# Mindanao State University
# General Santos 

# Introduction to R base commands
# Prepared by: Prof. Carlito O. Daarol
# Faculty
# Math Department
# Submitted by: Jeshryl R. Sabang

# Processing of continuous data
# Using random number generators



# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command


data <- rnorm(1000,2,1.5) # 1 thousand values

length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  1.03208329  2.53583806  1.60119428 -1.21621192  2.06695395  2.35171756
##  [7]  1.92474216  0.48097444  3.25956074  2.40243075  2.14812670  2.14797927
## [13]  3.90697366  4.36212850  2.58790490  6.15408426 -0.01262737 -1.37295193
## [19]  2.82205901 -1.32059771
data[1:300] # display the first 300 elements
##   [1]  1.032083286  2.535838057  1.601194280 -1.216211915  2.066953955
##   [6]  2.351717557  1.924742163  0.480974445  3.259560737  2.402430750
##  [11]  2.148126700  2.147979273  3.906973662  4.362128502  2.587904900
##  [16]  6.154084257 -0.012627366 -1.372951928  2.822059006 -1.320597709
##  [21]  1.825324626  0.908474133  3.388603992  2.201739303  2.201936545
##  [26]  2.843383198 -0.188192931  0.016633437  1.820689855  5.023393950
##  [31]  3.188538809 -0.302732966  3.020999106  5.113728866  0.345181578
##  [36]  3.269750279  2.040707574  3.481917526  0.895165970  3.237599072
##  [41]  2.897967388  1.144009964  3.642858498  2.709113508  2.535409115
##  [46]  3.657916772  2.728584003  2.063453427  0.491746117  2.538787813
##  [51]  0.781705681  1.680620629 -0.171772829  2.808721675 -0.588882041
##  [56] -2.645512943  1.069628013  3.443603953  2.223628661  0.510383008
##  [61]  3.569621887  2.930821795  4.212399790  1.364570365 -0.095401125
##  [66]  4.437584127  2.070920951  2.168843045  3.607242352  0.189052463
##  [71]  1.248863620  2.933109392  1.014642099  3.020458876 -0.815996368
##  [76]  2.252713713  1.793552337  2.136776536  2.602298080  2.523182928
##  [81]  3.364208982  0.840105110  3.446899266  0.175425186  2.927437168
##  [86]  0.536146905  1.818691926  2.200209386  2.860852038  4.306657772
##  [91] -0.516261550  2.296234692  1.582792194  5.307391822 -0.515957901
##  [96]  2.219148006  3.129658516  4.541460834  2.781980545  1.470541873
## [101]  2.253763370  4.467628971  1.302349735  1.997879230  0.873749966
## [106]  1.857553714  2.135446100  1.024611807  2.290991012  2.996657261
## [111]  2.190938993  2.214534223  1.904437937  3.085952305 -1.275123003
## [116]  0.423698923  0.845003348 -1.825610529  4.571883194  2.824910392
## [121]  5.911009203  1.478665509  3.756911571 -0.911699338  1.469566306
## [126]  1.498801440  2.941481305  3.145422632  2.152376890  1.411882693
## [131]  1.100696889  2.044820651  2.878028647  0.824323561 -0.251528423
## [136]  2.659634307  4.467378702  1.424273459  4.351384296  1.146319399
## [141]  0.756368614  2.029843023  2.488592859  1.624735288  1.627819499
## [146]  1.424602901  3.727604184  2.217539290  2.468897176 -0.068050562
## [151]  1.400298828  2.032636316  4.440424480  1.648814914  2.208812959
## [156]  1.300315641  0.357289217  1.731150533  2.753100225  2.695332593
## [161]  2.760510129  0.772816984 -0.233638401  2.476855987  2.252191331
## [166]  2.527319577 -0.183188843  5.458323110  5.174280313  4.992610660
## [171] -1.085369229 -0.055460708  1.881821374  3.766117679 -0.192103845
## [176]  1.242437987  0.197650195  0.516902857  3.140149308  3.655551240
## [181]  3.470632047  1.125600067  1.777328043 -1.664710847  0.529720338
## [186]  1.800876998  3.531157081  2.475978882  3.229838925  2.924559935
## [191]  3.196871524  2.083371992  1.187614147  2.428529496  4.558903612
## [196]  4.428126811 -0.446683662  4.073917390  3.007190522  2.717757439
## [201]  3.200811307  1.906373153  2.809462982 -1.579459328  2.708936916
## [206] -0.185053820  0.897438518  2.104563928 -1.688302290  2.415662626
## [211]  3.475645541  2.671714876  2.255612223  2.586701257 -0.809012984
## [216]  1.155258493 -0.015280602  3.724501263  2.545186847  4.941078843
## [221]  4.572776780  2.058200820 -0.357640602  1.808786529  1.173422045
## [226]  3.035682221  0.714017328  1.038773648  2.499651504  0.722417078
## [231]  2.689521887 -1.059393914  0.271176350  2.225067009  0.091204829
## [236]  1.508350633 -0.442865175  1.245036995  2.884176379  2.359563851
## [241]  1.023003272  2.057650942  3.000424113  1.374315058  1.789705064
## [246]  0.559636348  2.086658529  1.940270447  1.971743270  0.254380378
## [251]  4.414734808  3.820031264  2.025307741  2.049154033  0.492038310
## [256]  2.222912605  2.063666919  3.239774761  1.670542371 -0.688692236
## [261]  2.310278012  0.653712715  3.219113815  2.594600007  0.870565808
## [266] -0.126940803  1.270050140 -1.019026110  1.090961157  1.643632598
## [271]  1.915692842  1.056004031  1.566610529  1.096060689  1.362077241
## [276]  0.972359284  5.011258627  2.041610483 -0.253416745  4.200394663
## [281]  1.648904703  4.121985040  2.607321494  2.160878899 -0.497923548
## [286]  3.315086720 -0.776347359 -0.569124876  1.867735758 -0.018212042
## [291] -0.360612787  3.119564194  1.868530871  0.535543771  2.608643141
## [296]  1.633546821  0.002257772  2.571922181  3.869511419  1.521830984
# Exer2: Draw histogram with one main title and different thickness


maintitle <- "Histogram and Density Plot"

hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title


subtitle <- "This is my second title"

maintitle <- paste0("Histogram and Density Plot \n",subtitle)

hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?





# Exer4: Draw histogram with main title and sub title


subtitle <- "This is my second title"

maintitle <- paste0("Histogram and Density Plot \n",subtitle)

hist(data, breaks=20,col="lightblue",main = maintitle)

# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)

norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)

lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title


subtitle <- "This is my second title"

maintitle <- paste0("Histogram and Density Plot \n",subtitle)

hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -3.137067e+00 -3.032499e+00 -2.927931e+00 -2.823363e+00 -2.718795e+00
##   [6] -2.614227e+00 -2.509659e+00 -2.405092e+00 -2.300524e+00 -2.195956e+00
##  [11] -2.091388e+00 -1.986820e+00 -1.882252e+00 -1.777684e+00 -1.673117e+00
##  [16] -1.568549e+00 -1.463981e+00 -1.359413e+00 -1.254845e+00 -1.150277e+00
##  [21] -1.045709e+00 -9.411415e-01 -8.365737e-01 -7.320058e-01 -6.274380e-01
##  [26] -5.228701e-01 -4.183022e-01 -3.137344e-01 -2.091665e-01 -1.045987e-01
##  [31] -3.081334e-05  1.045370e-01  2.091049e-01  3.136728e-01  4.182406e-01
##  [36]  5.228085e-01  6.273763e-01  7.319442e-01  8.365120e-01  9.410799e-01
##  [41]  1.045648e+00  1.150216e+00  1.254783e+00  1.359351e+00  1.463919e+00
##  [46]  1.568487e+00  1.673055e+00  1.777623e+00  1.882191e+00  1.986758e+00
##  [51]  2.091326e+00  2.195894e+00  2.300462e+00  2.405030e+00  2.509598e+00
##  [56]  2.614166e+00  2.718733e+00  2.823301e+00  2.927869e+00  3.032437e+00
##  [61]  3.137005e+00  3.241573e+00  3.346141e+00  3.450708e+00  3.555276e+00
##  [66]  3.659844e+00  3.764412e+00  3.868980e+00  3.973548e+00  4.078116e+00
##  [71]  4.182683e+00  4.287251e+00  4.391819e+00  4.496387e+00  4.600955e+00
##  [76]  4.705523e+00  4.810091e+00  4.914658e+00  5.019226e+00  5.123794e+00
##  [81]  5.228362e+00  5.332930e+00  5.437498e+00  5.542066e+00  5.646633e+00
##  [86]  5.751201e+00  5.855769e+00  5.960337e+00  6.064905e+00  6.169473e+00
##  [91]  6.274041e+00  6.378608e+00  6.483176e+00  6.587744e+00  6.692312e+00
##  [96]  6.796880e+00  6.901448e+00  7.006016e+00  7.110583e+00  7.215151e+00
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)

lines(x, norm_dist, col='violet',lwd=4)

abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)

Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -3.137067  1.008967  2.110855  3.074867  7.215151
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution


data
##    [1]  1.032083286  2.535838057  1.601194280 -1.216211915  2.066953955
##    [6]  2.351717557  1.924742163  0.480974445  3.259560737  2.402430750
##   [11]  2.148126700  2.147979273  3.906973662  4.362128502  2.587904900
##   [16]  6.154084257 -0.012627366 -1.372951928  2.822059006 -1.320597709
##   [21]  1.825324626  0.908474133  3.388603992  2.201739303  2.201936545
##   [26]  2.843383198 -0.188192931  0.016633437  1.820689855  5.023393950
##   [31]  3.188538809 -0.302732966  3.020999106  5.113728866  0.345181578
##   [36]  3.269750279  2.040707574  3.481917526  0.895165970  3.237599072
##   [41]  2.897967388  1.144009964  3.642858498  2.709113508  2.535409115
##   [46]  3.657916772  2.728584003  2.063453427  0.491746117  2.538787813
##   [51]  0.781705681  1.680620629 -0.171772829  2.808721675 -0.588882041
##   [56] -2.645512943  1.069628013  3.443603953  2.223628661  0.510383008
##   [61]  3.569621887  2.930821795  4.212399790  1.364570365 -0.095401125
##   [66]  4.437584127  2.070920951  2.168843045  3.607242352  0.189052463
##   [71]  1.248863620  2.933109392  1.014642099  3.020458876 -0.815996368
##   [76]  2.252713713  1.793552337  2.136776536  2.602298080  2.523182928
##   [81]  3.364208982  0.840105110  3.446899266  0.175425186  2.927437168
##   [86]  0.536146905  1.818691926  2.200209386  2.860852038  4.306657772
##   [91] -0.516261550  2.296234692  1.582792194  5.307391822 -0.515957901
##   [96]  2.219148006  3.129658516  4.541460834  2.781980545  1.470541873
##  [101]  2.253763370  4.467628971  1.302349735  1.997879230  0.873749966
##  [106]  1.857553714  2.135446100  1.024611807  2.290991012  2.996657261
##  [111]  2.190938993  2.214534223  1.904437937  3.085952305 -1.275123003
##  [116]  0.423698923  0.845003348 -1.825610529  4.571883194  2.824910392
##  [121]  5.911009203  1.478665509  3.756911571 -0.911699338  1.469566306
##  [126]  1.498801440  2.941481305  3.145422632  2.152376890  1.411882693
##  [131]  1.100696889  2.044820651  2.878028647  0.824323561 -0.251528423
##  [136]  2.659634307  4.467378702  1.424273459  4.351384296  1.146319399
##  [141]  0.756368614  2.029843023  2.488592859  1.624735288  1.627819499
##  [146]  1.424602901  3.727604184  2.217539290  2.468897176 -0.068050562
##  [151]  1.400298828  2.032636316  4.440424480  1.648814914  2.208812959
##  [156]  1.300315641  0.357289217  1.731150533  2.753100225  2.695332593
##  [161]  2.760510129  0.772816984 -0.233638401  2.476855987  2.252191331
##  [166]  2.527319577 -0.183188843  5.458323110  5.174280313  4.992610660
##  [171] -1.085369229 -0.055460708  1.881821374  3.766117679 -0.192103845
##  [176]  1.242437987  0.197650195  0.516902857  3.140149308  3.655551240
##  [181]  3.470632047  1.125600067  1.777328043 -1.664710847  0.529720338
##  [186]  1.800876998  3.531157081  2.475978882  3.229838925  2.924559935
##  [191]  3.196871524  2.083371992  1.187614147  2.428529496  4.558903612
##  [196]  4.428126811 -0.446683662  4.073917390  3.007190522  2.717757439
##  [201]  3.200811307  1.906373153  2.809462982 -1.579459328  2.708936916
##  [206] -0.185053820  0.897438518  2.104563928 -1.688302290  2.415662626
##  [211]  3.475645541  2.671714876  2.255612223  2.586701257 -0.809012984
##  [216]  1.155258493 -0.015280602  3.724501263  2.545186847  4.941078843
##  [221]  4.572776780  2.058200820 -0.357640602  1.808786529  1.173422045
##  [226]  3.035682221  0.714017328  1.038773648  2.499651504  0.722417078
##  [231]  2.689521887 -1.059393914  0.271176350  2.225067009  0.091204829
##  [236]  1.508350633 -0.442865175  1.245036995  2.884176379  2.359563851
##  [241]  1.023003272  2.057650942  3.000424113  1.374315058  1.789705064
##  [246]  0.559636348  2.086658529  1.940270447  1.971743270  0.254380378
##  [251]  4.414734808  3.820031264  2.025307741  2.049154033  0.492038310
##  [256]  2.222912605  2.063666919  3.239774761  1.670542371 -0.688692236
##  [261]  2.310278012  0.653712715  3.219113815  2.594600007  0.870565808
##  [266] -0.126940803  1.270050140 -1.019026110  1.090961157  1.643632598
##  [271]  1.915692842  1.056004031  1.566610529  1.096060689  1.362077241
##  [276]  0.972359284  5.011258627  2.041610483 -0.253416745  4.200394663
##  [281]  1.648904703  4.121985040  2.607321494  2.160878899 -0.497923548
##  [286]  3.315086720 -0.776347359 -0.569124876  1.867735758 -0.018212042
##  [291] -0.360612787  3.119564194  1.868530871  0.535543771  2.608643141
##  [296]  1.633546821  0.002257772  2.571922181  3.869511419  1.521830984
##  [301]  3.454847124  5.404142341  0.407222415  4.783830524  3.370739692
##  [306]  1.417138178  0.758505395  1.303667826 -0.408923543  3.538426285
##  [311]  2.238557889  2.716175168  2.315732788  3.946740822  3.506242731
##  [316]  2.137063659  0.113087248  3.199680961  5.233916668  2.579165390
##  [321]  1.735854914  3.232144573  1.691435823  1.776302723  4.396102727
##  [326]  0.917357995  4.347889849  4.480912002  0.028247494  3.301610376
##  [331]  4.088799530  2.861465570  2.125734046  0.872264073  2.444006244
##  [336]  2.961723571  1.748046394 -0.123583589  1.180220547  0.650642169
##  [341]  2.145563867  0.141541964  4.993235032 -0.135351649  2.238662704
##  [346]  1.017011889  4.105051375  2.448334609  1.894356114  2.895537985
##  [351]  2.382656041  0.441832163  1.928794341  1.315926976  0.189323880
##  [356]  2.151016385  1.752295316  2.260381205  4.046115589  3.538435138
##  [361]  0.796808287  3.013029438 -1.139546307  2.554657933  2.590971858
##  [366] -0.889812491  2.104077793  2.473430790  2.492272158 -0.104333351
##  [371]  1.062735927  5.894565696  0.818424262  2.501492228  4.011207450
##  [376] -0.455287752  0.128648474  1.717383994  1.845029988  1.730962943
##  [381]  0.673883131  2.036443492  0.586864911  1.349915240  3.082909554
##  [386]  2.138047926  1.353651255  4.320362131  4.572277394  3.269965736
##  [391]  4.123848383  4.272083763  2.522331415  1.980970736  4.737547782
##  [396]  2.987197779 -0.215655315  3.310501860  4.303378219  2.745489660
##  [401]  1.367893368  2.842033527  2.485518113  2.396168711  0.102197759
##  [406]  1.189658080  3.038801359  0.901224043  2.713532501  3.026318204
##  [411]  0.067598756  3.124942020  0.600367132  0.743838377  0.859633237
##  [416]  0.976568252  0.309796535  4.361047913  0.824556265  3.114213946
##  [421]  1.554325226  2.631580295  3.937128273  4.328262928  0.843330308
##  [426]  1.955906876  1.263561928 -0.200375470  3.678985826  1.452906090
##  [431]  1.340513356  1.790183888  0.910352829  1.782162574  0.320456406
##  [436]  4.073941022  1.502344796  1.396328751  3.298886039  4.647895369
##  [441]  2.320188254  2.607234731  1.340985245  2.785692560  4.606804199
##  [446]  0.070996821  0.651794127  3.145204126  1.645672180  3.352377188
##  [451]  1.983565086  1.315733031  2.801292007  2.109538666 -0.770383472
##  [456]  1.759728523  0.941845949 -2.089971819  0.534959075  3.178501599
##  [461]  3.556883946  1.108260122  1.497004685  2.358679373  0.861436931
##  [466]  1.833473593  3.285556337  2.239056174  4.531058626  0.392526721
##  [471]  2.404765373  2.836264455  1.993504538  0.420857306  3.697225739
##  [476]  2.015194563  0.159027644  3.028818950  2.225644329  0.904295803
##  [481]  1.870214987  0.637634499  2.808851200  3.332514137  3.979496252
##  [486]  5.017083273  2.237329203  3.326367781  2.903899136  2.715346666
##  [491]  2.497997089  1.225684224  2.858858948  2.580727925  2.809418935
##  [496]  3.504203066  3.739229156  2.241377563  4.752890820 -1.215380162
##  [501]  1.505282581 -0.601977369  2.085196566  0.271476870  0.817419377
##  [506]  3.614934531  2.326164249  0.068796258  0.820147685  7.215151300
##  [511]  1.876782264  2.807055400  5.294075823  5.899472339  1.764900371
##  [516]  0.048790059  0.024721467  4.798171634  4.152200153  2.378283149
##  [521] -0.146907129  3.962177110  3.364515757 -0.876488121  3.479024601
##  [526]  3.860769321  5.746122160  2.377494377  2.428359427  0.719847081
##  [531]  0.398449627  1.209958157  5.454094522  3.695490532 -1.315012747
##  [536]  2.787943752  1.143587042  4.359844279  1.509982613  4.154641240
##  [541]  2.225035259  0.998241601  3.614830034  1.904414528  2.477102755
##  [546]  2.141018397  2.146842733  1.590156497  1.781498901  3.069733106
##  [551]  0.227068060  1.922771145  0.943581754 -0.551300209  1.494190707
##  [556]  6.787627647  4.677709034  5.630825427  1.731705310  3.511262780
##  [561]  1.830692036  3.534375489  2.247500741  5.031740336  1.594169187
##  [566]  2.052328214  2.433112073  0.788775523  1.576768719  4.058907337
##  [571]  3.521689962  1.841664004 -1.244610143  0.527433546  2.848107213
##  [576]  4.973208167  2.028944388  1.414521036 -0.076415450  4.106796268
##  [581]  2.316506996  5.089212297  1.379976710  2.464469859  3.056479865
##  [586]  0.946619197  4.275208086  3.828874727  1.303855563 -0.135020182
##  [591]  1.418250749  2.265860207 -0.260123426  2.920606205  4.483260161
##  [596]  3.604793812  1.502223482  1.264689837  1.956275469  0.577480037
##  [601]  1.745637520  1.947660925  1.945225455  0.643829987  2.715496454
##  [606] -0.291229615  5.139125309  2.282006813  2.758286926 -0.551329535
##  [611]  1.902644946  2.394840828  2.521998826  0.462495689  1.665388392
##  [616]  2.872341016  1.333576522  1.482283598  1.272752961  1.432824044
##  [621]  1.785082588  3.722094951  2.140015362  2.286124964  3.894721552
##  [626]  4.347292326  0.040854763  2.549152166  1.343738347 -0.377738235
##  [631]  2.159461493  0.006568664  1.688158246  4.391657503  4.652579245
##  [636]  2.249404959  0.560736418  3.642271514  0.295757832 -2.233807292
##  [641]  3.053719702  3.246612363  4.824956666  4.455396396  2.292542653
##  [646]  2.807835665  0.910708660  3.256293528  1.829499315  1.636134503
##  [651]  3.173761722  3.030472961  2.212331925  1.794667479  1.360140104
##  [656]  2.444481085  3.529941173  0.515760903  2.632726629  1.946670908
##  [661]  0.206139507 -0.591098076 -1.887877081  1.972749318  0.911982076
##  [666]  0.160083300  2.294474141  0.156892100  2.075626113  2.888628869
##  [671]  0.547333852  3.345530225  1.660506998  0.194192390  1.302954020
##  [676]  2.916260092 -0.242287897  3.261626155  0.994519603  3.434448008
##  [681]  1.757453584  3.212688750  5.899942667  0.379931039  3.803988337
##  [686]  1.161667052 -0.300030634  0.129843352  2.336567245  3.112145355
##  [691]  2.666718392  2.376265139  1.545452434  3.925627865  2.634716422
##  [696]  3.765487686  0.903954451  0.282281084  2.690940729  3.799143022
##  [701]  0.555661541  2.839635292  1.738544894  0.249032951  2.674509698
##  [706]  2.343570252  1.627173946  0.315880901  3.364750283  2.814702392
##  [711]  3.514367223 -0.154536351  0.620340776  2.944389212  2.191790969
##  [716]  0.114453359 -0.011140778  3.624558202  1.097983575  3.414549889
##  [721]  4.951771819  2.611431724  2.286849984  2.549392768  2.576382560
##  [726]  0.826732854  0.564076099  4.561630324  1.586577456  5.613479624
##  [731]  3.073712385  1.442149739  3.738745292  0.898178231  4.953083370
##  [736]  0.490337578  3.095950049  4.316520297  2.886847624  2.503952381
##  [741]  0.814205259  1.392121857  3.711387950  1.473454316  5.356640364
##  [746]  1.496368678  1.277597643  4.099857101  6.386887434  1.749402573
##  [751]  1.553677417  2.841135084  2.901218338  1.953065704  1.843277553
##  [756]  3.010943463  0.775474567  3.507792463  4.273603407  4.465704965
##  [761]  2.277962537  2.704220290 -0.333047045  1.252616377  0.998753060
##  [766]  3.146216788  2.796168699  4.728332368  3.792931121 -0.791662910
##  [771]  2.777646063  1.011917104  0.919492804  3.443398604  2.779011718
##  [776]  1.389771770  4.021324118  4.576486752  2.798651537  0.921158004
##  [781]  3.123082346  0.172227342  0.563306680  1.623402483  2.393437549
##  [786]  3.059069511  2.255622243  1.382567551  1.087636425  0.529917172
##  [791]  3.117376516  3.857301767  5.011547685  3.389146817  2.470107555
##  [796]  3.427891998  2.657287766  3.352576817  2.539947517  2.556183933
##  [801]  4.866088768  0.154903996  1.064667575  1.661403307 -2.141541575
##  [806]  1.292950081  1.416228123 -1.897368691  0.685170866  2.312225997
##  [811]  3.820334615  0.576532740  1.976071482  1.494296734  3.835732744
##  [816]  1.072495349  2.309352081  2.795101159 -0.446210394  2.224778943
##  [821]  1.200797118  3.759078896  3.512872151  1.296204356  1.848715865
##  [826]  2.188752237  4.723516114  0.029595112  3.810050378  1.683628311
##  [831]  2.749865507  1.693942599  0.698444240  1.023159073  2.009557356
##  [836]  2.770801194  5.267237420  1.555989941  2.445015857  3.933541296
##  [841]  3.157113720  1.038880659  2.682243202  0.351465060  1.252086521
##  [846]  4.023017929  3.078330824  2.243595735  3.471712360 -0.390866681
##  [851]  1.786196463  2.345337927  4.263766608 -0.727949690  0.822433625
##  [856]  3.848036446  4.517269795  1.143732222  1.000115670  0.402434755
##  [861]  2.808015217  3.185822198  0.226438136  0.925273900  0.765552090
##  [866]  1.917879686  1.785636222  2.291650789  2.839015491  2.423440637
##  [871]  2.391329716  1.145003045  3.805774913  2.492675945  2.425218834
##  [876]  0.933668038  0.160946070  4.221362001  1.506317807  2.644095454
##  [881]  4.232336092  1.596874858  3.073319925 -0.472081842  3.961584402
##  [886]  1.072928819  4.887183541  0.839866931  3.878690278  0.452712936
##  [891] -3.137066515  0.238661490  2.112170986  0.761633894  0.183986119
##  [896]  1.311518018  2.793001724  4.942078019  1.138680700  2.627538073
##  [901]  4.060625065  3.574450783  2.166384771  1.837590593  0.334252049
##  [906]  0.512201356  3.775698377  3.233729358  0.059428592  2.912613860
##  [911]  3.626702301  2.136527145  1.376580123  3.327305301  1.817848083
##  [916]  1.549691652  0.039961229  2.390268018  0.245913530  1.431850703
##  [921]  1.107794214 -0.239703156  4.280622454  2.589459593  0.100289491
##  [926]  0.393639177  3.653196127  0.014982142  2.755921361  1.163109146
##  [931]  3.243016002  1.194565518  2.729264858  3.141482337  0.576663872
##  [936]  2.337201974  0.234353750  1.037345633 -0.932179968  1.883050279
##  [941]  4.692885865  4.350866821  4.782577342  4.488208823  1.334804007
##  [946]  2.898312665  2.021934386  3.975134665  0.226583557  1.248641666
##  [951]  3.176407618  2.556462463  2.668576663  3.753023820  1.738627262
##  [956] -0.108032013  1.076201993  1.121802950  1.745114465 -0.194009981
##  [961]  0.836983184  1.073076941  1.518346816  3.620718327  1.917491635
##  [966]  3.278862907  0.047170633 -1.537298327  2.888546751  0.410060109
##  [971]  2.170305536  2.515141786  1.923314802  3.714144441  3.684416496
##  [976] -2.203220595  4.380291176 -0.125515701  1.801995970  2.330558909
##  [981]  1.172728008  1.756468888  2.987864912  0.140424594  2.955078467
##  [986]  0.063815720  0.421758024  2.930046248  4.584096236  1.668517702
##  [991]  2.600753989  0.420364489  2.428111597  3.080690275  2.466627128
##  [996]  1.835459204  2.976373588  1.936513251  3.403106626 -0.568586108
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -3.137   1.009   2.111   2.063   3.075   7.215
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.4106206
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)

# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.585232
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90% of the data

# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.4106206
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [121] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [205] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [457] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE  TRUE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -1.2162119 -1.3729519 -1.3205977 -0.5888820 -2.6455129 -0.8159964
##  [7] -0.5162615 -0.5159579 -1.2751230 -1.8256105 -0.9116993 -1.0853692
## [13] -1.6647108 -0.4466837 -1.5794593 -1.6883023 -0.8090130 -1.0593939
## [19] -0.4428652 -0.6886922 -1.0190261 -0.4979235 -0.7763474 -0.5691249
## [25] -1.1395463 -0.8898125 -0.4552878 -0.7703835 -2.0899718 -1.2153802
## [31] -0.6019774 -0.8764881 -1.3150127 -0.5513002 -1.2446101 -0.5513295
## [37] -2.2338073 -0.5910981 -1.8878771 -0.7916629 -2.1415416 -1.8973687
## [43] -0.4462104 -0.7279497 -0.4720818 -3.1370665 -0.9321800 -1.5372983
## [49] -2.2032206 -0.5685861
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.585232
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [169]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [445]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [517] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [529] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [577] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [733] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 6.154084 5.023394 5.113729 5.307392 5.911009 5.458323 5.174280 4.992611
##  [9] 4.941079 5.011259 5.404142 4.783831 5.233917 4.993235 5.894566 4.737548
## [17] 4.647895 4.606804 5.017083 4.752891 7.215151 5.294076 5.899472 4.798172
## [25] 5.746122 5.454095 6.787628 4.677709 5.630825 5.031740 4.973208 5.089212
## [33] 5.139125 4.652579 4.824957 5.899943 4.951772 5.613480 4.953083 5.356640
## [41] 6.386887 4.728332 5.011548 4.866089 4.723516 5.267237 4.887184 4.942078
## [49] 4.692886 4.782577