# Mindanao State University
# General Santos City
# Introduction to R base commands
# Submitted by: Rowie Grace N. Peralta
# Student
# Math Department
# March 19, 2023
# Processing of continuous data
# Using random number generators

# Exercise 1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1] -0.3123544  0.4930629 -0.7623690  3.4500248  1.9098662  2.7164918
##  [7]  0.4348409  0.4968167  4.1992548  1.4525360  0.5650917  1.6645873
## [13]  4.6903418 -0.4937189  3.9618147  0.6627362  3.3292193  0.4897911
## [19] -1.3951732  4.0251840
data[1:300] # display the first 300 elements
##   [1] -0.31235436  0.49306294 -0.76236900  3.45002482  1.90986620  2.71649176
##   [7]  0.43484089  0.49681671  4.19925484  1.45253601  0.56509171  1.66458726
##  [13]  4.69034175 -0.49371892  3.96181473  0.66273622  3.32921927  0.48979109
##  [19] -1.39517317  4.02518402  2.10851902  0.43508622  0.58451272  2.81221402
##  [25]  1.74073098  0.90285397  0.99877128  5.47342809  3.06005265  2.91914948
##  [31]  2.51033651  4.23270551  0.79195601  1.56169147  3.06504841  4.90586448
##  [37]  0.55401557  5.56768011  0.36388336  1.70880632  2.68494011  1.46143426
##  [43]  2.23793950  2.69578121  5.51831745  2.62932551  5.93488292  2.02686234
##  [49]  0.78284817  4.15754741  2.35582269  1.76503175  1.00797529  1.55432677
##  [55]  5.65361514  0.94685764  2.53461845  2.09554806  3.39533338  0.40356312
##  [61]  0.19617720  2.75163457  5.11969441  3.08750310  0.35683202  0.73208431
##  [67]  3.59137642  4.52562621  3.81593049  7.73893799  2.56110629  2.58036508
##  [73]  1.21973390  0.17464891  1.80602845  1.43108301  1.09693068  3.84380328
##  [79]  1.92346016  2.93284458  4.32110862  0.49978062  2.25148965  1.88455587
##  [85]  3.20607620  2.96457541  2.58679389  0.53557635  3.10906815  2.85981731
##  [91]  1.68499425  2.23331609  2.24515169  1.88266977  2.43079560  3.32018709
##  [97]  2.84796142  4.10239226  1.92476942  3.27106769  2.63243254 -0.39152982
## [103]  5.24571323  1.01820946  1.37329342  1.70964884  1.41281249  0.29868010
## [109]  1.84759607  1.76018873  1.89627267  0.47842078 -1.91312499  4.48381075
## [115]  1.83164127  2.40870445  2.40850937  1.91056548  0.93878597  0.59790137
## [121]  3.34111373  1.28208921  5.42428563  4.12026100  2.07154027  2.51322863
## [127]  2.09683950 -0.82522766  3.63933731  2.69584970  4.10229818  1.23787849
## [133]  0.71868212  1.82274218  2.65208972  0.89937791  3.51325870  1.24885672
## [139] -1.99677976  1.79799694  2.57575475  2.86404968  3.54585035  0.40989904
## [145]  1.84649678  1.56402265  2.78180995  1.06839690  3.55859795  1.30669223
## [151]  2.09893424  0.37892726  2.43306240  0.27784480  4.14039409  1.66352705
## [157]  1.77511876  2.15760184  1.46612692  0.43942230  3.40330455  2.91032097
## [163]  3.71234625  3.55497561 -0.27397970 -2.19292633  3.14077125  2.59288208
## [169]  2.16724400 -0.88842142  2.55783301  1.97962005  4.39106491  2.73188632
## [175] -1.87043369  0.68410641  3.25205339  4.29273670  4.50481051  2.95094902
## [181]  1.93072584  0.24101226  4.18292753  0.86761232  3.02315219  4.03925219
## [187]  2.42824139  2.99196769  3.92564271  2.22118134  3.89960890  1.42919610
## [193]  1.51863921  0.20946220  0.02611920  2.86534740  1.15156826  1.66193514
## [199]  2.08878086  3.54288145  1.21512119  1.23426374  1.04044798  0.48357481
## [205]  3.38739523 -1.04402836  2.34863333  0.38335247  2.91979639  0.10453731
## [211] -0.66193732  1.78656593 -0.57263588  0.01871248  3.75410186  0.58493267
## [217] -0.84582999  1.36210270  4.40378940 -0.99327927  1.51305133  1.34511668
## [223]  2.86978023  5.58633337  3.20858997  0.22709993  3.61092625  2.24620131
## [229]  1.44208334  4.33339034  2.22256174  2.63004255  3.72757190  3.13721796
## [235]  1.97135317  2.44573620  3.32702633  1.81626633  0.62937532  2.45879310
## [241]  0.12029438  1.90029227  2.49664849  1.49786024  2.44801672  0.70121562
## [247]  2.71281471  1.36053980  0.68445263  2.34158725  3.27229010  1.72608190
## [253]  4.32576098 -0.09934341  0.59778497  1.12395128  2.34193674  0.88667939
## [259] -0.38805469  2.97522184  6.04880530  2.86042238  1.59557883 -1.69169207
## [265]  3.21132398  2.79400369  0.96366146  2.52591704  0.80713195  2.26873387
## [271] -1.47137640 -0.38488044  3.16148585  1.27986008  0.12919649  3.06493207
## [277]  0.48938898  4.05310370  1.90480342  1.73346367  1.63047027  1.61490796
## [283]  0.12351050  0.16103759  1.05313129  2.93230237  1.37368138  1.53863032
## [289]  1.18351225  0.33458667  3.31710116  1.46629440  4.65037630  2.64592698
## [295]  1.96626053  1.52712231  2.71835287  2.37512517  2.35729767  3.44317647
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?

# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.19292633 -2.09260447 -1.99228261 -1.89196075 -1.79163889 -1.69131702
##   [7] -1.59099516 -1.49067330 -1.39035144 -1.29002958 -1.18970772 -1.08938585
##  [13] -0.98906399 -0.88874213 -0.78842027 -0.68809841 -0.58777655 -0.48745468
##  [19] -0.38713282 -0.28681096 -0.18648910 -0.08616724  0.01415463  0.11447649
##  [25]  0.21479835  0.31512021  0.41544207  0.51576393  0.61608580  0.71640766
##  [31]  0.81672952  0.91705138  1.01737324  1.11769511  1.21801697  1.31833883
##  [37]  1.41866069  1.51898255  1.61930441  1.71962628  1.81994814  1.92027000
##  [43]  2.02059186  2.12091372  2.22123559  2.32155745  2.42187931  2.52220117
##  [49]  2.62252303  2.72284489  2.82316676  2.92348862  3.02381048  3.12413234
##  [55]  3.22445420  3.32477607  3.42509793  3.52541979  3.62574165  3.72606351
##  [61]  3.82638537  3.92670724  4.02702910  4.12735096  4.22767282  4.32799468
##  [67]  4.42831655  4.52863841  4.62896027  4.72928213  4.82960399  4.92992585
##  [73]  5.03024772  5.13056958  5.23089144  5.33121330  5.43153516  5.53185703
##  [79]  5.63217889  5.73250075  5.83282261  5.93314447  6.03346633  6.13378820
##  [85]  6.23411006  6.33443192  6.43475378  6.53507564  6.63539751  6.73571937
##  [91]  6.83604123  6.93636309  7.03668495  7.13700681  7.23732868  7.33765054
##  [97]  7.43797240  7.53829426  7.63861612  7.73893799
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3

# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##         0%        25%        50%        75%       100% 
## -2.1929263  0.9587842  2.0390303  3.0422586  7.7389380
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1] -0.312354361  0.493062940 -0.762369004  3.450024825  1.909866196
##    [6]  2.716491761  0.434840889  0.496816713  4.199254835  1.452536014
##   [11]  0.565091711  1.664587260  4.690341754 -0.493718925  3.961814731
##   [16]  0.662736225  3.329219270  0.489791092 -1.395173174  4.025184023
##   [21]  2.108519016  0.435086218  0.584512725  2.812214018  1.740730977
##   [26]  0.902853969  0.998771279  5.473428093  3.060052649  2.919149483
##   [31]  2.510336505  4.232705511  0.791956010  1.561691469  3.065048408
##   [36]  4.905864482  0.554015572  5.567680107  0.363883362  1.708806322
##   [41]  2.684940109  1.461434255  2.237939498  2.695781208  5.518317451
##   [46]  2.629325514  5.934882920  2.026862342  0.782848169  4.157547410
##   [51]  2.355822690  1.765031754  1.007975290  1.554326769  5.653615143
##   [56]  0.946857644  2.534618448  2.095548055  3.395333379  0.403563125
##   [61]  0.196177197  2.751634568  5.119694413  3.087503100  0.356832016
##   [66]  0.732084310  3.591376424  4.525626214  3.815930495  7.738937985
##   [71]  2.561106285  2.580365085  1.219733898  0.174648910  1.806028446
##   [76]  1.431083013  1.096930680  3.843803280  1.923460158  2.932844578
##   [81]  4.321108625  0.499780619  2.251489654  1.884555873  3.206076203
##   [86]  2.964575405  2.586793894  0.535576352  3.109068151  2.859817315
##   [91]  1.684994255  2.233316087  2.245151695  1.882669772  2.430795604
##   [96]  3.320187094  2.847961418  4.102392263  1.924769421  3.271067685
##  [101]  2.632432540 -0.391529824  5.245713227  1.018209461  1.373293425
##  [106]  1.709648840  1.412812495  0.298680100  1.847596068  1.760188728
##  [111]  1.896272670  0.478420778 -1.913124985  4.483810752  1.831641274
##  [116]  2.408704455  2.408509367  1.910565480  0.938785974  0.597901365
##  [121]  3.341113725  1.282089213  5.424285634  4.120261005  2.071540272
##  [126]  2.513228630  2.096839499 -0.825227657  3.639337309  2.695849701
##  [131]  4.102298176  1.237878490  0.718682124  1.822742177  2.652089716
##  [136]  0.899377914  3.513258697  1.248856724 -1.996779757  1.797996936
##  [141]  2.575754748  2.864049678  3.545850348  0.409899035  1.846496779
##  [146]  1.564022652  2.781809949  1.068396896  3.558597947  1.306692225
##  [151]  2.098934243  0.378927258  2.433062395  0.277844798  4.140394091
##  [156]  1.663527052  1.775118759  2.157601837  1.466126917  0.439422303
##  [161]  3.403304550  2.910320969  3.712346246  3.554975614 -0.273979703
##  [166] -2.192926334  3.140771252  2.592882078  2.167244005 -0.888421418
##  [171]  2.557833009  1.979620055  4.391064909  2.731886322 -1.870433688
##  [176]  0.684106408  3.252053395  4.292736703  4.504810506  2.950949016
##  [181]  1.930725844  0.241012262  4.182927530  0.867612319  3.023152186
##  [186]  4.039252187  2.428241389  2.991967694  3.925642715  2.221181342
##  [191]  3.899608900  1.429196097  1.518639206  0.209462200  0.026119199
##  [196]  2.865347398  1.151568257  1.661935141  2.088780857  3.542881452
##  [201]  1.215121192  1.234263737  1.040447976  0.483574813  3.387395234
##  [206] -1.044028357  2.348633327  0.383352475  2.919796393  0.104537307
##  [211] -0.661937315  1.786565928 -0.572635884  0.018712484  3.754101860
##  [216]  0.584932671 -0.845829990  1.362102699  4.403789401 -0.993279268
##  [221]  1.513051325  1.345116677  2.869780227  5.586333374  3.208589970
##  [226]  0.227099933  3.610926251  2.246201310  1.442083340  4.333390338
##  [231]  2.222561743  2.630042548  3.727571903  3.137217965  1.971353168
##  [236]  2.445736200  3.327026335  1.816266334  0.629375320  2.458793097
##  [241]  0.120294380  1.900292271  2.496648492  1.497860241  2.448016720
##  [246]  0.701215617  2.712814713  1.360539800  0.684452631  2.341587246
##  [251]  3.272290095  1.726081902  4.325760978 -0.099343414  0.597784966
##  [256]  1.123951281  2.341936739  0.886679395 -0.388054687  2.975221845
##  [261]  6.048805304  2.860422377  1.595578834 -1.691692072  3.211323982
##  [266]  2.794003687  0.963661461  2.525917043  0.807131952  2.268733869
##  [271] -1.471376399 -0.384880435  3.161485850  1.279860077  0.129196486
##  [276]  3.064932067  0.489388985  4.053103699  1.904803422  1.733463668
##  [281]  1.630470272  1.614907958  0.123510496  0.161037587  1.053131286
##  [286]  2.932302373  1.373681383  1.538630317  1.183512250  0.334586673
##  [291]  3.317101158  1.466294400  4.650376302  2.645926978  1.966260531
##  [296]  1.527122310  2.718352872  2.375125169  2.357297671  3.443176466
##  [301]  1.385091973  3.728782644  0.697034381  1.893892039  3.588817167
##  [306]  3.131206208  2.426282883 -0.828777621  0.496818770  0.206770496
##  [311]  2.054844073  4.097534563  1.196266178  3.555081410  1.200173139
##  [316]  2.020828008  3.834562216 -1.621360572  2.217791992  2.293169058
##  [321] -0.244502961  1.314412185  1.745146557  2.521914899  1.181168868
##  [326]  0.291539281  1.574504190  1.367658393  2.189743570  2.040463686
##  [331]  0.925699101  2.084686930 -0.888003079  2.995228310  1.349707352
##  [336] -0.116500248  1.232379682  0.520263668  3.688829001 -1.137789867
##  [341]  4.756902513  3.420658532 -0.287851129  2.802537149  1.103928307
##  [346]  3.592766741  3.219725148  1.162348654  0.025562977  3.452325130
##  [351]  2.814485647  4.004029448  2.708224983  3.505650146  3.588291965
##  [356]  1.053509326  0.805815340  0.742834748  3.421841078  1.240830401
##  [361]  3.581662699  2.163796915  0.462306569  2.658849063  3.037116323
##  [366]  2.893243744  2.937957381  3.317257665 -0.087675091  1.209335872
##  [371]  3.654101640  0.942781337  2.222902723  1.071727864  0.870887044
##  [376]  0.342828726 -1.087133833  4.522450008  4.039470198 -1.607981536
##  [381] -0.267250349  3.636975203  2.167715627  2.076368355  1.829522349
##  [386]  5.964324907  0.941203926  1.117076984  2.358395355  3.517297818
##  [391]  3.690545645  4.325766874  2.372300200  1.397793067  1.800983811
##  [396]  2.857565895  2.131236844  4.549664687  0.992151665  1.618825540
##  [401]  0.730095150  2.152864463  2.613521447  1.054067176  3.119855674
##  [406] -1.480618403 -0.086041630  0.973269879  2.418407978 -0.313117780
##  [411]  2.811550285  4.193958306  2.993278976  1.014551018  3.865751092
##  [416] -0.112132532  2.294770611  4.194098599  3.240028729 -1.603550963
##  [421]  5.030126752  2.554864571  2.883070006  0.151645732 -0.267316171
##  [426]  3.067903790 -0.095475182  0.640803389  4.437373630  4.763520549
##  [431]  4.068726007  0.026024401  2.311341259  1.921957726  1.949982103
##  [436]  1.876217695  2.892081836  3.060698611  1.903543902  2.582679669
##  [441]  3.902053381  0.077091970  2.818496813 -0.786516249  3.762980258
##  [446]  0.820529882  3.549968579  1.582082343  3.613006506  3.048407642
##  [451]  2.428725074  2.938256554  6.401679423  4.411950144  2.239735521
##  [456]  4.791427261  2.133076960  2.936148354  1.283950713  1.662815581
##  [461]  5.559222864  4.926927495  0.689375790  1.395649205  1.240946037
##  [466]  1.379682269  2.282736049  1.634883176  0.993923264  2.202886142
##  [471]  2.956171236  1.462037273  2.938722748  0.599453207  1.692720344
##  [476] -0.563664426  1.370523845  2.488234701  2.295625880  2.490112175
##  [481]  0.594404684  3.859061474 -0.004010949  3.531480778  2.849753795
##  [486]  2.084443735  4.077778694  1.157068627  2.068182670  3.360189083
##  [491]  2.680097038  1.865351837  2.116829851  2.415325164  0.953271813
##  [496] -0.262459951  2.183629931  3.913267826  0.491008848  1.970320746
##  [501]  0.311381792  1.259730421  4.747051209  3.166620026  0.473477908
##  [506]  2.658191723  0.484112306  2.131298907  3.157931849  2.975162945
##  [511] -0.041434102 -0.992974317  1.053484921  3.222256539  2.037596898
##  [516]  3.214121104  2.320420813  3.037948393  5.881979461  1.705823047
##  [521]  0.985885874  1.865179333  4.304455215  2.908678395  2.050268652
##  [526]  0.683408787  2.019464118  3.185325491  0.552318474  3.511093874
##  [531]  0.521302296  1.427559890  0.115854684  1.970968319  2.676023920
##  [536]  3.746831049  2.937966656  0.818388411  1.128232513  2.398798468
##  [541]  0.995894958  1.716132857  3.095973581  1.787496419  3.023567475
##  [546]  2.392222121  5.389647104  2.410987738  3.245538177  2.126616709
##  [551]  1.547667262  1.942160855 -0.124205000  4.837683075  0.942210000
##  [556]  0.439163762  1.306686125  0.328761595  1.611256004 -0.194163729
##  [561] -0.745437940 -0.263660079  1.829419888  4.285118620  0.837450963
##  [566]  2.042660825  2.956645846  3.966150395  2.429144168  2.477471471
##  [571]  0.400155938  1.561664599  4.737096355  1.351667010  1.491614078
##  [576]  1.042819563  0.525216705  0.096528740  2.430628618  4.168506165
##  [581]  2.404913511  2.587863786  1.840510199  2.489583303  2.253193927
##  [586]  4.470140690  3.141187754  1.861474041  1.492795374  3.270740473
##  [591] -0.082150356  1.305117763  2.318586556  1.101474536  3.185761897
##  [596]  0.262083843  2.155816225  2.913088019  3.308173210  2.718026448
##  [601]  2.417339378  3.482976294  1.212809619  1.561616369  3.270881255
##  [606] -0.965498502  1.707052899  0.844432210  1.530877103  2.851786774
##  [611]  2.140497602 -1.793486700 -0.638020113  1.918719520  2.164564362
##  [616]  1.569963106  0.512965630  0.997941346  1.411953487  2.821942587
##  [621]  1.145544375  3.028055735  1.139625376  4.044871884  3.316239460
##  [626]  0.449538550  4.996823856  1.404427692  1.465641077  1.451083027
##  [631]  1.818079983  3.679039740  1.189837423  3.874752647  2.723266305
##  [636]  1.874750314  2.683926613  4.790379126 -0.274525729  3.599659202
##  [641]  1.383678915  3.355711439  1.768458011  1.339615549  0.417118402
##  [646]  1.315764803 -0.230161026  0.545377088 -0.306341431  1.329254881
##  [651]  4.229801569  1.895406397  2.703017903  2.582639258  1.791132692
##  [656]  0.246280357 -0.575615567  0.156291221  2.649891254  1.136706232
##  [661]  0.021684780  4.469810807  3.176109490  2.350114437  1.664235849
##  [666]  3.034625730  1.453848358  3.059595570  3.325954570  2.415684225
##  [671]  4.052789188  2.340250422  3.222962118 -0.018395209  1.552643862
##  [676]  1.921912643 -0.763943806  3.200976136  3.027271730  0.318943322
##  [681]  1.544569026  1.851082869  4.774719920  1.853884597  3.158750187
##  [686]  1.832288177  1.944723820  3.041485172 -1.099663754  2.530439526
##  [691]  0.584934998  2.271071293 -0.061089772  4.574206442  4.289959926
##  [696]  2.832622074  1.472405034  2.396466129  3.323869361  1.150020568
##  [701]  4.031368394 -1.201082753  3.553457215  1.420257980  1.986229686
##  [706]  2.584837074  2.848298261  1.503547316 -0.247062718  2.063152431
##  [711]  0.783642707 -0.225913301  1.596851720  2.469306957  2.813376613
##  [716]  1.345156610  2.902852886  2.914952843 -0.211286809  2.748430283
##  [721]  3.137845532  0.214184205  2.897771973  3.055085176 -1.908621146
##  [726] -0.070356233  0.782608762  2.330831868  2.237053974  2.432853597
##  [731]  2.225639527  1.948680749  2.972230343  0.130051973  3.488023131
##  [736]  0.618971293  3.792600850  3.956008837  4.183053064  0.725007280
##  [741]  3.630142632  2.516515290  3.439326627  3.721879704  0.400144320
##  [746]  1.422407287  2.871593716  3.421528194  0.374534843  3.050150427
##  [751]  1.180992575  2.414451680  1.609897739  3.141024973  2.346117803
##  [756] -0.615994301  0.689223795  0.575722885  5.039141418  2.214162581
##  [761] -1.782523880 -0.532952135 -0.653265079  1.510054026  0.698376349
##  [766]  0.880536006  4.226984338  2.587167321  0.808382580  3.438176121
##  [771] -0.730953572  4.477876789  1.927163156  4.698672603 -1.658494781
##  [776]  3.126105507  3.210915012  4.154637840  1.128048302  0.960621635
##  [781]  2.241420208 -1.270820386  1.703202748  2.841543446  3.714840844
##  [786]  1.319358270  3.154260395  1.572519701  0.760032185  2.558834729
##  [791]  3.035995448  0.610928850 -0.326629075  1.701504651  1.429788449
##  [796]  0.040632257  2.549855390  0.517285543 -0.888967289  0.401230596
##  [801]  0.596196356  2.679786971  1.969988934  3.052349513  2.032878058
##  [806]  1.146026024  0.452408944  2.311498499  4.108792310  0.442932500
##  [811]  2.295371684  3.153861444  0.950395474  2.121425234  0.491693074
##  [816]  3.902779403  0.538049095 -1.077517420  0.576182624  1.974140367
##  [821]  0.773827704  1.839898228 -0.644584269  2.298193651  3.105896651
##  [826]  4.864918247 -0.760313017 -1.010113865  0.973295714  4.334624684
##  [831]  3.026215735  2.715440781  3.276645425  1.212571534  2.551420197
##  [836]  1.813402158  2.790513749  1.558882928  1.944461883  1.260442347
##  [841]  2.745693552  1.939020873  2.844275328  0.730180191  1.348775075
##  [846]  5.745663623  2.245144692  2.558777198  4.627124486 -0.015532560
##  [851]  2.795359073  2.120955112  3.632548698  4.986960462  1.430611133
##  [856]  0.617241417  1.920251491  1.204644999 -1.119567248  1.950647375
##  [861]  0.435356635  0.537989450  3.428468714  1.206364598 -0.120103654
##  [866]  0.746598484  2.638652763  0.566668578  2.739015432  2.706841285
##  [871]  2.909142568  2.325566995  3.096184595  3.380659923  2.858667226
##  [876]  1.406072180  2.513030788 -0.730864343  5.113945127  1.639854302
##  [881]  2.064330276  2.707361839  3.992845574  2.316743073  1.199518013
##  [886]  2.647110490  1.662043396  2.080780213  3.861489963  1.558014071
##  [891]  1.653599366  3.093834100  4.158061832  2.207937148  3.126624892
##  [896]  2.102888759  3.449188843  0.780526789  3.620554141  1.451132105
##  [901]  4.977591492  3.395067242  4.442192612  3.465940029  3.660049742
##  [906]  2.078440254  4.742554996  2.617856771  0.128045880  1.351135567
##  [911]  2.297903817  2.162753900  2.718035270  2.903102651  3.962116869
##  [916]  1.007594760  2.274632112  0.277618977  1.722865372  1.185410858
##  [921]  3.637478292  2.524373566  2.454045863  0.003862589  0.576855617
##  [926]  0.479413426 -0.898026600  0.539342343 -0.355262120 -0.873319585
##  [931]  0.241678746 -0.463976087  1.390259139  3.354449714 -0.464657898
##  [936]  3.130330507 -0.562732988 -0.252867125  1.451837355  1.970761839
##  [941]  1.633495117  0.579132956  2.578242904  3.127837621  1.206261639
##  [946] -1.396465218 -0.511905064  1.794132836 -0.390015354  0.988449317
##  [951]  1.545017078  1.515964666  3.493210485  0.848367126  3.884144651
##  [956]  1.323584253  1.213422566  5.364221507  0.843370664  4.052321024
##  [961]  2.747094163  2.370852552  1.251385136  1.483512543 -0.595780959
##  [966]  2.128586712  3.045357708  2.280043653  1.200665258  5.184922423
##  [971]  1.296083335  2.748430511  3.044578787  2.580095337  3.269809991
##  [976]  0.845507263  2.041316020  3.946010730  3.333484438  3.286939955
##  [981]  4.589703791  2.817000186  0.831769982  2.309237228  3.227305518
##  [986]  1.169118298  1.171725276  0.967436932  4.845090025  2.457047768
##  [991] -0.139512388  3.863769628  4.676719038  1.746353423  4.610266297
##  [996]  0.905496931  0.145634838  4.125951723  3.719210765 -0.185033201
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.1929  0.9588  2.0390  2.0004  3.0423  7.7389
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.5727849
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data

quantile(data,prob = 0.95)
##      95% 
## 4.484861
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.5727849
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [169] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [217]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [613]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [757] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -0.7623690 -1.3951732 -1.9131250 -0.8252277 -1.9967798 -2.1929263
##  [7] -0.8884214 -1.8704337 -1.0440284 -0.6619373 -0.8458300 -0.9932793
## [13] -1.6916921 -1.4713764 -0.8287776 -1.6213606 -0.8880031 -1.1377899
## [19] -1.0871338 -1.6079815 -1.4806184 -1.6035510 -0.7865162 -0.9929743
## [25] -0.7454379 -0.9654985 -1.7934867 -0.6380201 -0.5756156 -0.7639438
## [31] -1.0996638 -1.2010828 -1.9086211 -0.6159943 -1.7825239 -0.6532651
## [37] -0.7309536 -1.6584948 -1.2708204 -0.8889673 -1.0775174 -0.6445843
## [43] -0.7603130 -1.0101139 -1.1195672 -0.7308643 -0.8980266 -0.8733196
## [49] -1.3964652 -0.5957810
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.484861
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [37] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
##  [457] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [853] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 4.690342 5.473428 4.905864 5.567680 5.518317 5.934883 5.653615 5.119694
##  [9] 4.525626 7.738938 5.245713 5.424286 4.504811 5.586333 6.048805 4.650376
## [17] 4.756903 4.522450 5.964325 4.549665 5.030127 4.763521 6.401679 4.791427
## [25] 5.559223 4.926927 4.747051 5.881979 5.389647 4.837683 4.737096 4.996824
## [33] 4.790379 4.774720 4.574206 5.039141 4.698673 4.864918 5.745664 4.627124
## [41] 4.986960 5.113945 4.977591 4.742555 5.364222 5.184922 4.589704 4.845090
## [49] 4.676719 4.610266