  4.118409416  1.619513535
##  [471]  2.078476435  4.165243121  5.197346276  0.502811281  1.811174878
##  [476]  3.978031164  4.534984382  0.551743082  2.114651688  0.408962187
##  [481]  2.266725619  0.561030564  2.867264581 -0.824117405  2.343385145
##  [486]  3.511410232  2.126580840  0.994078920  1.152814621  2.522861005
##  [491]  2.133029067  2.737477267  1.120056162  3.787527171  4.417002534
##  [496]  1.632294602 -0.623713429  2.396262086  2.469073696  0.048038058
##  [501]  2.416796896  1.848962695  1.995619349  2.190747007  1.067098829
##  [506]  2.715563823  1.010880760  0.030305543 -0.629953997  0.952585802
##  [511] -1.175415297  1.128373244  0.845181068  0.897221517  2.103708308
##  [516]  2.873734661  2.972345564  1.047700899  0.672175233  1.252457262
##  [521]  0.316981535  1.740893765  1.701359227  2.520459207  1.047391072
##  [526]  2.464555782  3.410447259  1.288006980  1.311585118  2.774870853
##  [531]  3.345746559  0.813729259  0.358298505  0.659303332  3.070083551
##  [536]  2.348698097  2.227748671  2.713212259  0.913221509  0.802760571
##  [541]  1.232647066  1.210637637 -0.303652783  3.062458902  2.031310202
##  [546]  2.939347460  1.217720077  3.051759806  3.294458619  3.994173810
##  [551]  1.724251452  2.320692533  0.454709300  2.279144444  0.898157470
##  [556] -0.666670346  0.768720061  2.242595553  1.464308880 -0.715884704
##  [561]  0.215275333  1.143986966  1.380575745  1.031310612  2.951987923
##  [566]  1.334107453 -1.529760233  0.471375903 -0.065562042  3.189218608
##  [571]  2.934692154  3.268927504  4.415359508 -0.061645129  3.360072098
##  [576]  0.795992421  1.672141076 -2.634241346  2.715674254  0.636758408
##  [581]  3.312336261  0.036361698  1.597362681  1.964066553  2.156250447
##  [586]  2.862139678  3.721104014  2.708221286  2.656939165  1.383350226
##  [591]  3.635244172  3.158926663  1.126154713  0.581451770  0.548105177
##  [596]  2.097315017  3.982721002  1.933500745  2.001584017  3.243816050
##  [601]  1.768881958 -2.160581381 -0.131549956  1.411184134  4.642588432
##  [606]  2.803125468  1.881634425  2.344024592  5.244663907 -0.055618145
##  [611]  2.609365064  2.792906171  0.559799771  1.659833182  0.954707244
##  [616]  1.710677216 -0.724592077  1.742290607  3.162870704 -1.035194146
##  [621] -0.153759481  2.263214890  5.175840930  1.945118683  2.249026904
##  [626]  3.930392177 -0.091550810  2.855464504  2.059761071  3.060199546
##  [631]  1.015652324  1.386743476  2.621719488  4.404545499  2.951253387
##  [636]  0.550968005  3.076910298  1.382234428  2.532821004  0.693865268
##  [641] -0.564915807  1.720872898  3.933851326  2.028069185 -0.342582793
##  [646]  2.879160610 -3.000869385  2.815631165  2.123423106  1.160010671
##  [651]  2.220951077  2.927499478  2.837886464  0.032588704  2.377124117
##  [656]  3.246820400 -0.650816334  1.201633117  3.216331649  2.366307471
##  [661]  3.079828133  1.040757001  0.871443646  2.094420708  2.818530744
##  [666]  4.143698339  1.081454270  3.299817069  0.956211255  1.593373277
##  [671]  3.163246507  0.949062018  2.106965864  2.678452939  0.699630594
##  [676]  1.771096411 -0.366240746  3.831612565  2.334788623  2.423121120
##  [681] -0.730866294  2.864596381  2.205529431  2.506615035  2.292557826
##  [686] -0.788880033  2.701969753  2.586063036  0.866827199  0.683053556
##  [691]  5.247503297  2.700400206  0.676579761  3.356498538  2.014557845
##  [696]  3.257098022  0.019197987  1.746439853 -0.087213275 -2.312863590
##  [701] -0.071041998  2.710812817  2.727194573  2.302570929 -0.848461092
##  [706]  2.061091537  2.911200524  1.894555462  3.642901546  2.129386252
##  [711]  1.407840737  2.171502182  0.561164520  3.660822721  3.183382141
##  [716]  0.195866098  0.625381933  1.345813050  2.273833691  1.327496313
##  [721]  2.199065168  4.117471086  2.435403532  1.955431622  2.360020141
##  [726]  3.655247277  2.527004216  2.492465694  2.026797819  1.203680180
##  [731]  1.981321314  3.345439767  1.750607291  2.265727075 -0.382158920
##  [736]  1.523522901  2.467582519  1.368780560  0.291051117  0.401410283
##  [741]  0.968831636  2.084556375  0.854842372  1.302121455  2.098676550
##  [746]  2.728854108  0.811626018  2.263813151  3.756598317 -1.156041998
##  [751]  2.950125773  1.118782602  2.667379150  0.326330561  4.322787307
##  [756]  2.709518832  0.019360678  1.551388973  1.616716410  2.018378478
##  [761] -1.007925103  4.086898074  4.166842469  0.462795512  0.242875554
##  [766]  1.577398436  1.444952552  1.432738179  2.426634817  3.116151204
##  [771]  1.651356808  1.340462198  2.282065249 -0.891324059  1.007550370
##  [776]  3.894198200  2.314591516  1.373781957  0.503173743 -0.847759105
##  [781]  4.277280800  2.934963896  4.433879613  0.972625537 -1.314342820
##  [786]  0.007624295  3.756790404  3.234319919  1.181715429  0.770845089
##  [791]  2.506166079  2.771517471  3.906462489 -0.007539027  2.980119164
##  [796]  4.447852460  4.696946776  0.216290578  0.934300209  3.197791483
##  [801]  1.672781842  2.727841386  1.800135313  1.202328518  5.207452363
##  [806]  1.309791319  4.044302150  3.713015236  1.082221832  2.809388440
##  [811]  1.637556419  1.729234628  3.182061241  2.181734205 -0.174208233
##  [816] -1.547633549  2.506363298 -0.607404908  2.490761711  3.460849847
##  [821]  0.566048035  4.106193729  1.766983707  2.679835919  0.378032883
##  [826]  1.445349536 -0.780187144  0.702586519  0.955725599 -1.241162024
##  [831]  1.448557648  1.086088862  2.472073660  1.046667586  2.128633207
##  [836]  3.931283072  0.791874413  2.112626778  1.758017016  2.291696030
##  [841]  5.439664523  2.618769533  3.209229998  2.623473421 -0.350066554
##  [846]  3.068297768  2.293296750  2.367410906  0.932765769 -0.079537220
##  [851]  3.074929125  3.153260891  1.822210676 -0.005772751  2.343018478
##  [856]  1.051413208  1.773275545  0.763572150  2.098739654  1.526449476
##  [861]  3.443869909  3.375007809  1.976655123  2.815455184  2.198082814
##  [866]  3.218275460  1.230511122  2.159913803 -0.873686913  2.138258834
##  [871]  1.352601130  3.176335954 -1.324477422  2.707009359  1.980107797
##  [876]  1.415170515 -1.028962483  0.478081876  1.817750096  0.094682723
##  [881]  2.729069974 -0.777024870  1.121992307  2.367132489  1.876108000
##  [886]  2.934947495  1.972519585  0.766974977  3.025329892  3.769385536
##  [891]  4.067412272  0.947928925  3.309469847  3.292017072  3.118222951
##  [896] -0.980026904  3.446366974  1.659220914  2.570283431  0.611149970
##  [901]  0.662552681  4.087348233  1.461509552  1.164861061  2.401122176
##  [906]  6.027738517  3.376639150  2.897882650  1.306952445  0.264406419
##  [911]  5.840946593  1.106296087  2.713640924  2.517727192  4.192309200
##  [916]  2.372534505  2.618308939  2.019235724  2.025865187  1.156704222
##  [921]  0.911899231  3.281754178  2.036778768  1.651715376  1.554469611
##  [926]  3.154101522  1.263716515  3.693706815  2.908846310  0.035270244
##  [931]  0.267009816  0.783072466  1.147406806  2.570085699  0.818393570
##  [936]  4.474909531  1.982077443 -0.797050957  2.833003195  0.449266746
##  [941] -0.105538259  0.371633929  2.392292220  2.799544481  4.117733557
##  [946]  1.369391265  1.525766274 -1.980870603  2.259888498  1.026016899
##  [951]  1.349337552  4.218508137  4.681458657  6.360570853  1.714514636
##  [956]  1.198270704  4.304970573  3.728160464  3.349090082 -0.754876800
##  [961]  3.212801127  2.541992099  0.191086364  2.669715295  1.415471188
##  [966]  1.968279802  2.652956081  2.315640920  0.635842235  0.239538498
##  [971]  1.092744106  1.689727714  1.166228185  3.667949851  1.426073614
##  [976]  4.126090273  2.176651363  1.829865633  3.016839684  3.346627008
##  [981]  3.112252684  2.753197089  1.751024512  0.072334713  0.066259427
##  [986]  1.957404786  2.422276017 -1.250734484  1.158204819  0.706234427
##  [991]  4.235811893  0.545822741  0.937846967  3.170729438  3.005012664
##  [996]  1.188141117  4.458954622  2.111872398  2.629004878  3.561976967
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -3.001   1.003   1.999   1.996   2.973   7.048
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve) x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.6077921
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.586037
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.6077921
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [685] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [781] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [829] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [877]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -1.2482063 -1.1651561 -0.8144080 -2.0126428 -1.1649647 -0.6840807
##  [7] -2.1685188 -1.1328065 -0.6657935 -1.5024747 -0.6151496 -0.6514134
## [13] -0.8956822 -0.7636496 -1.1626901 -0.6409541 -0.8241174 -0.6237134
## [19] -0.6299540 -1.1754153 -0.6666703 -0.7158847 -1.5297602 -2.6342413
## [25] -2.1605814 -0.7245921 -1.0351941 -3.0008694 -0.6508163 -0.7308663
## [31] -0.7888800 -2.3128636 -0.8484611 -1.1560420 -1.0079251 -0.8913241
## [37] -0.8477591 -1.3143428 -1.5476335 -0.7801871 -1.2411620 -0.8736869
## [43] -1.3244774 -1.0289625 -0.7770249 -0.9800269 -0.7970510 -1.9808706
## [49] -0.7548768 -1.2507345
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.586037
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
##   [13] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [133]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [253] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [301] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.856115 4.635321 5.061014 4.596316 4.875817 5.422944 4.689014 7.047567
##  [9] 4.605529 5.519764 5.024926 4.797659 4.950841 5.573017 4.835588 5.390577
## [17] 4.780781 4.861807 5.221101 5.693743 4.788640 5.163862 4.598371 4.948114
## [25] 4.994430 5.260526 4.646950 5.320184 5.304387 5.262267 4.860044 4.716598
## [33] 4.622511 6.522367 4.672740 4.801868 5.074655 4.669074 5.197346 4.642588
## [41] 5.244664 5.175841 5.247503 4.696947 5.207452 5.439665 6.027739 5.840947
## [49] 4.681459 6.360571