Page 422 Exercise 6
In the Land of Oz example (Example 11.1), change the transition matrix by making R an absorbing state. This gives
R N S
R 1 0 0
N 1/2 0 1/2
S S 1/4 1/2
Find the fundamental matrix N, and also Nc and NR. Interpret the results.
P = matrix(
c(1,0,0,
0.5,0,0.5,
0.25,0.25,0.5
), # the data elements
nrow=3, # number of rows
byrow = TRUE) # fill matrix by rows
dimnames(P) = list(
c("R","N", "S"), # row names
c("R","N", "S")) # column names
P
## R N S
## R 1.00 0.00 0.0
## N 0.50 0.00 0.5
## S 0.25 0.25 0.5
#N = inverse (I -Q)
I=diag(2)
Q = matrix(c(0,0.5,0.25,0.5),nrow=2,byrow = TRUE)
A=I-Q
N = solve(A)
N #N
## [,1] [,2]
## [1,] 1.3333333 1.333333
## [2,] 0.6666667 2.666667
#Nc
C=matrix(c(1,1),nrow=2,byrow = TRUE)
N%*%C
## [,1]
## [1,] 2.666667
## [2,] 3.333333
#NR
R = matrix(
c(1.0,0,
0,1
), # the data elements
nrow=2, # number of rows
byrow = TRUE)
N%*%R
## [,1] [,2]
## [1,] 1.3333333 1.333333
## [2,] 0.6666667 2.666667