#呈现code 与output
knitr::opts_chunk$set(echo = TRUE)
#设定当前工作目录(请选择一个你自己的工作目录)
setwd("/Users/simonfair/Desktop/闽南师范大学/量化培训班/(5)20230330")
#(或菜單點選)session->set working directory->choose directory
#显示目前工作目录
getwd()
## [1] "/Users/simonfair/Desktop/闽南师范大学/量化培训班/(5)20230330"
#设定系統中文文字編碼 (mac/win)
Sys.setlocale(category = "LC_ALL", locale = "en_US.UTF-8") #美式英文
## [1] "en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/zh_CN.UTF-8"
Sys.setlocale(category = "LC_ALL", locale = "Zh_TW.UTF-8") #繁体中文
## [1] "Zh_TW.UTF-8/Zh_TW.UTF-8/Zh_TW.UTF-8/C/Zh_TW.UTF-8/zh_CN.UTF-8"
Sys.setlocale(category = "LC_ALL", locale = "zh_CN.UTF-8") #简体中文
## [1] "zh_CN.UTF-8/zh_CN.UTF-8/zh_CN.UTF-8/C/zh_CN.UTF-8/zh_CN.UTF-8"
#查看目前的系统编码
Sys.getlocale() #zh_CN.UTF-8/
## [1] "zh_CN.UTF-8/zh_CN.UTF-8/zh_CN.UTF-8/C/zh_CN.UTF-8/zh_CN.UTF-8"
#载入showtext套件
library(showtext)
## 载入需要的程辑包:sysfonts
## 载入需要的程辑包:showtextdb
#使绘图物件中的中文文字能正确呈现
showtext_auto(enable = TRUE)
library(sjlabelled)
TCS2015sc <- read_spss("TCS2015sc.sav")
## Converting atomic to factors. Please wait...
names(TCS2015sc)
## [1] "ID" "strata" "A1" "A2.year" "A2.age"
## [6] "age_strata" "A7" "A8" "B1a" "B1b"
## [11] "B2" "C1a" "C1b.1" "C1b.2" "C3"
## [16] "C4a" "C4b.1" "C4b.2" "D1a" "D1b.1"
## [21] "D1b.2" "E1" "E2.1" "E2.2" "F6"
## [26] "F7.1" "F7.2" "G1.1.A" "G1.1.B" "G1.1.C"
## [31] "G2.1" "G2.2" "G2.3" "G2.4" "G2.5"
## [36] "G2.6" "G2.7" "G4.1" "G4.2" "G4.3.1"
## [41] "G4.3.2" "G5.1" "G5.2" "G5.3" "G5.4"
## [46] "H1" "H2" "H3" "H4.1" "H4.2"
## [51] "H4.3" "H4.4" "H4.5" "I1" "I3.1"
## [56] "I3.2" "I3.3" "I3.4" "I3.5" "I3.6"
## [61] "I3.7" "I3.8" "I3.9" "I3.10" "I3.11"
## [66] "I3.12" "I3.13" "I3.14" "I3.88" "J1.1"
## [71] "J1.2" "J1.3" "J1.4" "J1.5" "J2.1"
## [76] "J2.2" "J2.3" "J2.4" "J2.5" "S1.1"
## [81] "S1.2" "S1.3" "S1.4" "S1.5" "S1.6"
## [86] "S1.7" "S1.8" "S1.9" "S1.10" "V1.1"
## [91] "V1.2" "V1.3" "V1.4" "V1.5" "W3"
## [96] "weight1" "W_Raking"
library(sjmisc)
frq(TCS2015sc$V1.1) #原始未加权
## V1.1. 整体而言,你对于你的生活满不满意 (x) <categorical>
## # total N=2002 valid N=2002 mean=2.78 sd=0.57
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------------
## 1 | 非常不满意 | 56 | 2.80 | 2.80 | 2.80
## 2 | 不满意 | 429 | 21.43 | 21.43 | 24.23
## 3 | 满意 | 1420 | 70.93 | 70.93 | 95.15
## 4 | 非常满意 | 97 | 4.85 | 4.85 | 100.00
## <NA> | <NA> | 0 | 0.00 | <NA> | <NA>
frq(TCS2015sc$V1.1, weights = TCS2015sc$weight1) #加权后
## V1.1. 整体而言,你对于你的生活满不满意 (xw) <categorical>
## # total N=2001 valid N=2001 mean=2.79 sd=0.57
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------------
## 1 | 非常不满意 | 55 | 2.75 | 2.75 | 2.75
## 2 | 不满意 | 420 | 20.99 | 20.99 | 23.74
## 3 | 满意 | 1420 | 70.96 | 70.96 | 94.70
## 4 | 非常满意 | 106 | 5.30 | 5.30 | 100.00
## <NA> | <NA> | 0 | 0.00 | <NA> | <NA>
frq(TCS2015sc$V1.1, sort.frq = c("asc")) #升幂(原始未加权)
## V1.1. 整体而言,你对于你的生活满不满意 (x) <categorical>
## # total N=2002 valid N=2002 mean=2.78 sd=0.57
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------------
## 1 | 非常不满意 | 56 | 2.80 | 2.80 | 2.80
## 4 | 非常满意 | 97 | 4.85 | 4.85 | 7.64
## 2 | 不满意 | 429 | 21.43 | 21.43 | 29.07
## 3 | 满意 | 1420 | 70.93 | 70.93 | 100.00
## <NA> | <NA> | 0 | 0.00 | <NA> | <NA>
frq(TCS2015sc$V1.1, sort.frq = c("asc"),
weights = TCS2015sc$weight1) #升幂(加权后)
## V1.1. 整体而言,你对于你的生活满不满意 (xw) <categorical>
## # total N=2001 valid N=2001 mean=2.79 sd=0.57
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------------
## 1 | 非常不满意 | 55 | 2.75 | 2.75 | 2.75
## 4 | 非常满意 | 106 | 5.30 | 5.30 | 8.05
## 2 | 不满意 | 420 | 20.99 | 20.99 | 29.04
## 3 | 满意 | 1420 | 70.96 | 70.96 | 100.00
## <NA> | <NA> | 0 | 0.00 | <NA> | <NA>
frq(TCS2015sc$V1.1, sort.frq = c("desc")) #降幂(原始未加权)
## V1.1. 整体而言,你对于你的生活满不满意 (x) <categorical>
## # total N=2002 valid N=2002 mean=2.78 sd=0.57
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------------
## 3 | 满意 | 1420 | 70.93 | 70.93 | 70.93
## 2 | 不满意 | 429 | 21.43 | 21.43 | 92.36
## 4 | 非常满意 | 97 | 4.85 | 4.85 | 97.20
## 1 | 非常不满意 | 56 | 2.80 | 2.80 | 100.00
## <NA> | <NA> | 0 | 0.00 | <NA> | <NA>
frq(TCS2015sc$V1.1, sort.frq = c("desc"),
weights = TCS2015sc$weight1) #降幂(加权后)
## V1.1. 整体而言,你对于你的生活满不满意 (xw) <categorical>
## # total N=2001 valid N=2001 mean=2.79 sd=0.57
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------------
## 3 | 满意 | 1420 | 70.96 | 70.96 | 70.96
## 2 | 不满意 | 420 | 20.99 | 20.99 | 91.95
## 4 | 非常满意 | 106 | 5.30 | 5.30 | 97.25
## 1 | 非常不满意 | 55 | 2.75 | 2.75 | 100.00
## <NA> | <NA> | 0 | 0.00 | <NA> | <NA>
library(sjPlot)
## #refugeeswelcome
plot_frq(TCS2015sc$V1.1,type = "bar") #原始未加权
plot_frq(TCS2015sc$V1.1,type = "bar", weight.by = TCS2015sc$weight1)#加权后
library(sjmisc)
frq(TCS2015sc$V1.1, weights = TCS2015sc$weight1) #呈現频数分布(加权后)
## V1.1. 整体而言,你对于你的生活满不满意 (xw) <categorical>
## # total N=2001 valid N=2001 mean=2.79 sd=0.57
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------------
## 1 | 非常不满意 | 55 | 2.75 | 2.75 | 2.75
## 2 | 不满意 | 420 | 20.99 | 20.99 | 23.74
## 3 | 满意 | 1420 | 70.96 | 70.96 | 94.70
## 4 | 非常满意 | 106 | 5.30 | 5.30 | 100.00
## <NA> | <NA> | 0 | 0.00 | <NA> | <NA>
slice.pct <- c(2.8,21.0,71.0,5.3) #產生一個向量变量:slice.pct, 并依次输入数据(百分比)
col_c = c(1:4) #使用系统预设的颜色1,颜色2,颜色3,颜色4
pie(slice.pct, main = "Pie Chart 园饼图%", #加上标题
labels = c("非常不满意 2.8%", "不满意 21.0%", "满意 71.0%", "非常满意 5.3%"),
col = col_c) #加上颜色与说明的pie图
library(sjmisc)
find_var(TCS2015sc, "最重要的问题")
## col.nr var.name var.label
## 1 55 I3.1 I3. 请问你认为哪一项是当前最重要的问题?(经济)
## 2 56 I3.2 I3. 请问你认为哪一项是当前最重要的问题?(两岸关系)
## 3 57 I3.3 I3. 请问你认为哪一项是当前最重要的问题?(教育)
## 4 58 I3.4 I3. 请问你认为哪一项是当前最重要的问题?(医疗)
## 5 59 I3.5 I3. 请问你认为哪一项是当前最重要的问题?(治安)
## 6 60 I3.6 I3. 请问你认为哪一项是当前最重要的问题?(环保)
## 7 61 I3.7 I3. 请问你认为哪一项是当前最重要的问题?(司法)
## 8 62 I3.8 I3. 请问你认为哪一项是当前最重要的问题?(社会伦理与价值)
## 9 63 I3.9 I3. 请问你认为哪一项是当前最重要的问题?(地方建设)
## 10 64 I3.10 I3. 请问你认为哪一项是当前最重要的问题?(国家认同)
## 11 65 I3.11 I3. 请问你认为哪一项是当前最重要的问题?(食品安全)
## 12 66 I3.12 I3. 请问你认为哪一项是当前最重要的问题?(薪资所得)
## 13 67 I3.13 I3. 请问你认为哪一项是当前最重要的问题?(水土保持)
## 14 68 I3.14 I3. 请问你认为哪一项是当前最重要的问题?(政党对立)
## 15 69 I3.88 I3. 请问你认为哪一项是当前最重要的问题?(其他)
#I3.1~I3.14, I3.88+I3.88.a
library(sjmisc)
frq(TCS2015sc, I3.1:I3.14, I3.88, weights = TCS2015sc$weight1) #加权后
## I3. 请问你认为哪一项是当前最重要的问题?(经济) (I3.1) <categorical>
## # total N=1192 valid N=1192 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## -----------------------------------------------
## 1 | 經濟 | 1192 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(两岸关系) (I3.2) <categorical>
## # total N=319 valid N=319 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## -------------------------------------------------
## 1 | 兩岸關係 | 319 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(教育) (I3.3) <categorical>
## # total N=650 valid N=650 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------
## 1 | 教育 | 650 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(医疗) (I3.4) <categorical>
## # total N=225 valid N=225 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------
## 1 | 醫療 | 225 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(治安) (I3.5) <categorical>
## # total N=381 valid N=381 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------
## 1 | 治安 | 381 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(环保) (I3.6) <categorical>
## # total N=197 valid N=197 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------
## 1 | 環保 | 197 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(司法) (I3.7) <categorical>
## # total N=236 valid N=236 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ----------------------------------------------
## 1 | 司法 | 236 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(社会伦理与价值) (I3.8) <categorical>
## # total N=272 valid N=272 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## -------------------------------------------------------
## 1 | 社會倫理與價值 | 272 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(地方建设) (I3.9) <categorical>
## # total N=94 valid N=94 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ------------------------------------------------
## 1 | 地方建設 | 94 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(国家认同) (I3.10) <categorical>
## # total N=168 valid N=168 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## -------------------------------------------------
## 1 | 國家認同 | 168 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(食品安全) (I3.11) <categorical>
## # total N=891 valid N=891 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## -------------------------------------------------
## 1 | 食品安全 | 891 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(薪资所得) (I3.12) <categorical>
## # total N=497 valid N=497 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## -------------------------------------------------
## 1 | 薪資所得 | 497 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(水土保持) (I3.13) <categorical>
## # total N=71 valid N=71 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ------------------------------------------------
## 1 | 水土保持 | 71 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(政党对立) (I3.14) <categorical>
## # total N=374 valid N=374 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## -------------------------------------------------
## 1 | 政黨對立 | 374 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
##
## I3. 请问你认为哪一项是当前最重要的问题?(其他) (I3.88) <categorical>
## # total N=31 valid N=31 mean=1.00 sd=0.00
##
## Value | Label | N | Raw % | Valid % | Cum. %
## ---------------------------------------------
## 1 | 其他 | 31 | 100 | 100 | 100
## <NA> | <NA> | 0 | 0 | <NA> | <NA>
1192 + 319 + 650 + 225 + 381 + 197 + 236 + 272 + 94 + 168 + 891 + 497 + 71 + 374 + 31
## [1] 5598
mydata <- data.frame(
x1 = c(1192, 319, 650, 225, 381, 197, 236, 272, 94, 168, 891, 497, 71, 371, 31),
n = c(2002,2002,2002,2002,2002,2002,2002,2002,2002,2002,2002,2002,2002,2002,2002),
r = c(5598,5598,5598,5598,5598,5598,5598,5598,5598,5598,5598,5598,5598,5598,5598)
)
library(dplyr)
##
## 载入程辑包:'dplyr'
## The following object is masked from 'package:sjlabelled':
##
## as_label
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
mydata1 <- mutate(mydata, percent.cases = (x1/n)*100)
mydata1
## x1 n r percent.cases
## 1 1192 2002 5598 59.540460
## 2 319 2002 5598 15.934066
## 3 650 2002 5598 32.467532
## 4 225 2002 5598 11.238761
## 5 381 2002 5598 19.030969
## 6 197 2002 5598 9.840160
## 7 236 2002 5598 11.788212
## 8 272 2002 5598 13.586414
## 9 94 2002 5598 4.695305
## 10 168 2002 5598 8.391608
## 11 891 2002 5598 44.505495
## 12 497 2002 5598 24.825175
## 13 71 2002 5598 3.546454
## 14 371 2002 5598 18.531469
## 15 31 2002 5598 1.548452
mydata2 <- mutate(mydata, percent.responses = (x1/r)*100)
mydata2
## x1 n r percent.responses
## 1 1192 2002 5598 21.2933190
## 2 319 2002 5598 5.6984637
## 3 650 2002 5598 11.6112897
## 4 225 2002 5598 4.0192926
## 5 381 2002 5598 6.8060021
## 6 197 2002 5598 3.5191140
## 7 236 2002 5598 4.2157914
## 8 272 2002 5598 4.8588782
## 9 94 2002 5598 1.6791711
## 10 168 2002 5598 3.0010718
## 11 891 2002 5598 15.9163987
## 12 497 2002 5598 8.8781708
## 13 71 2002 5598 1.2683101
## 14 371 2002 5598 6.6273669
## 15 31 2002 5598 0.5537692
#"G4.2. 请问你一周会使用社交媒体几天?"
frq(TCS2015sc$G4.2) #频数分布(原始未加权)
## G4.2. 请问你一周会使用社交媒体几天? (x) <numeric>
## # total N=2002 valid N=1260 mean=6.02 sd=1.94
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0.50 | 23 | 1.15 | 1.83 | 1.83
## 1.00 | 50 | 2.50 | 3.97 | 5.79
## 1.50 | 12 | 0.60 | 0.95 | 6.75
## 2.00 | 56 | 2.80 | 4.44 | 11.19
## 2.50 | 8 | 0.40 | 0.63 | 11.83
## 3.00 | 47 | 2.35 | 3.73 | 15.56
## 3.50 | 11 | 0.55 | 0.87 | 16.43
## 4.00 | 16 | 0.80 | 1.27 | 17.70
## 4.50 | 4 | 0.20 | 0.32 | 18.02
## 5.00 | 46 | 2.30 | 3.65 | 21.67
## 5.50 | 4 | 0.20 | 0.32 | 21.98
## 6.00 | 13 | 0.65 | 1.03 | 23.02
## 6.50 | 5 | 0.25 | 0.40 | 23.41
## 7.00 | 965 | 48.20 | 76.59 | 100.00
## <NA> | 742 | 37.06 | <NA> | <NA>
frq(TCS2015sc$G4.2, weights = TCS2015sc$weight1) #频数分布(加权后)
## G4.2. 请问你一周会使用社交媒体几天? (xw) <numeric>
## # total N=1293 valid N=1293 mean=6.07 sd=1.91
##
## Value | N | Raw % | Valid % | Cum. %
## ---------------------------------------
## 0.50 | 23 | 1.78 | 1.78 | 1.78
## 1.00 | 47 | 3.63 | 3.63 | 5.41
## 1.50 | 12 | 0.93 | 0.93 | 6.34
## 2.00 | 56 | 4.33 | 4.33 | 10.67
## 2.50 | 8 | 0.62 | 0.62 | 11.29
## 3.00 | 45 | 3.48 | 3.48 | 14.77
## 3.50 | 11 | 0.85 | 0.85 | 15.62
## 4.00 | 16 | 1.24 | 1.24 | 16.86
## 4.50 | 3 | 0.23 | 0.23 | 17.09
## 5.00 | 46 | 3.56 | 3.56 | 20.65
## 5.50 | 5 | 0.39 | 0.39 | 21.04
## 6.00 | 12 | 0.93 | 0.93 | 21.96
## 6.50 | 5 | 0.39 | 0.39 | 22.35
## 7.00 | 1004 | 77.65 | 77.65 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
median(TCS2015sc$G4.2,na.rm = TRUE)#中位数(原始未加权)
## [1] 7
library(sjstats)
weighted_median(TCS2015sc$G4.2, weights = TCS2015sc$weight1)#中位数(加权后)
## [1] 7
mean(TCS2015sc$G4.2,na.rm = TRUE) #平均数(原始未加权)
## [1] 6.024206
library(sjstats)
weighted_mean(TCS2015sc$G4.2, weights = TCS2015sc$weight1) #平均数(加权后)
## [1] 6.06746
sd1 <- sd(TCS2015sc$G4.2,na.rm = TRUE)
sd1 #标准差(原始未加权)
## [1] 1.944425
sd1^2 #方差(原始未加权)
## [1] 3.780788
library(sjstats)
sd2 <- weighted_sd(TCS2015sc$G4.2, weights = TCS2015sc$weight1)
sd2 #标准差(加权后)
## [1] 1.908817
sd2^2 #方差(加权后)
## [1] 3.643583
library(stats)
IQR(TCS2015sc$G4.2, na.rm = T)
## [1] 0
library(sjmisc)
descr(TCS2015sc, G4.2) #原始未加权
##
## ## Basic descriptive statistics
##
## var type label n NA.prc mean sd se
## G4.2 numeric G4.2. 请问你一周会使用社交媒体几天? 1260 37.06 6.02 1.94 0.05
## md trimmed range iqr skew
## 7 6.5 6.5 (0.5-7) 0 -1.74
descr(TCS2015sc, G4.2, weights = TCS2015sc$weight1) #加权后
##
## ## Basic descriptive statistics
##
## var type label n NA.prc mean sd se
## G4.2 numeric G4.2. 请问你一周会使用社交媒体几天? 1295 37.06 6.07 1.91 0.05
## range iqr skew
## 6.5 (0.5-7) 0 -1.74
#install.packages(“RCPA3”)
library(RCPA3)
#0%, 25%, 50%, 75%分位数 (原始未加权)
wtd.quantile(TCS2015sc$G4.2)
## 5% 10% 25% 50% 75% 90% 95%
## 1 2 7 7 7 7 7
#0%, 25%, 50%, 75%分位数 (加权后)
wtd.quantile(TCS2015sc$G4.2, w= TCS2015sc$weight1)
## 5% 10% 25% 50% 75% 90% 95%
## 1 2 7 7 7 7 7
wtd.quantile(TCS2015sc$G4.2,
q=c(10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90))
## 10% 20% 25% 30% 40% 50% 60% 70% 75% 80% 90%
## 2 5 7 7 7 7 7 7 7 7 7
wtd.quantile(TCS2015sc$G4.2, w = TCS2015sc$weight1,
q=c(10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90))
## 10% 20% 25% 30% 40% 50% 60% 70% 75% 80% 90%
## 2 5 7 7 7 7 7 7 7 7 7
library(sjPlot)
### 直方图(原始未加权)
plot_frq(TCS2015sc$G4.2, type = "histogram", show.mean = T)
### 直方图(加权后)
plot_frq(TCS2015sc$G4.2, type = "histogram", show.mean = T,
weight.by = TCS2015sc$weight1)
library(sjPlot)
### 直方图+正态曲线图(原始未加权)
plot_frq(TCS2015sc$G4.2, type = "histogram", normal.curve = TRUE, show.mean = T)
#直方图+正态曲线图(加权后)
plot_frq(TCS2015sc$G4.2, type = "histogram",normal.curve = TRUE, show.mean = T,
weight.by = TCS2015sc$weight1)
library(sjPlot)
#直方图+密度图(原始未加权)
plot_frq(TCS2015sc$G4.2, type = "density")
## Warning: `stat(density)` was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## ℹ The deprecated feature was likely used in the sjPlot package.
## Please report the issue at <]8;;https://github.com/strengejacke/sjPlot/issueshttps://github.com/strengejacke/sjPlot/issues]8;;>.
#直方图+密度图(加权后)
plot_frq(TCS2015sc$G4.2, type = "density",weight.by = TCS2015sc$weight1)
library(sjPlot)
#折线图(原始未加权)
plot_frq(TCS2015sc$G4.2, type = "line", show.values = FALSE)
#折线图(加权后)
plot_frq(TCS2015sc$G4.2, type = "line", show.values = FALSE,
weight.by = TCS2015sc$weight1)
library(sjPlot)
#"H4.5. 請你就下列媒體所報導新聞的整體的表現給一個分數-網路"
#箱型图(原始未加权)
plot_frq(TCS2015sc$H4.5, type = "boxplot")
## Warning: The `fun.y` argument of `stat_summary()` is deprecated as of ggplot2 3.3.0.
## ℹ Please use the `fun` argument instead.
## ℹ The deprecated feature was likely used in the sjPlot package.
## Please report the issue at <]8;;https://github.com/strengejacke/sjPlot/issueshttps://github.com/strengejacke/sjPlot/issues]8;;>.
#箱型图(加权后)
plot_frq(TCS2015sc$H4.5, type = "boxplot", weight.by = TCS2015sc$weight1)
library(sjPlot)
#"H4.5. 請你就下列媒體所報導新聞的整體的表現給一個分數-網路"
### 小提琴图(原始未加权)
plot_frq(TCS2015sc$H4.5, type = "violin")
### 箱型图(加权后)
plot_frq(TCS2015sc$H4.5, type = "violin", weight.by = TCS2015sc$weight1)
此处将本章所使用到的R套件与函数摘录如下表,供学习者快速查阅。
套件 | 函数 | 说明 |
---|---|---|
base | pie() | 绘制基本饼图 |
data.frame() | 制作数据框 | |
mean() | 平均数 | |
median() | 中位数 | |
sd() | 方差 | |
stats | IQR() | 四分位距 |
dplyr | mutate() | 制造新变量 |
sjmisc | frq() | 呈现频数分布表 |
find_var() | 寻找特定变量 | |
decr() | 描述统计(含四分位距) | |
sjstats | weighted_mean() | 加权后平均数 |
weighted_median() | 加权后中位数 | |
weighted_sd() | 加权后方差 | |
sjPlot | plot_frq(,type=bar) | 条形图 |
plot_frq(,type=histogram) | 直方图 | |
plot_frq(,type=line) | 折线图 | |
plot_frq(,type=boxplot) | 箱型图 | |
plot_frq(,type=violin) | 小提琴图 |