# Mindanao State University
# General Santos City

# Introduction to R base commands
# Prepared by: Rojan Jhay A. Hamboy
# March 20, 2023

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] 
##  [1]  1.9766174  0.6709881  1.2429795  0.7410721  2.4338327  3.0202006
##  [7]  4.5593031  1.2700915  5.6380822  4.1924030  2.7809554 -0.1768700
## [13] -1.5817130  1.7259320 -1.3830634  1.9906991  1.5457988  1.8829988
## [19]  2.2068663  3.7536789
data[1:300]
##   [1]  1.976617362  0.670988067  1.242979487  0.741072143  2.433832716
##   [6]  3.020200627  4.559303076  1.270091488  5.638082214  4.192403034
##  [11]  2.780955446 -0.176869975 -1.581712961  1.725931989 -1.383063428
##  [16]  1.990699091  1.545798840  1.882998845  2.206866279  3.753678859
##  [21]  2.363297107  1.903721155 -0.020098036  0.889416741  2.038250565
##  [26]  0.442052580  3.192859009  2.501764462 -0.362962523  3.396479836
##  [31]  0.901289033  1.560184945 -0.832020841  0.533137504  2.014772472
##  [36]  2.522295810  2.202612031  3.907271237  0.001123262  2.520042121
##  [41]  0.482188646  1.620107494 -0.400629769  1.958789791  0.266400674
##  [46]  1.666526703 -0.978888572  1.029098988  4.041514259  2.666540793
##  [51]  3.650832179  3.393345244  1.995707959  5.462257139  3.054928581
##  [56]  3.344569548  0.974159113  2.074534435  0.210467076  2.137184548
##  [61]  2.506474398  1.211363437  1.472968580  2.824038473  3.488725374
##  [66] -0.729981585  4.716855924  1.718651714  2.605032366  2.952269675
##  [71]  1.711370785 -1.162529638  3.168650888  0.719341689  2.349809325
##  [76]  1.829048566  0.969257455  4.880601235  0.976557295  3.109209225
##  [81]  3.020156565  3.422054558  2.867584176  1.585028987  5.447690119
##  [86]  1.876037638  2.871322227  1.303053570  1.476137731  0.842436537
##  [91] -0.474229248  1.826193552  2.763112917  2.202893043  1.620577162
##  [96]  1.795560938  2.280072996  3.092332098  0.696928196  2.553011744
## [101]  3.541394832  3.843657343  0.784073999  2.192373140  2.810254395
## [106]  0.449158167  0.123485436  3.857810497  0.058930049  3.060489237
## [111]  2.170080877 -1.562683408  1.506824350  1.589287564 -0.812413552
## [116]  1.537370071  1.634001133  1.861454967  3.084969832  4.914140369
## [121]  0.911010508  4.005425420  0.584041790  1.001652833  0.677558582
## [126]  2.486102641 -1.497672074  1.192994366  0.141683915  1.541273063
## [131]  1.288461759  0.274541019  0.557936989  1.727693080  1.190469143
## [136]  3.292739837 -1.887048236  0.870453300  0.219411159  2.176145419
## [141]  2.395473606  2.045367794 -0.353850142  0.436044405  1.160303065
## [146]  4.679335628  3.539333060  2.843565645  2.328320232  1.408630676
## [151]  1.933464130  0.981716978  2.732416899  2.423610668  3.047915492
## [156]  4.025859749  3.336482903  2.698367958  1.157936170  0.937058148
## [161]  4.794463312  1.540255940  2.468962515  2.678214207  3.828976576
## [166]  0.344407437  0.948892946 -0.266944325  4.121880670  1.117708305
## [171]  3.462374928  0.268726695  1.185849314  2.858741555  1.265013499
## [176]  3.657304947  3.784699312 -0.688949751  4.458078498  1.484585712
## [181]  0.770270341  3.526701809  3.070972583  2.815454367  5.110781559
## [186]  2.399897123  2.500560139  0.660944854  2.041185131 -0.020306234
## [191]  0.625904135  2.944821625  5.749059197  1.978435525  3.500612481
## [196]  2.101764146  2.029814218  2.530082326  3.183376148  1.169875044
## [201]  2.097932499  7.755732852  1.587844335 -0.044705178  3.301611428
## [206]  2.848025935  0.933225307  1.793448077  4.667222000 -0.092719758
## [211]  2.203564868  0.971901990  2.032482565 -2.123263334  0.839470349
## [216]  2.411131379  3.430008363 -0.808656988  2.645613305 -0.459363358
## [221]  3.830918898  2.635959896  2.722722241  2.392796822  0.166973446
## [226]  2.668052648  3.141655082  3.099140372  1.738794209  1.748873313
## [231]  1.329228440  2.352330981  0.403789017  1.750226768  2.667225067
## [236]  1.412862092  2.922582679  1.956311634  2.632479004  4.016981226
## [241]  2.609356842  3.533669424  1.576290443  3.731828047  4.332033201
## [246]  2.559063290  4.343874024  3.513310501  4.298154094  3.977061413
## [251]  1.208098750 -0.449342482  0.705985032  0.910425553  0.687063792
## [256]  1.773056518  3.530037728 -0.413006784  3.189051980  3.609606893
## [261]  1.498851371 -0.267408615  1.177157684 -0.830001174  1.554200108
## [266]  1.971736897  2.749220764  3.978258969  5.463662791  3.500235366
## [271]  4.134503001  2.216758794  3.780618247  0.641513780  3.425413217
## [276]  0.204882101 -0.427520941  2.885177316  4.956966104  2.497274952
## [281]  0.515655959  3.959921003  2.882175247  3.200648952  5.246681878
## [286]  1.043981168  3.023883702  3.863060954  1.680383463  1.315715163
## [291]  3.714709256  1.631085233  1.348643302  2.022016180  1.802528742
## [296]  2.093597043  6.251665927  0.508324052  1.122790042  0.279416236
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.74650432 -2.64042112 -2.53433791 -2.42825471 -2.32217151 -2.21608830
##   [7] -2.11000510 -2.00392189 -1.89783869 -1.79175549 -1.68567228 -1.57958908
##  [13] -1.47350588 -1.36742267 -1.26133947 -1.15525626 -1.04917306 -0.94308986
##  [19] -0.83700665 -0.73092345 -0.62484025 -0.51875704 -0.41267384 -0.30659063
##  [25] -0.20050743 -0.09442423  0.01165898  0.11774218  0.22382538  0.32990859
##  [31]  0.43599179  0.54207500  0.64815820  0.75424140  0.86032461  0.96640781
##  [37]  1.07249101  1.17857422  1.28465742  1.39074063  1.49682383  1.60290703
##  [43]  1.70899024  1.81507344  1.92115665  2.02723985  2.13332305  2.23940626
##  [49]  2.34548946  2.45157266  2.55765587  2.66373907  2.76982228  2.87590548
##  [55]  2.98198868  3.08807189  3.19415509  3.30023829  3.40632150  3.51240470
##  [61]  3.61848791  3.72457111  3.83065431  3.93673752  4.04282072  4.14890392
##  [67]  4.25498713  4.36107033  4.46715354  4.57323674  4.67931994  4.78540315
##  [73]  4.89148635  4.99756955  5.10365276  5.20973596  5.31581917  5.42190237
##  [79]  5.52798557  5.63406878  5.74015198  5.84623518  5.95231839  6.05840159
##  [85]  6.16448480  6.27056800  6.37665120  6.48273441  6.58881761  6.69490081
##  [91]  6.80098402  6.90706722  7.01315043  7.11923363  7.22531683  7.33140004
##  [97]  7.43748324  7.54356644  7.64964965  7.75573285
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -2.746504  1.008342  1.955394  3.001230  7.755733
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  1.976617362  0.670988067  1.242979487  0.741072143  2.433832716
##    [6]  3.020200627  4.559303076  1.270091488  5.638082214  4.192403034
##   [11]  2.780955446 -0.176869975 -1.581712961  1.725931989 -1.383063428
##   [16]  1.990699091  1.545798840  1.882998845  2.206866279  3.753678859
##   [21]  2.363297107  1.903721155 -0.020098036  0.889416741  2.038250565
##   [26]  0.442052580  3.192859009  2.501764462 -0.362962523  3.396479836
##   [31]  0.901289033  1.560184945 -0.832020841  0.533137504  2.014772472
##   [36]  2.522295810  2.202612031  3.907271237  0.001123262  2.520042121
##   [41]  0.482188646  1.620107494 -0.400629769  1.958789791  0.266400674
##   [46]  1.666526703 -0.978888572  1.029098988  4.041514259  2.666540793
##   [51]  3.650832179  3.393345244  1.995707959  5.462257139  3.054928581
##   [56]  3.344569548  0.974159113  2.074534435  0.210467076  2.137184548
##   [61]  2.506474398  1.211363437  1.472968580  2.824038473  3.488725374
##   [66] -0.729981585  4.716855924  1.718651714  2.605032366  2.952269675
##   [71]  1.711370785 -1.162529638  3.168650888  0.719341689  2.349809325
##   [76]  1.829048566  0.969257455  4.880601235  0.976557295  3.109209225
##   [81]  3.020156565  3.422054558  2.867584176  1.585028987  5.447690119
##   [86]  1.876037638  2.871322227  1.303053570  1.476137731  0.842436537
##   [91] -0.474229248  1.826193552  2.763112917  2.202893043  1.620577162
##   [96]  1.795560938  2.280072996  3.092332098  0.696928196  2.553011744
##  [101]  3.541394832  3.843657343  0.784073999  2.192373140  2.810254395
##  [106]  0.449158167  0.123485436  3.857810497  0.058930049  3.060489237
##  [111]  2.170080877 -1.562683408  1.506824350  1.589287564 -0.812413552
##  [116]  1.537370071  1.634001133  1.861454967  3.084969832  4.914140369
##  [121]  0.911010508  4.005425420  0.584041790  1.001652833  0.677558582
##  [126]  2.486102641 -1.497672074  1.192994366  0.141683915  1.541273063
##  [131]  1.288461759  0.274541019  0.557936989  1.727693080  1.190469143
##  [136]  3.292739837 -1.887048236  0.870453300  0.219411159  2.176145419
##  [141]  2.395473606  2.045367794 -0.353850142  0.436044405  1.160303065
##  [146]  4.679335628  3.539333060  2.843565645  2.328320232  1.408630676
##  [151]  1.933464130  0.981716978  2.732416899  2.423610668  3.047915492
##  [156]  4.025859749  3.336482903  2.698367958  1.157936170  0.937058148
##  [161]  4.794463312  1.540255940  2.468962515  2.678214207  3.828976576
##  [166]  0.344407437  0.948892946 -0.266944325  4.121880670  1.117708305
##  [171]  3.462374928  0.268726695  1.185849314  2.858741555  1.265013499
##  [176]  3.657304947  3.784699312 -0.688949751  4.458078498  1.484585712
##  [181]  0.770270341  3.526701809  3.070972583  2.815454367  5.110781559
##  [186]  2.399897123  2.500560139  0.660944854  2.041185131 -0.020306234
##  [191]  0.625904135  2.944821625  5.749059197  1.978435525  3.500612481
##  [196]  2.101764146  2.029814218  2.530082326  3.183376148  1.169875044
##  [201]  2.097932499  7.755732852  1.587844335 -0.044705178  3.301611428
##  [206]  2.848025935  0.933225307  1.793448077  4.667222000 -0.092719758
##  [211]  2.203564868  0.971901990  2.032482565 -2.123263334  0.839470349
##  [216]  2.411131379  3.430008363 -0.808656988  2.645613305 -0.459363358
##  [221]  3.830918898  2.635959896  2.722722241  2.392796822  0.166973446
##  [226]  2.668052648  3.141655082  3.099140372  1.738794209  1.748873313
##  [231]  1.329228440  2.352330981  0.403789017  1.750226768  2.667225067
##  [236]  1.412862092  2.922582679  1.956311634  2.632479004  4.016981226
##  [241]  2.609356842  3.533669424  1.576290443  3.731828047  4.332033201
##  [246]  2.559063290  4.343874024  3.513310501  4.298154094  3.977061413
##  [251]  1.208098750 -0.449342482  0.705985032  0.910425553  0.687063792
##  [256]  1.773056518  3.530037728 -0.413006784  3.189051980  3.609606893
##  [261]  1.498851371 -0.267408615  1.177157684 -0.830001174  1.554200108
##  [266]  1.971736897  2.749220764  3.978258969  5.463662791  3.500235366
##  [271]  4.134503001  2.216758794  3.780618247  0.641513780  3.425413217
##  [276]  0.204882101 -0.427520941  2.885177316  4.956966104  2.497274952
##  [281]  0.515655959  3.959921003  2.882175247  3.200648952  5.246681878
##  [286]  1.043981168  3.023883702  3.863060954  1.680383463  1.315715163
##  [291]  3.714709256  1.631085233  1.348643302  2.022016180  1.802528742
##  [296]  2.093597043  6.251665927  0.508324052  1.122790042  0.279416236
##  [301]  0.610249743  1.145459886  2.458470799  1.878471258  1.616553073
##  [306]  1.632691836  4.804131016  2.756519358  2.253545782  4.634940123
##  [311]  3.866973384  0.709894622  3.265464242  0.448731486 -1.087827496
##  [316] -0.121103595  2.059935779  3.215095787  2.569544019  1.220910014
##  [321] -0.836538487  0.479549671  4.612323515  2.049255362  2.706574074
##  [326]  3.269029940  4.671845354 -0.171636693  2.872663106  2.371885505
##  [331]  1.069925153  0.334481352  2.542659637  1.427358145  3.932583503
##  [336]  2.110724422  2.710410116  1.362667141  0.929646302  3.271076607
##  [341]  4.503430910  2.650839377  1.600873889 -1.039801205  0.970040471
##  [346]  3.578301293 -0.414411958  2.454020524  0.850870445  3.606511957
##  [351]  2.342283301  2.228009449  2.059140189  3.603009700  0.677350525
##  [356]  1.997826203  3.935554418  1.656260980  0.558930890  1.784118480
##  [361]  1.879082934  0.814648326  1.293570374  3.895061461  1.293918785
##  [366]  2.459049905  4.437457029  2.500296566  1.218823334  1.960034648
##  [371]  4.746506392  1.547538100  2.404800720  1.987981545 -0.036285524
##  [376]  2.938973528  2.590749274  1.422596555  1.068997307  1.162386480
##  [381]  3.144835300  3.235915217  3.679393375  0.438648334  0.265728947
##  [386]  3.879237407  1.914038353  1.173051582  0.564817074  1.724694886
##  [391]  1.932185358  1.745654261  3.428402739  3.193905366  3.672660414
##  [396]  0.889342103  4.106056911  5.380552104  3.422744277 -1.923633911
##  [401]  1.881708547  1.793207057  4.435919200 -2.176846414 -0.173326581
##  [406]  1.631015037  2.039363312  1.220724727  2.381798542  1.811152944
##  [411]  0.973894788  1.181405213  3.994420893  2.591137530  3.315452801
##  [416]  4.637500918  3.808405853  2.221924259  3.962852596  1.744928668
##  [421]  3.811805734 -0.790134142  2.391022610  1.740368256  2.383400041
##  [426]  1.882999639  2.399154614  0.698922517  3.949417048  0.220656901
##  [431]  2.247351336  2.985746370  2.234990070  0.556788469  0.855573606
##  [436]  0.513793778  1.457893689  1.755485177  2.113279442  0.590594497
##  [441]  2.024996567  0.298994260  2.554196294  1.986647032  0.832390955
##  [446]  1.583614203 -0.061522791  3.658173457  2.778975857  3.061485306
##  [451]  5.239969307  3.473252894  0.806469164  2.182617170  0.452925295
##  [456] -1.822415485  4.650750040  1.418011981  2.372248765  3.281415218
##  [461]  5.022859272  2.362850420  3.595401228  2.427802140  0.973104767
##  [466] -2.153852347  2.474633653  2.271079043 -1.176968044  1.962274431
##  [471]  1.414469224  5.075928308  2.020066085  5.276896008 -0.073952302
##  [476]  0.437378716  1.332446435 -0.181569941  2.989406236 -0.088769521
##  [481]  1.378226574  0.864260738  0.222503278  0.559698982  2.176002444
##  [486]  0.287337690  3.121365178  0.627107699  1.999855303  5.148240692
##  [491]  1.439529946  3.361596701  3.440176764  3.984591889  1.547085708
##  [496]  2.571004441  1.398925777  2.174288779  3.122201383  1.598899996
##  [501]  2.301751945  0.772914721  0.957413827  5.191176485  2.112569121
##  [506]  0.349733751 -0.244006517  1.074691313  3.929997502 -0.001855612
##  [511]  3.964119442  2.364334683  2.435805525  5.746543444  3.177966307
##  [516] -0.561831664  2.491088889  3.919835464  1.749051756  3.304033342
##  [521]  2.158095731  1.104492323  0.927591092  1.985420508  3.619592591
##  [526]  3.305623223  2.069272624  0.428615190  3.170013038  1.768446336
##  [531]  1.888911645  0.733496502  3.465846986  1.587666958 -0.044375717
##  [536]  2.458701257  2.137626770  5.243730078  2.402503739  1.249316312
##  [541]  2.693456122  2.685552550  1.112382194 -2.047649872  3.831901482
##  [546]  1.357499246 -0.153386253  2.591922739  3.001861872  3.744671351
##  [551]  2.448233606  4.020262157  2.082916828  3.446343286  3.450998337
##  [556]  2.337912157  1.460824599  2.068118409  4.060409733  3.317161634
##  [561]  2.619578942  4.229865681  1.340314843  3.009834702  1.416148665
##  [566]  2.259145928  0.192389752  3.680447672 -0.088791286  3.880409583
##  [571]  3.628138549  1.730507118  4.485334382  1.165204738  0.583864897
##  [576] -0.127209437  2.006352962 -0.118295813  1.721009835  2.620562351
##  [581] -0.929019033  1.672555745  1.483210998  3.258539621  4.976818376
##  [586]  1.793223261  1.895117157  1.451887906  2.481185432  3.112930023
##  [591]  3.447057937  4.109540055  0.768942187  2.205713542  1.994434429
##  [596]  2.500387962  1.070976063  3.449294025  1.844158639  1.389838414
##  [601] -0.051752899  5.095842976  5.811650364  2.517769417  1.853795754
##  [606]  5.207146869  1.271152407  0.728117418  2.187625723  1.052877588
##  [611]  2.504915993  0.680526990 -0.338287319  2.114996965  1.576194779
##  [616]  2.297622590  0.450108578  2.285636419  4.246300942  3.996370924
##  [621]  2.161816395  1.022125074  1.212492809  1.655660359  2.196201102
##  [626] -0.154344866  3.298715998  1.161902791  2.491202940  0.821697307
##  [631]  2.775192038  0.691580597  2.085499736  1.937572346  4.546776048
##  [636]  4.020489142  1.398946603  1.971837268  1.437748334  3.890869135
##  [641]  2.936626011  1.915677109 -0.374315854  2.515823950  2.969922450
##  [646]  1.080799984  1.653635174  3.647858342  2.716362060  2.450313123
##  [651]  1.616522268  3.369835499 -1.753310271 -0.137306454  1.623655164
##  [656]  2.278815268 -0.225163641  1.924630355  2.319095762  3.436182345
##  [661]  1.130066509  0.120002255  1.255300533  1.056525652  4.001855487
##  [666]  4.267797390  0.996657616 -0.229379673  0.803035960  1.794376731
##  [671]  2.570667299  1.423459732  1.706801277  1.771626383  0.978163470
##  [676]  1.739782252  4.852679240  3.177488438 -0.561492456  1.238532336
##  [681]  5.428839735  1.259379969  1.947724167  1.537504896  1.150095293
##  [686]  1.873886406  0.848517916  2.414932535  1.887093299  1.147410594
##  [691] -2.746504321  0.544000343  5.187108013  1.229136447  1.202100718
##  [696]  1.591079299 -1.813179753  3.120703608  1.031499867  4.187839770
##  [701]  2.271641755  3.968688447 -0.838825698  2.149898663  0.752744225
##  [706] -1.224482404 -0.131721243  1.941029835  0.676105952  0.372236525
##  [711]  4.831338716  1.647713755  1.686603360  5.373926795  1.297446671
##  [716]  0.477673619  2.838152716  1.375935326  1.388019174  0.456676520
##  [721]  2.978967628  2.344018450 -1.330895129  1.020111520  2.233027368
##  [726]  0.403862874  3.720806532  2.401739176  1.112869660  1.668041804
##  [731]  1.561614735  2.810963363  2.594925020  3.197676369  0.011631354
##  [736]  4.151048206  3.639926282  4.229961731  1.846983358  4.229946931
##  [741]  2.732162983  3.121785532 -0.481460671  7.378712660  0.881119394
##  [746]  3.764159888  1.259122563  1.265239778  1.956938178  1.159550560
##  [751]  3.109696658  2.692295051  0.572475887  2.946409037  0.134606458
##  [756]  0.665492989  3.876476582  1.964842388  1.524752210  3.228934855
##  [761]  3.533603441  2.703420446  2.882802754  2.242034815  2.383614980
##  [766]  1.298533723  1.592276661  1.125352383 -1.311322654  2.046118893
##  [771]  2.572664207  2.516481278  0.582069163  1.441730257  1.045042314
##  [776]  0.972702001  2.573654513  2.204360606 -0.582690963  2.118806770
##  [781]  1.943990996  5.790411097  3.913404611  1.499285672  0.109062289
##  [786]  2.359646986  1.622486789  4.265189018  2.688447024 -0.903264473
##  [791]  4.483657673  2.769854147  0.278663688  0.406903596  0.107399686
##  [796] -0.860794521  0.479045105  0.976183132  2.262910142  1.921286141
##  [801]  0.652034293  3.845995384  0.418943078  3.088944116  3.963440919
##  [806]  0.161140369  0.824834309  2.578733879  1.949265115  2.407461854
##  [811]  2.857520596  1.829055027  2.991353630  2.470945549  1.132021106
##  [816]  3.838770457  1.007632703  2.442620876 -1.135282987  1.954475529
##  [821]  1.460091441  2.057166996  1.049603155  1.546615594  2.976200514
##  [826]  1.771398615  1.618977869  1.914747796  4.601141947  3.262035387
##  [831]  1.504205782  0.516337666  0.122412778  1.705507870  2.083159298
##  [836]  0.640783852  3.019380475  1.889086214  4.595367118  1.916682672
##  [841]  1.758569715  1.825042744  3.145884248  0.240632002 -0.391262254
##  [846]  1.106755053  3.971462660  2.481832431  2.546708870  2.600126784
##  [851]  2.800102977  2.839642313  1.322452656  2.882282709  3.505581934
##  [856]  1.764827567  3.915144662  2.134765014  2.302115238  5.301141849
##  [861]  2.381907465  0.986660129  1.813936393  1.367151519  0.077494859
##  [866]  2.444003510  1.528023396  4.284761067  2.140957791  1.584185868
##  [871]  0.591906511  1.382588699  1.513750324  1.740716459  2.155978945
##  [876]  2.363685662  1.680479773  0.333493110  2.614318220  0.925148188
##  [881]  0.318764681  3.862203067  0.513261964  0.627861947  2.619197911
##  [886]  0.033762945  3.103459191  1.206883289  1.369231524  3.502876260
##  [891]  1.247090338  3.282579007  2.638046123  3.606252192  2.096842027
##  [896]  1.450861563  3.575236979  1.401992360  1.559096439  5.133925937
##  [901]  0.399072756  5.162801476  3.228892000 -1.491500342  1.009591745
##  [906]  1.757481070  4.489003160  1.285772587  3.468641299  0.576815910
##  [911]  3.355253500  1.493676327  0.039420994  2.472891732  1.287528586
##  [916] -1.692583951  5.756476602  1.468814672  0.256225930  0.855821366
##  [921]  2.692625227  2.280050312  1.633647478  3.909022504  3.109420758
##  [926]  1.404969746  1.008578142  4.498159507  2.966660404  0.411239642
##  [931]  1.646287381  2.916355018  1.489809265  3.210915573  3.630659739
##  [936]  5.512560235  2.943333967 -1.406343948  0.333742307  1.509523569
##  [941]  2.152010943  2.216497984  1.501464243 -0.168068778  2.752427842
##  [946] -0.056920508  1.368255728 -0.131893254  3.971201287  0.951147193
##  [951]  1.219003668  4.075730512  0.876520440  0.775975018  2.627326843
##  [956]  0.602546340  2.634855194  3.110844750  0.928947503 -0.326426127
##  [961]  1.685900840  3.871003390  1.979338503  1.230467996  3.277814985
##  [966]  2.916408056  0.289189272  2.355836274  2.995791526  1.680102791
##  [971]  1.541393807  0.816808339  2.239554063  0.724497672  0.140383366
##  [976]  1.277607652  4.324151915  1.449575210  1.677734275  4.523531790
##  [981]  1.085785372  2.627356148 -1.180127422  2.691760069  1.193685383
##  [986]  3.400717749  3.414771923  3.681231404  0.912465824  3.219902647
##  [991]  3.001019595  1.425852021  1.689879466  1.898037636 -0.077930340
##  [996]  0.083530150  0.878068680  3.794159831  0.891511559  0.223889493
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -2.747   1.008   1.955   2.004   3.001   7.756
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.3917306
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.561106
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.3917306
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [217] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [253] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [469]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [697]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [793] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -1.5817130 -1.3830634 -0.8320208 -0.4006298 -0.9788886 -0.7299816
##  [7] -1.1625296 -0.4742292 -1.5626834 -0.8124136 -1.4976721 -1.8870482
## [13] -0.6889498 -2.1232633 -0.8086570 -0.4593634 -0.4493425 -0.4130068
## [19] -0.8300012 -0.4275209 -1.0878275 -0.8365385 -1.0398012 -0.4144120
## [25] -1.9236339 -2.1768464 -0.7901341 -1.8224155 -2.1538523 -1.1769680
## [31] -0.5618317 -2.0476499 -0.9290190 -1.7533103 -0.5614925 -2.7465043
## [37] -1.8131798 -0.8388257 -1.2244824 -1.3308951 -0.4814607 -1.3113227
## [43] -0.5826910 -0.9032645 -0.8607945 -1.1352830 -1.4915003 -1.6925840
## [49] -1.4063439 -1.1801274
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.561106
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [325] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [457]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [901] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE])
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.638082 5.462257 4.716856 4.880601 5.447690 4.914140 4.679336 4.794463
##  [9] 5.110782 5.749059 7.755733 4.667222 5.463663 4.956966 5.246682 6.251666
## [17] 4.804131 4.634940 4.612324 4.671845 4.746506 5.380552 4.637501 5.239969
## [25] 4.650750 5.022859 5.075928 5.276896 5.148241 5.191176 5.746543 5.243730
## [33] 4.976818 5.095843 5.811650 5.207147 4.852679 5.428840 5.187108 4.831339
## [41] 5.373927 7.378713 5.790411 4.601142 4.595367 5.301142 5.133926 5.162801
## [49] 5.756477 5.512560