library(datarium)
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0 ✔ purrr 1.0.0
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.5.0
## ✔ readr 2.1.3 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks rstatix::filter(), stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(datarium)
library(shiny)
library(emmeans)
library(gt)
library(gtsummary)
library(ggpubr)
##PRACTICA DEL DIA MIERCOLES
jobsatisfaction
## # A tibble: 58 × 4
## id gender education_level score
## <fct> <fct> <fct> <dbl>
## 1 1 male school 5.51
## 2 2 male school 5.65
## 3 3 male school 5.07
## 4 4 male school 5.51
## 5 5 male school 5.94
## 6 6 male school 5.8
## 7 7 male school 5.22
## 8 8 male school 5.36
## 9 9 male school 4.78
## 10 10 male college 6.01
## # … with 48 more rows
bp2<-ggplot(jobsatisfaction, aes(x=gender, y=score, color= education_level))+
geom_boxplot(aes(fill=education_level),colour = "black")+
geom_jitter(colour="black", alpha=0.5)+
scale_fill_manual(values = c("#BB9E0D", "#033190", "#DBE0EA"))+theme_classic()
bp2
pwc2 <- jobsatisfaction %>%
group_by(gender) %>%
tukey_hsd(score ~ education_level)
pwcc <- jobsatisfaction %>%
group_by(gender) %>% emmeans_test(score~education_level, p.adjust.method = "bonferroni")
pwcc %>% gt()
| gender | term | .y. | group1 | group2 | df | statistic | p | p.adj | p.adj.signif |
|---|---|---|---|---|---|---|---|---|---|
| female | education_level | score | school | college | 52 | -2.935226 | 4.952503e-03 | 1.485751e-02 | * |
| female | education_level | score | school | university | 52 | -10.834318 | 6.074300e-15 | 1.822290e-14 | **** |
| female | education_level | score | college | university | 52 | -7.899092 | 1.838428e-10 | 5.515284e-10 | **** |
| male | education_level | score | school | college | 52 | -3.072573 | 3.374111e-03 | 1.012233e-02 | * |
| male | education_level | score | school | university | 52 | -15.295045 | 6.865425e-21 | 2.059628e-20 | **** |
| male | education_level | score | college | university | 52 | -12.142652 | 8.421634e-17 | 2.526490e-16 | **** |
pwc2
## # A tibble: 6 × 10
## gender term group1 group2 null.…¹ estim…² conf.…³ conf.…⁴ p.adj p.adj…⁵
## * <fct> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 male educati… school colle… 0 0.797 0.341 1.25 5.59e- 4 ***
## 2 male educati… school unive… 0 3.87 3.42 4.31 3.28e-14 ****
## 3 male educati… colle… unive… 0 3.07 2.62 3.51 3.99e-14 ****
## 4 female educati… school colle… 0 0.722 -0.0163 1.46 5.62e- 2 ns
## 5 female educati… school unive… 0 2.66 1.93 3.40 4.3 e- 9 ****
## 6 female educati… colle… unive… 0 1.94 1.20 2.68 1.58e- 6 ****
## # … with abbreviated variable names ¹null.value, ²estimate, ³conf.low,
## # ⁴conf.high, ⁵p.adj.signif
pwc2 <- pwc2 %>% add_xy_position(x="gender")
size <- 5 #tamaño de los asteriscos
bp2 + stat_pvalue_manual(pwc2,label.size = size) + theme(text = element_text(size = 15)) +
labs(fill="Education level")+theme(legend.position = "top")