#Einlesen vom ESS-Datensatz
ess <- read.spss("/Users/krispinkruger/Krüger/MDAR mit R Remer/Data/ESS9e02.sav", use.value.labels = FALSE, to.data.frame = TRUE, reencode = TRUE)
## re-encoding from UTF-8
#Variablen anzeigen
#View(ess)
#names(ess)
nrow(ess) #--> 47086 Befragte
## [1] 47086
ncol(ess) #--> 557 Variablen
## [1] 557
Outline für Shiny Anwendung
Ich benutze nur die Trust-Variablen für die verschiedenen hierachischen Ebenen aus dem Ess, um die EU-Länder miteinader zu vergleichen.
trstprl = Trust in countries parliament (0-10, No trust at all - Complete trust)
trstep = Trust in the european parliament (0-10, No trust at all - Complete trust)
trstun = Trust in the UN (0-10, No trust at all - Complete trust)
#Subset erstelln
df_hirachy <- subset(ess, select = c("trstprl", "trstep", "trstun", "cntry"))
#View(df_hirachy)
#esquisser(df_hirachy)
# Zuerst müssen wir die Anzahl der NAs in jeder Variablen berechnen
nas_count <- colSums(is.na(df_hirachy))
# Jetzt können wir den Anteil an NAs im Vergleich zu den vollständigen Variabeln berechnen
nas_percentage <- nas_count / nrow(df_hirachy)
# Ausgabe des Anteils
nas_percentage
## trstprl trstep trstun cntry
## 0.02382874 0.07231449 0.08958077 0.00000000
#--> Wir haben bei allen drei Variablen einen Anteil an Na's von <10%, was dafür spricht, das es keine systematische Problematik gibt und wir die NA's einfach entfernen können. Imputieren ist hier nicht nötig, da wir trotz der NA's immernoch eine enorm große Fallzahl haben.
#Nas entfernen
df.na <-df_hirachy %>% drop_na()
sum(is.na(df_hirachy)) #alle Na's sind entfernt
## [1] 8745
length(df_hirachy) / sum(is.na(df_hirachy))
## [1] 0.0004574042
#Anteil von Na`s sind vernachlässigbar, da sie gegen Null gehen und nur 0,004% betragen
# 3 höchste Werte
df.na %>%
group_by(cntry) %>%
top_n(3, trstprl)
## # A tibble: 942 × 4
## # Groups: cntry [27]
## trstprl trstep trstun cntry
## <dbl> <dbl> <dbl> <chr>
## 1 10 6 6 AT
## 2 10 8 7 AT
## 3 10 9 8 AT
## 4 10 5 5 AT
## 5 10 3 7 AT
## 6 10 10 10 AT
## 7 10 6 8 AT
## 8 10 10 10 AT
## 9 10 9 8 AT
## 10 10 9 9 AT
## # … with 932 more rows
# 3 niedrigste Werte
df.na %>%
group_by(cntry) %>%
top_n(-3, trstprl)
## # A tibble: 4,645 × 4
## # Groups: cntry [27]
## trstprl trstep trstun cntry
## <dbl> <dbl> <dbl> <chr>
## 1 0 0 2 AT
## 2 0 3 0 AT
## 3 0 0 0 AT
## 4 0 2 2 AT
## 5 0 0 0 AT
## 6 0 0 0 AT
## 7 0 0 0 AT
## 8 0 0 0 AT
## 9 0 0 0 AT
## 10 0 0 0 AT
## # … with 4,635 more rows
Sollte für den Vergleich der EU-Länder die Means miteinander verglichen werden, um Extremfälle und Ausreißer ausgleichen zu können oder soll die komplette Skala benutzt werden?
prozentuale Verteilung des Vertrauens und Aufteilung nach den verschiedenen Ländern
#Kolmogorov-Smirnoff-Test
ks.test(df.na$trstprl, "pnorm", mean = mean(df.na$trstprl), sd = sd(df.na$trstprl))
## Warning in ks.test.default(df.na$trstprl, "pnorm", mean = mean(df.na$trstprl), :
## ties should not be present for the Kolmogorov-Smirnov test
##
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: df.na$trstprl
## D = 0.1205, p-value < 2.2e-16
## alternative hypothesis: two-sided
DescTools::Desc(df.na$trstprl)
## ------------------------------------------------------------------------------
## df.na$trstprl (numeric)
##
## length n NAs unique 0s mean meanCI'
## 41'542 41'542 0 11 4'645 4.50 4.48
## 100.0% 0.0% 11.2% 4.53
##
## .05 .10 .25 median .75 .90 .95
## 0.00 0.00 3.00 5.00 7.00 8.00 9.00
##
## range sd vcoef mad IQR skew kurt
## 10.00 2.65 0.59 2.97 4.00 -0.11 -0.82
##
##
## value freq perc cumfreq cumperc
## 1 0 4'645 11.2% 4'645 11.2%
## 2 1 2'200 5.3% 6'845 16.5%
## 3 2 3'375 8.1% 10'220 24.6%
## 4 3 4'471 10.8% 14'691 35.4%
## 5 4 4'161 10.0% 18'852 45.4%
## 6 5 7'258 17.5% 26'110 62.9%
## 7 6 4'870 11.7% 30'980 74.6%
## 8 7 4'979 12.0% 35'959 86.6%
## 9 8 3'474 8.4% 39'433 94.9%
## 10 9 1'167 2.8% 40'600 97.7%
## 11 10 942 2.3% 41'542 100.0%
##
## ' 95%-CI (classic)
#Vertrauen auf Landesebene
g1 <- ggplot(df.na, aes( trstprl)) +
geom_bar(aes(y = after_stat(count)/sum(after_stat(count))),
fill = "brown", color = "lightblue")+
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(0,10),
labels = c("kein Vertrauen",
"1", "2", "3", "4", "5", "6", "7", "8", "9",
"komplettes Vertrauen"))+
labs(title = "Vertrauen auf nationaler Ebene (Parlament)",
caption = "Data: ESS9",
y = "Häufigkeit in Prozent",
x ="Vertrauen in Landesparlament")+
theme_bw()
g1
ggsave(filename = "Landesparlament.png", plot = g1, width = 8, height = 7, dpi = 1000)
#Aufteilung nach Ländern
g2 <- ggplot(df.na, aes( trstprl)) +
geom_bar(aes(y = after_stat(count)/sum(after_stat(count))),
fill = "brown", color = "lightblue")+
scale_y_continuous(labels = scales::percent) +
labs(title = "Vertrauen in nationales Parlament",
caption = "Data: ESS9",
y = "Häufigkeit in Prozent",
x ="Vertrauen in nationales Parlament")+
theme_bw()+
facet_grid(~cntry)
g2
ggplotly()
ggsave(filename = "Landesparlament_nach_Ländern.png", plot = g2, width = 12, height = 5, dpi = 600)
g3 <- ggplot(data = df.na, aes(x = trstprl, y = after_stat(count)/sum(after_stat(count)))) +
geom_bar(stat = "count", aes(fill = cntry)) +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(0,10),
labels = c("kein Vertrauen",
"1", "2", "3", "4", "5", "6", "7", "8", "9",
"komplettes Vertrauen"))+
labs(x = "Vertrauen in nationales Parlament", y = "Prozentuale Häufigkeit")+
theme_bw()
g3
ggplotly()
ggsave(filename = "Landesparlament_nach_Ländern_2.png", plot = g3, width = 8, height = 7, dpi = 600)
#Density-Plot
g4 <- ggplot(data = df.na, aes(x = trstprl, y = after_stat(count)/sum(after_stat(count)), fill = cntry)) +
geom_density( aes(x = trstprl, fill = cntry))+
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(0,10),
labels = c("kein Vertrauen",
"1", "2", "3", "4", "5", "6", "7", "8", "9",
"komplettes Vertrauen"))+
labs(x = "Vertrauen auf internationaler Ebene (UN)", y = "Prozentuale Häufigkeit")+
theme_minimal()
g4
ggplotly()
ggsave(filename = "Landesparlament_nach_Ländern_density.png", plot = g4, width = 8, height = 7, dpi = 600)
prozentuale Verteilung des Vertraunes und Aufteilung nach den verschiedenen Ländern
#Kolmogorov-Smirnoff-Test
ks.test(df.na$trstep, "pnorm", mean = mean(df.na$trstep), sd = sd(df.na$trstep))
## Warning in ks.test.default(df.na$trstep, "pnorm", mean = mean(df.na$trstep), :
## ties should not be present for the Kolmogorov-Smirnov test
##
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: df.na$trstep
## D = 0.13602, p-value < 2.2e-16
## alternative hypothesis: two-sided
DescTools::Desc(df.na$trstep)
## ------------------------------------------------------------------------------
## df.na$trstep (numeric)
##
## length n NAs unique 0s mean meanCI'
## 41'542 41'542 0 11 4'547 4.47 4.45
## 100.0% 0.0% 10.9% 4.50
##
## .05 .10 .25 median .75 .90 .95
## 0.00 0.00 3.00 5.00 6.00 8.00 8.00
##
## range sd vcoef mad IQR skew kurt
## 10.00 2.58 0.58 2.97 3.00 -0.15 -0.75
##
##
## value freq perc cumfreq cumperc
## 1 0 4'547 10.9% 4'547 10.9%
## 2 1 2'227 5.4% 6'774 16.3%
## 3 2 3'313 8.0% 10'087 24.3%
## 4 3 4'111 9.9% 14'198 34.2%
## 5 4 4'302 10.4% 18'500 44.5%
## 6 5 8'053 19.4% 26'553 63.9%
## 7 6 5'340 12.9% 31'893 76.8%
## 8 7 4'738 11.4% 36'631 88.2%
## 9 8 3'084 7.4% 39'715 95.6%
## 10 9 1'091 2.6% 40'806 98.2%
## 11 10 736 1.8% 41'542 100.0%
##
## ' 95%-CI (classic)
#Vertrauen auf supranationaler Ebene
g5 <- ggplot(df.na, aes( trstep)) +
geom_bar(aes(y = after_stat(count)/sum(after_stat(count))),
fill = "brown", color = "lightblue")+
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(0,10),
labels = c("kein Vertrauen",
"1", "2", "3", "4", "5", "6", "7", "8", "9",
"komplettes Vertrauen"))+
labs(title = "Vertrauen auf Supranationaler Ebene (Europarl.)",
caption = "Data: ESS9",
y = "Häufigkeit in Prozent",
x ="Vertrauen in Europaparlament")+
theme_bw()
g5
ggsave(filename = "Europaparlament.png", plot = g5, width = 8, height = 7, dpi = 600)
#Aufteilung nach Ländern
g6 <- ggplot(df.na, aes( trstep)) +
geom_bar(aes(y = after_stat(count)/sum(after_stat(count))),
fill = "brown", color = "lightblue")+
scale_y_continuous(labels = scales::percent) +
labs(title = "Vertrauen in Europäisches Parlament",
caption = "Data: ESS9",
y = "Häufigkeit in Prozent",
x ="Vertrauen in Europäisches Parlament")+
theme_bw()+
facet_grid(~cntry)
g6
ggplotly()
ggsave(filename = "Europaparlament_nach_Länder.png", plot = g6, width = 12, height = 5, dpi = 600)
g7 <- ggplot(data = df.na, aes(x = trstep, y = after_stat(count)/sum(after_stat(count)))) +
geom_bar(stat = "count", aes(fill = cntry)) +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(0,10),
labels = c("kein Vertrauen",
"1", "2", "3", "4", "5", "6", "7", "8", "9",
"komplettes Vertrauen"))+
labs(x = "Vertrauen auf Supranationaler Ebene (Europarl.)", y = "Prozentuale Häufigkeit")+
theme_bw()
g7
ggplotly()
ggsave(filename = "Europaparlament_nach_Länder_2.png", plot = g7, width = 8, height = 7, dpi = 600)
#Density-Plot
g8 <- ggplot(data = df.na, aes(x = trstep, y = after_stat(count)/sum(after_stat(count)), fill = cntry)) +
geom_density( aes(x = trstep, fill = cntry))+
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(0,10),
labels = c("kein Vertrauen",
"1", "2", "3", "4", "5", "6", "7", "8", "9",
"komplettes Vertrauen"))+
labs(x = "Vertrauen in europäisches Parlament", y = "Prozentuale Häufigkeit")+
theme_minimal()
g8
ggplotly()
ggsave(filename = "Europaparlament_density.png", plot = g8, width = 8, height = 7, dpi = 600)
#Kolmogorov-Smirnoff-Test
ks.test(df.na$trstun, "pnorm", mean = mean(df.na$trstun), sd = sd(df.na$trstun))
## Warning in ks.test.default(df.na$trstun, "pnorm", mean = mean(df.na$trstun), :
## ties should not be present for the Kolmogorov-Smirnov test
##
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: df.na$trstun
## D = 0.13411, p-value < 2.2e-16
## alternative hypothesis: two-sided
DescTools::Desc(df.na$trstun)
## ------------------------------------------------------------------------------
## df.na$trstun (numeric)
##
## length n NAs unique 0s mean meanCI'
## 41'542 41'542 0 11 3'466 5.08 5.05
## 100.0% 0.0% 8.3% 5.10
##
## .05 .10 .25 median .75 .90 .95
## 0.00 1.00 3.00 5.00 7.00 8.00 9.00
##
## range sd vcoef mad IQR skew kurt
## 10.00 2.63 0.52 2.97 4.00 -0.33 -0.64
##
##
## value freq perc cumfreq cumperc
## 1 0 3'466 8.3% 3'466 8.3%
## 2 1 1'659 4.0% 5'125 12.3%
## 3 2 2'635 6.3% 7'760 18.7%
## 4 3 3'293 7.9% 11'053 26.6%
## 5 4 3'657 8.8% 14'710 35.4%
## 6 5 7'660 18.4% 22'370 53.8%
## 7 6 5'407 13.0% 27'777 66.9%
## 8 7 5'812 14.0% 33'589 80.9%
## 9 8 4'760 11.5% 38'349 92.3%
## 10 9 1'933 4.7% 40'282 97.0%
## 11 10 1'260 3.0% 41'542 100.0%
##
## ' 95%-CI (classic)
#Vertrauen auf internationaler Ebene
g9 <- ggplot(df.na, aes( trstun)) +
geom_bar(aes(y = after_stat(count)/sum(after_stat(count))),
fill = "brown", color = "lightblue")+
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(0,10),
labels = c("kein Vertrauen",
"1", "2", "3", "4", "5", "6", "7", "8", "9",
"komplettes Vertrauen"))+
labs(title = "Vertrauen auf internationaler Ebene (UN)",
caption = "Data: ESS9",
y = "Häufigkeit in Prozent",
x ="Vertrauen in UN")+
theme_bw()
g9
ggsave(filename = "UN.png", plot = g9, width = 8, height = 7, dpi = 600)
#Aufteilung nach Ländern
g10 <- ggplot(df.na, aes( trstun)) +
geom_bar(aes(y = after_stat(count)/sum(after_stat(count))),
fill = "brown", color = "lightblue")+
scale_y_continuous(labels = scales::percent) +
labs(title = "Vertrauen auf internationaler Ebene (UN)",
caption = "Data: ESS9",
y = "Häufigkeit in Prozent",
x ="Vertrauen in UN")+
theme_bw()+
facet_grid(~cntry)
g10
ggplotly()
ggsave(filename = "UN_nach_Länder.png", plot = g10, width = 12, height = 5, dpi = 600)
g11 <- ggplot(data = df.na, aes(x = trstun, y = after_stat(count)/sum(after_stat(count)))) +
geom_bar(stat = "count", aes(fill = cntry)) +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(0,10),
labels = c("kein Vertrauen",
"1", "2", "3", "4", "5", "6", "7", "8", "9",
"komplettes Vertrauen"))+
labs(x = "Vertrauen auf internationaler Ebene (UN)", y = "Prozentuale Häufigkeit")+
theme_minimal()
g11
ggplotly()
ggsave(filename = "UN_nach_Länder_.png", plot = g11, width = 8, height = 7, dpi = 600)
#Density-Plot
g12 <- ggplot(data = df.na, aes(x = trstun, y = after_stat(count)/sum(after_stat(count)), fill = cntry)) +
geom_density( aes(x = trstun, fill = cntry))+
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(0,10),
labels = c("kein Vertrauen",
"1", "2", "3", "4", "5", "6", "7", "8", "9",
"komplettes Vertrauen"))+
labs(x = "Vertrauen auf internationaler Ebene (UN)", y = "Prozentuale Häufigkeit")+
theme_minimal()
g12
ggplotly()
ggsave(filename = "UN_density.png", plot = g12, width = 8, height = 7, dpi = 600)
sumtable(df.na, vars = c('trstprl', 'trstep', 'trstun'),
summ = list( c('notNA(x)', 'mean(x)', 'median(x)', 'sd(x)', 'min(x)', 'max(x)', 'pctile(x)[25]', 'pctile(x)[75]')
),
summ.names = list(
c('N', 'Mean', 'Median', 'Standard Error', 'Minimum', 'Maximum', '1 Quantil', '4 Quantil')
)
, title = "Deskripitive Statistik"
, labels = c("Vertrauen in nationales Parlament", "Vertrauen in Europäisches Parlament", "Vertrauen in UN"),
file = 'Deskriptive Statistik Kontrollvariablen')
| Variable | N | Mean | Median | Standard Error | Minimum | Maximum | 1 Quantil | 4 Quantil |
|---|---|---|---|---|---|---|---|---|
| Vertrauen in nationales Parlament | 41542 | 4.504 | 5 | 2.65 | 0 | 10 | 3 | 7 |
| Vertrauen in Europäisches Parlament | 41542 | 4.471 | 5 | 2.578 | 0 | 10 | 3 | 6 |
| Vertrauen in UN | 41542 | 5.078 | 5 | 2.63 | 0 | 10 | 3 | 7 |
Es wird zuerst überprüft, ob es Extrempunkte gibt in der Verteilung und dann der Mean berechnet für das durchschnittliche Vertrauen in die drei Institutionen und dann über alle Länder miteinader verglichen.
#Means für alle Länder berechnen zum Vertrauen ins Parlament
mean(df.na$trstprl[df.na$cntry == "AT"]) #Österreich
## [1] 5.442544
mean(df.na$trstprl[df.na$cntry == "BE"]) #Belgien
## [1] 4.80472
mean(df.na$trstprl[df.na$cntry == "BG"]) #Bulgarien
## [1] 2.487334
mean(df.na$trstprl[df.na$cntry == "CH"]) #Schweiz
## [1] 6.395865
mean(df.na$trstprl[df.na$cntry == "CY"]) #Zypern
## [1] 3.667638
mean(df.na$trstprl[df.na$cntry == "CZ"]) #Tschechien
## [1] 4.22248
mean(df.na$trstprl[df.na$cntry == "DE"]) #Deutschland
## [1] 5.129003
mean(df.na$trstprl[df.na$cntry == "DK"]) #Dänemark
## [1] NaN
mean(df.na$trstprl[df.na$cntry == "EE"]) #Estland
## [1] 4.886957
mean(df.na$trstprl[df.na$cntry == "ES"]) #Spanien
## [1] 4.14194
mean(df.na$trstprl[df.na$cntry == "FI"]) #Finnland
## [1] 5.966887
mean(df.na$trstprl[df.na$cntry == "FR"]) #Frankreich
## [1] 4.14859
mean(df.na$trstprl[df.na$cntry == "GB"]) #Großbritannien
## [1] 4.243939
mean(df.na$trstprl[df.na$cntry == "HR"]) #Kroatien
## [1] 2.28153
mean(df.na$trstprl[df.na$cntry == "HU"]) #Ungarn
## [1] 4.505732
mean(df.na$trstprl[df.na$cntry == "IE"]) #Irland
## [1] 4.655937
mean(df.na$trstprl[df.na$cntry == "IS"]) #Island
## [1] NaN
mean(df.na$trstprl[df.na$cntry == "IT"]) #Italien
## [1] 4.313427
mean(df.na$trstprl[df.na$cntry == "LT"]) #Litauen
## [1] 3.40852
mean(df.na$trstprl[df.na$cntry == "LV"]) #Lettland
## [1] 3.364286
mean(df.na$trstprl[df.na$cntry == "ME"]) #Montenegro
## [1] 4.155515
mean(df.na$trstprl[df.na$cntry == "NL"]) #Niederlande
## [1] 5.959398
mean(df.na$trstprl[df.na$cntry == "NO"]) #Norwegen
## [1] 6.836572
mean(df.na$trstprl[df.na$cntry == "PL"]) #Polen
## [1] 3.860876
mean(df.na$trstprl[df.na$cntry == "PT"]) #Portugal
## [1] 4.24026
mean(df.na$trstprl[df.na$cntry == "RS"]) #Serbien
## [1] 3.862699
mean(df.na$trstprl[df.na$cntry == "SE"]) #Schweden
## [1] 6.224286
mean(df.na$trstprl[df.na$cntry == "SI"]) #Slovenien
## [1] 3.583048
mean(df.na$trstprl[df.na$cntry == "SK"]) #Slovakei
## [1] 3.736381
#Means für alle Länder zum Vertrauen ins Landesparlament (alphabetisch)
mean_df_parl <- as.data.frame(base::tapply(df.na$trstprl, df.na$cntry, FUN = mean, na.rm = T))
tableHTML::tableHTML(mean_df_parl)
| base::tapply(df.na$trstprl, df.na$cntry, FUN = mean, na.rm = T) | |
|---|---|
| AT | 5.44254385964912 |
| BE | 4.8047197640118 |
| BG | 2.48733413751508 |
| CH | 6.395865237366 |
| CY | 3.66763848396501 |
| CZ | 4.22248026010218 |
| DE | 5.12900315741994 |
| EE | 4.88695652173913 |
| ES | 4.14194008559201 |
| FI | 5.96688741721854 |
| FR | 4.14859002169197 |
| GB | 4.24393864423553 |
| HR | 2.28153018529587 |
| HU | 4.50573162508429 |
| IE | 4.65593667546174 |
| IT | 4.31342668863262 |
| LT | 3.40851955307263 |
| LV | 3.36428571428571 |
| ME | 4.15551537070524 |
| NL | 5.95939751146038 |
| NO | 6.83657243816254 |
| PL | 3.8608762490392 |
| PT | 4.24025974025974 |
| RS | 3.86269888037714 |
| SE | 6.22428571428572 |
| SI | 3.58304794520548 |
| SK | 3.7363813229572 |
#Sortiert nach Größe aufsteigend
df_sorted_parl <- as.data.frame(sort(base::tapply(df.na$trstprl, df.na$cntry, FUN = mean, na.rm = T)))
tableHTML::tableHTML(df_sorted_parl, caption = 'Durchschnittliches Vertrauen in nationale Parlamente')
| sort(base::tapply(df.na$trstprl, df.na$cntry, FUN = mean, na.rm = T)) | |
|---|---|
| HR | 2.28153018529587 |
| BG | 2.48733413751508 |
| LV | 3.36428571428571 |
| LT | 3.40851955307263 |
| SI | 3.58304794520548 |
| CY | 3.66763848396501 |
| SK | 3.7363813229572 |
| PL | 3.8608762490392 |
| RS | 3.86269888037714 |
| ES | 4.14194008559201 |
| FR | 4.14859002169197 |
| ME | 4.15551537070524 |
| CZ | 4.22248026010218 |
| PT | 4.24025974025974 |
| GB | 4.24393864423553 |
| IT | 4.31342668863262 |
| HU | 4.50573162508429 |
| IE | 4.65593667546174 |
| BE | 4.8047197640118 |
| EE | 4.88695652173913 |
| DE | 5.12900315741994 |
| AT | 5.44254385964912 |
| NL | 5.95939751146038 |
| FI | 5.96688741721854 |
| SE | 6.22428571428572 |
| CH | 6.395865237366 |
| NO | 6.83657243816254 |
#Means für alle Länder berechnen zum Vertrauen ins europäische Parlament (alphabetisch)
mean_df_eu <- as.data.frame(base::tapply(df.na$trstep, df.na$cntry, FUN = mean, na.rm = T))
tableHTML::tableHTML(mean_df_eu)
| base::tapply(df.na$trstep, df.na$cntry, FUN = mean, na.rm = T) | |
|---|---|
| AT | 4.4719298245614 |
| BE | 4.89321533923304 |
| BG | 3.28407720144752 |
| CH | 4.76952526799387 |
| CY | 4.65014577259475 |
| CZ | 4.13098002786809 |
| DE | 4.58592692828146 |
| EE | 4.65623188405797 |
| ES | 4.51711840228245 |
| FI | 5.43226971703793 |
| FR | 3.94902386117137 |
| GB | 3.41662543295398 |
| HR | 3.86491332934848 |
| HU | 5.09979770734997 |
| IE | 4.9730870712401 |
| IT | 4.40444810543657 |
| LT | 4.95810055865922 |
| LV | 4.34571428571429 |
| ME | 4.8001808318264 |
| NL | 5.28945645055665 |
| NO | 5.45583038869258 |
| PL | 4.72636433512683 |
| PT | 4.59307359307359 |
| RS | 3.07542722451385 |
| SE | 5.14285714285714 |
| SI | 3.82020547945205 |
| SK | 4.47568093385214 |
#Sortiert nach Größe aufsteigend
df_sorted_eu <- as.data.frame(sort(base::tapply(df.na$trstep, df.na$cntry, FUN = mean, na.rm = T)))
tableHTML::tableHTML(df_sorted_eu, caption = 'Durchschnittliches Vertrauen ins Europaparlament')
| sort(base::tapply(df.na$trstep, df.na$cntry, FUN = mean, na.rm = T)) | |
|---|---|
| RS | 3.07542722451385 |
| BG | 3.28407720144752 |
| GB | 3.41662543295398 |
| SI | 3.82020547945205 |
| HR | 3.86491332934848 |
| FR | 3.94902386117137 |
| CZ | 4.13098002786809 |
| LV | 4.34571428571429 |
| IT | 4.40444810543657 |
| AT | 4.4719298245614 |
| SK | 4.47568093385214 |
| ES | 4.51711840228245 |
| DE | 4.58592692828146 |
| PT | 4.59307359307359 |
| CY | 4.65014577259475 |
| EE | 4.65623188405797 |
| PL | 4.72636433512683 |
| CH | 4.76952526799387 |
| ME | 4.8001808318264 |
| BE | 4.89321533923304 |
| LT | 4.95810055865922 |
| IE | 4.9730870712401 |
| HU | 5.09979770734997 |
| SE | 5.14285714285714 |
| NL | 5.28945645055665 |
| FI | 5.43226971703793 |
| NO | 5.45583038869258 |
#Means für alle Länder berechen zum Vertrauen in UN (alphabetisch)
mean_df_un <- as.data.frame(base::tapply(df.na$trstun, df.na$cntry, FUN = mean, na.rm = T))
tableHTML::tableHTML(mean_df_un)
| base::tapply(df.na$trstun, df.na$cntry, FUN = mean, na.rm = T) | |
|---|---|
| AT | 4.86622807017544 |
| BE | 5.28436578171091 |
| BG | 3.31604342581424 |
| CH | 5.37442572741194 |
| CY | 4.62390670553936 |
| CZ | 4.79656293543892 |
| DE | 4.92106450157871 |
| EE | 4.94608695652174 |
| ES | 5.00713266761769 |
| FI | 6.52317880794702 |
| FR | 4.95119305856833 |
| GB | 5.05442850074221 |
| HR | 4.27854154213987 |
| HU | 5.645987862441 |
| IE | 5.53720316622691 |
| IT | 4.84349258649094 |
| LT | 5.0872905027933 |
| LV | 4.73571428571428 |
| ME | 4.97106690777577 |
| NL | 5.94826457105435 |
| NO | 6.96113074204947 |
| PL | 5.47809377401998 |
| PT | 5.63528138528138 |
| RS | 3.49145550972304 |
| SE | 6.30642857142857 |
| SI | 4.41952054794521 |
| SK | 4.99416342412451 |
#Sortiert nach Größe aufsteigend
df_sorted_un <- as.data.frame(sort(base::tapply(df.na$trstun, df.na$cntry, FUN = mean, na.rm = T)))
tableHTML::tableHTML(df_sorted_un, caption = 'Durchschnittliches Vertrauen in die UN')
| sort(base::tapply(df.na$trstun, df.na$cntry, FUN = mean, na.rm = T)) | |
|---|---|
| BG | 3.31604342581424 |
| RS | 3.49145550972304 |
| HR | 4.27854154213987 |
| SI | 4.41952054794521 |
| CY | 4.62390670553936 |
| LV | 4.73571428571428 |
| CZ | 4.79656293543892 |
| IT | 4.84349258649094 |
| AT | 4.86622807017544 |
| DE | 4.92106450157871 |
| EE | 4.94608695652174 |
| FR | 4.95119305856833 |
| ME | 4.97106690777577 |
| SK | 4.99416342412451 |
| ES | 5.00713266761769 |
| GB | 5.05442850074221 |
| LT | 5.0872905027933 |
| BE | 5.28436578171091 |
| CH | 5.37442572741194 |
| PL | 5.47809377401998 |
| IE | 5.53720316622691 |
| PT | 5.63528138528138 |
| HU | 5.645987862441 |
| NL | 5.94826457105435 |
| SE | 6.30642857142857 |
| FI | 6.52317880794702 |
| NO | 6.96113074204947 |
#Durchschnitt Vertrauen Parlament
mean_parl <- mean(df.na$trstprl, na.rm = T)
DescTools::Desc(df.na$trstprl)
## ------------------------------------------------------------------------------
## df.na$trstprl (numeric)
##
## length n NAs unique 0s mean meanCI'
## 41'542 41'542 0 11 4'645 4.50 4.48
## 100.0% 0.0% 11.2% 4.53
##
## .05 .10 .25 median .75 .90 .95
## 0.00 0.00 3.00 5.00 7.00 8.00 9.00
##
## range sd vcoef mad IQR skew kurt
## 10.00 2.65 0.59 2.97 4.00 -0.11 -0.82
##
##
## value freq perc cumfreq cumperc
## 1 0 4'645 11.2% 4'645 11.2%
## 2 1 2'200 5.3% 6'845 16.5%
## 3 2 3'375 8.1% 10'220 24.6%
## 4 3 4'471 10.8% 14'691 35.4%
## 5 4 4'161 10.0% 18'852 45.4%
## 6 5 7'258 17.5% 26'110 62.9%
## 7 6 4'870 11.7% 30'980 74.6%
## 8 7 4'979 12.0% 35'959 86.6%
## 9 8 3'474 8.4% 39'433 94.9%
## 10 9 1'167 2.8% 40'600 97.7%
## 11 10 942 2.3% 41'542 100.0%
##
## ' 95%-CI (classic)
#Durchschnitt Vertrauen Europa
mean_eu <- mean(df.na$trstep, na.rm = T)
DescTools::Desc(df.na$trstep)
## ------------------------------------------------------------------------------
## df.na$trstep (numeric)
##
## length n NAs unique 0s mean meanCI'
## 41'542 41'542 0 11 4'547 4.47 4.45
## 100.0% 0.0% 10.9% 4.50
##
## .05 .10 .25 median .75 .90 .95
## 0.00 0.00 3.00 5.00 6.00 8.00 8.00
##
## range sd vcoef mad IQR skew kurt
## 10.00 2.58 0.58 2.97 3.00 -0.15 -0.75
##
##
## value freq perc cumfreq cumperc
## 1 0 4'547 10.9% 4'547 10.9%
## 2 1 2'227 5.4% 6'774 16.3%
## 3 2 3'313 8.0% 10'087 24.3%
## 4 3 4'111 9.9% 14'198 34.2%
## 5 4 4'302 10.4% 18'500 44.5%
## 6 5 8'053 19.4% 26'553 63.9%
## 7 6 5'340 12.9% 31'893 76.8%
## 8 7 4'738 11.4% 36'631 88.2%
## 9 8 3'084 7.4% 39'715 95.6%
## 10 9 1'091 2.6% 40'806 98.2%
## 11 10 736 1.8% 41'542 100.0%
##
## ' 95%-CI (classic)
#Durchschnitt Vertrauen UN
mean_un <- mean(df.na$trstun, na.rm = T)
DescTools::Desc(df.na$trstun)
## ------------------------------------------------------------------------------
## df.na$trstun (numeric)
##
## length n NAs unique 0s mean meanCI'
## 41'542 41'542 0 11 3'466 5.08 5.05
## 100.0% 0.0% 8.3% 5.10
##
## .05 .10 .25 median .75 .90 .95
## 0.00 1.00 3.00 5.00 7.00 8.00 9.00
##
## range sd vcoef mad IQR skew kurt
## 10.00 2.63 0.52 2.97 4.00 -0.33 -0.64
##
##
## value freq perc cumfreq cumperc
## 1 0 3'466 8.3% 3'466 8.3%
## 2 1 1'659 4.0% 5'125 12.3%
## 3 2 2'635 6.3% 7'760 18.7%
## 4 3 3'293 7.9% 11'053 26.6%
## 5 4 3'657 8.8% 14'710 35.4%
## 6 5 7'660 18.4% 22'370 53.8%
## 7 6 5'407 13.0% 27'777 66.9%
## 8 7 5'812 14.0% 33'589 80.9%
## 9 8 4'760 11.5% 38'349 92.3%
## 10 9 1'933 4.7% 40'282 97.0%
## 11 10 1'260 3.0% 41'542 100.0%
##
## ' 95%-CI (classic)
#Grafische Darstellung
#Dataframe aus den Mittelwerten
var_mean <- c(mean_parl, mean_eu, mean_un)
skala <- c("Landesparlament","Europäisches Parlament","Vereinte Nationen")
df1 <- data.frame(var_mean, skala)
df1
## var_mean skala
## 1 4.503515 Landesparlament
## 2 4.470560 Europäisches Parlament
## 3 5.077729 Vereinte Nationen
library(forcats)
Grafik <-df1 %>%
mutate(skala = fct_reorder(skala, var_mean)) %>%
ggplot(aes(x= var_mean, y = skala)) +
geom_point(size = 2, show.legend = T,)+
xlab("Durchschnittliches Vertrauen")+
ylab("Politische Instiutionen")+
ggtitle("Durchschnittliches Vertrauen in verschiedene politische Institutionen")+
geom_line()
Grafik
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
ggsave(filename = "Vertrauenslevel.png", plot = Grafik, width = 8, height = 7, dpi = 1000)
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
Die bereits aufbereiteten Variablen werden genutzt. Die Means der Länder werden miteinander in Vergleich gesetzt.
#Daten für Vertrauen in nationales Parlament
df = data.frame(
col1 = c('AT','BE','BG','CH','CY','CZ','DE','EE','ES','FI','FR','HR','HU','IE','IT','LT','LV','ME','NL','NO','PL','PT','RS','SE','SI','SK','UK'),
col2 = c(5.44254385964912,4.8047197640118,2.48733413751508,6.395865237366,3.66763848396501,4.22248026010218,5.12900315741994,4.88695652173913,4.14194008559201,5.96688741721854,4.14859002169197,2.28153018529587,4.50573162508429,4.65593667546174,4.31342668863262,3.40851955307263,3.36428571428571,4.15551537070524,5.95939751146038,6.83657243816254,3.8608762490392,4.24025974025974,3.86269888037714,6.22428571428572,3.58304794520548,3.7363813229572,4.24393864423553
)
)
names(df)[names(df) == "col1"] <- "geo"
names(df)[names(df) == "col2"] <- "means"
names(df)
## [1] "geo" "means"
tableHTML::tableHTML(df)
| geo | means | |
|---|---|---|
| 1 | AT | 5.44254385964912 |
| 2 | BE | 4.8047197640118 |
| 3 | BG | 2.48733413751508 |
| 4 | CH | 6.395865237366 |
| 5 | CY | 3.66763848396501 |
| 6 | CZ | 4.22248026010218 |
| 7 | DE | 5.12900315741994 |
| 8 | EE | 4.88695652173913 |
| 9 | ES | 4.14194008559201 |
| 10 | FI | 5.96688741721854 |
| 11 | FR | 4.14859002169197 |
| 12 | HR | 2.28153018529587 |
| 13 | HU | 4.50573162508429 |
| 14 | IE | 4.65593667546174 |
| 15 | IT | 4.31342668863262 |
| 16 | LT | 3.40851955307263 |
| 17 | LV | 3.36428571428571 |
| 18 | ME | 4.15551537070524 |
| 19 | NL | 5.95939751146038 |
| 20 | NO | 6.83657243816254 |
| 21 | PL | 3.8608762490392 |
| 22 | PT | 4.24025974025974 |
| 23 | RS | 3.86269888037714 |
| 24 | SE | 6.22428571428572 |
| 25 | SI | 3.58304794520548 |
| 26 | SK | 3.7363813229572 |
| 27 | UK | 4.24393864423553 |
#Daten für Vertrauen in europäisches Parlament
df.1 = data.frame(
col1 = c('AT','BE','BG','CH','CY','CZ','DE','EE','ES','FI','FR','HR','HU','IE','IT','LT','LV','ME','NL','NO','PL','PT','RS','SE','SI','SK','UK'),
col2 = c(4.4719298245614,4.89321533923304,3.28407720144752,4.76952526799387,4.65014577259475,4.13098002786809,4.58592692828146,4.65623188405797,4.51711840228245,5.43226971703793,3.94902386117137,3.86491332934848,5.09979770734997,4.9730870712401
,4.40444810543657,4.95810055865922,4.34571428571429,4.8001808318264,5.28945645055665,5.45583038869258,4.72636433512683,4.59307359307359,3.07542722451385,5.14285714285714,3.82020547945205,4.47568093385214,3.41662543295398
)
)
names(df.1)[names(df.1) == "col1"] <- "geo"
names(df.1)[names(df.1) == "col2"] <- "means"
names(df.1)
## [1] "geo" "means"
tableHTML::tableHTML(df.1)
| geo | means | |
|---|---|---|
| 1 | AT | 4.4719298245614 |
| 2 | BE | 4.89321533923304 |
| 3 | BG | 3.28407720144752 |
| 4 | CH | 4.76952526799387 |
| 5 | CY | 4.65014577259475 |
| 6 | CZ | 4.13098002786809 |
| 7 | DE | 4.58592692828146 |
| 8 | EE | 4.65623188405797 |
| 9 | ES | 4.51711840228245 |
| 10 | FI | 5.43226971703793 |
| 11 | FR | 3.94902386117137 |
| 12 | HR | 3.86491332934848 |
| 13 | HU | 5.09979770734997 |
| 14 | IE | 4.9730870712401 |
| 15 | IT | 4.40444810543657 |
| 16 | LT | 4.95810055865922 |
| 17 | LV | 4.34571428571429 |
| 18 | ME | 4.8001808318264 |
| 19 | NL | 5.28945645055665 |
| 20 | NO | 5.45583038869258 |
| 21 | PL | 4.72636433512683 |
| 22 | PT | 4.59307359307359 |
| 23 | RS | 3.07542722451385 |
| 24 | SE | 5.14285714285714 |
| 25 | SI | 3.82020547945205 |
| 26 | SK | 4.47568093385214 |
| 27 | UK | 3.41662543295398 |
#Daten für Vertrauen in die UN
df.2 = data.frame(
col1 = c('AT','BE','BG','CH','CY','CZ','DE','EE','ES','FI','FR','HR','HU','IE','IT','LT','LV','ME','NL','NO','PL','PT','RS','SE','SI','SK','UK'),
col2 = c(4.86622807017544,5.2843657817109,3.31604342581424,5.37442572741194,4.62390670553936,4.79656293543892,4.92106450157871,4.94608695652174,5.00713266761769,6.52317880794702,4.95119305856833,4.27854154213987,5.645987862441,5.53720316622691,4.84349258649094,5.0872905027933,4.73571428571428,4.97106690777577,5.94826457105435,6.96113074204947,5.47809377401998,5.63528138528138,3.49145550972304,6.30642857142857,4.41952054794521,4.99416342412451,5.05442850074221
)
)
names(df.2)[names(df.2) == "col1"] <- "geo"
names(df.2)[names(df.2) == "col2"] <- "means"
names(df.2)
## [1] "geo" "means"
tableHTML::tableHTML(df.2)
| geo | means | |
|---|---|---|
| 1 | AT | 4.86622807017544 |
| 2 | BE | 5.2843657817109 |
| 3 | BG | 3.31604342581424 |
| 4 | CH | 5.37442572741194 |
| 5 | CY | 4.62390670553936 |
| 6 | CZ | 4.79656293543892 |
| 7 | DE | 4.92106450157871 |
| 8 | EE | 4.94608695652174 |
| 9 | ES | 5.00713266761769 |
| 10 | FI | 6.52317880794702 |
| 11 | FR | 4.95119305856833 |
| 12 | HR | 4.27854154213987 |
| 13 | HU | 5.645987862441 |
| 14 | IE | 5.53720316622691 |
| 15 | IT | 4.84349258649094 |
| 16 | LT | 5.0872905027933 |
| 17 | LV | 4.73571428571428 |
| 18 | ME | 4.97106690777577 |
| 19 | NL | 5.94826457105435 |
| 20 | NO | 6.96113074204947 |
| 21 | PL | 5.47809377401998 |
| 22 | PT | 5.63528138528138 |
| 23 | RS | 3.49145550972304 |
| 24 | SE | 6.30642857142857 |
| 25 | SI | 4.41952054794521 |
| 26 | SK | 4.99416342412451 |
| 27 | UK | 5.05442850074221 |
library(eurostat)
library(leaflet)
library(sf)
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:datawizard':
##
## rescale
## The following objects are masked from 'package:psych':
##
## alpha, rescale
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
library(cowplot)
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggpubr':
##
## get_legend
## The following objects are masked from 'package:sjPlot':
##
## plot_grid, save_plot
## The following object is masked from 'package:patchwork':
##
## align_plots
library(ggthemes)
##
## Attaching package: 'ggthemes'
## The following object is masked from 'package:cowplot':
##
## theme_map
#Vertrauen in Landesparlamente
# Get the world map
get_eurostat_geospatial(resolution = 10,
nuts_level = 0,
year = 2016)
## Object cached at /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## sf at resolution 1: 10 cached at: /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Warning in get_eurostat_geospatial(resolution = 10, nuts_level = 0, year =
## 2016): Default of 'make_valid' for 'output_class="sf"' will be changed in the
## future (see function details).
## Simple feature collection with 37 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -63.08825 ymin: -21.38917 xmax: 55.83616 ymax: 71.15304
## Geodetic CRS: WGS 84
## First 10 features:
## id LEVL_CODE NUTS_ID CNTR_CODE NAME_LATN NUTS_NAME MOUNT_TYPE
## 1 AL 0 AL AL SHQIPËRIA SHQIPËRIA 0
## 2 AT 0 AT AT ÖSTERREICH ÖSTERREICH 0
## 3 BE 0 BE BE BELGIQUE-BELGIË BELGIQUE-BELGIË 0
## 4 NL 0 NL NL NEDERLAND NEDERLAND 0
## 5 PL 0 PL PL POLSKA POLSKA 0
## 6 PT 0 PT PT PORTUGAL PORTUGAL 0
## 7 DK 0 DK DK DANMARK DANMARK 0
## 8 DE 0 DE DE DEUTSCHLAND DEUTSCHLAND 0
## 9 EL 0 EL EL ELLADA ΕΛΛΑΔΑ 0
## 10 ES 0 ES ES ESPAÑA ESPAÑA 0
## URBN_TYPE COAST_TYPE FID geometry geo
## 1 0 0 AL MULTIPOLYGON (((19.82698 42... AL
## 2 0 0 AT MULTIPOLYGON (((15.54245 48... AT
## 3 0 0 BE MULTIPOLYGON (((5.10218 51.... BE
## 4 0 0 NL MULTIPOLYGON (((6.87491 53.... NL
## 5 0 0 PL MULTIPOLYGON (((18.95003 54... PL
## 6 0 0 PT MULTIPOLYGON (((-8.16508 41... PT
## 7 0 0 DK MULTIPOLYGON (((14.8254 55.... DK
## 8 0 0 DE MULTIPOLYGON (((8.63593 54.... DE
## 9 0 0 EL MULTIPOLYGON (((29.60853 36... EL
## 10 0 0 ES MULTIPOLYGON (((4.28746 39.... ES
SHP_0 <- get_eurostat_geospatial(resolution = 10,
nuts_level = 0,
year = 2016)
## Object cached at /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Reading cache file /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## sf at resolution 1: 10 from year 2016 read from cache file: /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Warning in get_eurostat_geospatial(resolution = 10, nuts_level = 0, year =
## 2016): Default of 'make_valid' for 'output_class="sf"' will be changed in the
## future (see function details).
#27 EU Länder auswählen
#EU27 <- eu_countries %>%
#filter( code == country) %>%
#select(geo = code, name)
#View(EU27)
SHP_27 <- SHP_0 %>%
select(geo) %>%
inner_join(df, by = "geo") %>%
arrange(geo) %>%
st_as_sf()
SHP_27 %>%
ggplot() +
geom_sf() +
scale_x_continuous(limits = c(-10, 35)) +
scale_y_continuous(limits = c(35, 65)) +
theme_void()
df_shp <- df %>%
select(geo, means) %>%
inner_join(SHP_27, by = "geo") %>%
st_as_sf()
#Vertrauen in EU-Parlament
# Get the world map
get_eurostat_geospatial(resolution = 10,
nuts_level = 0,
year = 2016)
## Object cached at /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Reading cache file /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## sf at resolution 1: 10 from year 2016 read from cache file: /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Warning in get_eurostat_geospatial(resolution = 10, nuts_level = 0, year =
## 2016): Default of 'make_valid' for 'output_class="sf"' will be changed in the
## future (see function details).
## Simple feature collection with 37 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -63.08825 ymin: -21.38917 xmax: 55.83616 ymax: 71.15304
## Geodetic CRS: WGS 84
## First 10 features:
## id LEVL_CODE NUTS_ID CNTR_CODE NAME_LATN NUTS_NAME MOUNT_TYPE
## 1 AL 0 AL AL SHQIPËRIA SHQIPËRIA 0
## 2 AT 0 AT AT ÖSTERREICH ÖSTERREICH 0
## 3 BE 0 BE BE BELGIQUE-BELGIË BELGIQUE-BELGIË 0
## 4 NL 0 NL NL NEDERLAND NEDERLAND 0
## 5 PL 0 PL PL POLSKA POLSKA 0
## 6 PT 0 PT PT PORTUGAL PORTUGAL 0
## 7 DK 0 DK DK DANMARK DANMARK 0
## 8 DE 0 DE DE DEUTSCHLAND DEUTSCHLAND 0
## 9 EL 0 EL EL ELLADA ΕΛΛΑΔΑ 0
## 10 ES 0 ES ES ESPAÑA ESPAÑA 0
## URBN_TYPE COAST_TYPE FID geometry geo
## 1 0 0 AL MULTIPOLYGON (((19.82698 42... AL
## 2 0 0 AT MULTIPOLYGON (((15.54245 48... AT
## 3 0 0 BE MULTIPOLYGON (((5.10218 51.... BE
## 4 0 0 NL MULTIPOLYGON (((6.87491 53.... NL
## 5 0 0 PL MULTIPOLYGON (((18.95003 54... PL
## 6 0 0 PT MULTIPOLYGON (((-8.16508 41... PT
## 7 0 0 DK MULTIPOLYGON (((14.8254 55.... DK
## 8 0 0 DE MULTIPOLYGON (((8.63593 54.... DE
## 9 0 0 EL MULTIPOLYGON (((29.60853 36... EL
## 10 0 0 ES MULTIPOLYGON (((4.28746 39.... ES
SHP_1 <- get_eurostat_geospatial(resolution = 10,
nuts_level = 0,
year = 2016)
## Object cached at /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Reading cache file /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## sf at resolution 1: 10 from year 2016 read from cache file: /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Warning in get_eurostat_geospatial(resolution = 10, nuts_level = 0, year =
## 2016): Default of 'make_valid' for 'output_class="sf"' will be changed in the
## future (see function details).
#27 EU Länder auswählen
#EU27_1 <- eu_countries %>%
# filter( code == country) %>%
#select(geo = code, name)
#View(EU27)
SHP_27_1 <- SHP_1 %>%
select(geo) %>%
inner_join(df.1, by = "geo") %>%
arrange(geo) %>%
st_as_sf()
SHP_27_1 %>%
ggplot() +
geom_sf() +
scale_x_continuous(limits = c(-10, 35)) +
scale_y_continuous(limits = c(35, 65)) +
theme_void()
df_shp_1 <- df.1 %>%
select(geo, means) %>%
inner_join(SHP_27_1, by = "geo") %>%
st_as_sf()
#Vertrauen in UN
get_eurostat_geospatial(resolution = 10,
nuts_level = 0,
year = 2016)
## Object cached at /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Reading cache file /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## sf at resolution 1: 10 from year 2016 read from cache file: /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Warning in get_eurostat_geospatial(resolution = 10, nuts_level = 0, year =
## 2016): Default of 'make_valid' for 'output_class="sf"' will be changed in the
## future (see function details).
## Simple feature collection with 37 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -63.08825 ymin: -21.38917 xmax: 55.83616 ymax: 71.15304
## Geodetic CRS: WGS 84
## First 10 features:
## id LEVL_CODE NUTS_ID CNTR_CODE NAME_LATN NUTS_NAME MOUNT_TYPE
## 1 AL 0 AL AL SHQIPËRIA SHQIPËRIA 0
## 2 AT 0 AT AT ÖSTERREICH ÖSTERREICH 0
## 3 BE 0 BE BE BELGIQUE-BELGIË BELGIQUE-BELGIË 0
## 4 NL 0 NL NL NEDERLAND NEDERLAND 0
## 5 PL 0 PL PL POLSKA POLSKA 0
## 6 PT 0 PT PT PORTUGAL PORTUGAL 0
## 7 DK 0 DK DK DANMARK DANMARK 0
## 8 DE 0 DE DE DEUTSCHLAND DEUTSCHLAND 0
## 9 EL 0 EL EL ELLADA ΕΛΛΑΔΑ 0
## 10 ES 0 ES ES ESPAÑA ESPAÑA 0
## URBN_TYPE COAST_TYPE FID geometry geo
## 1 0 0 AL MULTIPOLYGON (((19.82698 42... AL
## 2 0 0 AT MULTIPOLYGON (((15.54245 48... AT
## 3 0 0 BE MULTIPOLYGON (((5.10218 51.... BE
## 4 0 0 NL MULTIPOLYGON (((6.87491 53.... NL
## 5 0 0 PL MULTIPOLYGON (((18.95003 54... PL
## 6 0 0 PT MULTIPOLYGON (((-8.16508 41... PT
## 7 0 0 DK MULTIPOLYGON (((14.8254 55.... DK
## 8 0 0 DE MULTIPOLYGON (((8.63593 54.... DE
## 9 0 0 EL MULTIPOLYGON (((29.60853 36... EL
## 10 0 0 ES MULTIPOLYGON (((4.28746 39.... ES
SHP_2 <- get_eurostat_geospatial(resolution = 10,
nuts_level = 0,
year = 2016)
## Object cached at /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Reading cache file /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## sf at resolution 1: 10 from year 2016 read from cache file: /var/folders/g0/4kzvprs97gg1wbgfmp3lsm780000gn/T//Rtmpznnxj2/eurostat/sf10020164326.RData
## Warning in get_eurostat_geospatial(resolution = 10, nuts_level = 0, year =
## 2016): Default of 'make_valid' for 'output_class="sf"' will be changed in the
## future (see function details).
#27 EU Länder auswählen
#EU27_2 <- eu_countries %>%
# filter(code == country) %>%
#select(geo = code, name)
#View(EU27)
SHP_27_2 <- SHP_2 %>%
select(geo) %>%
inner_join(df.2, by = "geo") %>%
arrange(geo) %>%
st_as_sf()
SHP_27_2 %>%
ggplot() +
geom_sf() +
scale_x_continuous(limits = c(-10, 35)) +
scale_y_continuous(limits = c(35, 65)) +
theme_void()
df_shp_2 <- df.2 %>%
select(geo, means) %>%
inner_join(SHP_27_2, by = "geo") %>%
st_as_sf()
gg_theme <- list(
theme_void(),
scale_x_continuous(limits = c(-10, 35)),
scale_y_continuous(limits = c(36, 70)),
aes(fill = means.x),
geom_sf(size = 0.5,
color = "#F3F3F3"
),
scale_fill_gradient2_tableau(palette = "Red-Blue-White Diverging",
breaks = seq(from = 2, to = 7, by = 0.5)),
labs(subtitle = "Durchschnitt bei einer Skala von 0-10",
caption = "Data: ESS2019"
)
)
#ggplot(df_shp,aes(fill = means.x)) +
# geom_sf(size = 0.5, color = "#F3F3F3") +
#scale_fill_gradient2_tableau(palette = "Red-Blue-White Diverging", breaks = seq(from = 2, to = 7, by = 0.5)) +
#scale_x_continuous(limits = c(-10, 35)) +
#scale_y_continuous(limits = c(36, 70)) +
#labs(
# title = "Durchschnittliches Vertrauen in nationales Parlament",
#subtitle = "Durchschnitt bei einer Skala von 0-10",
#caption = "Data: ESS2019"
#) +
#theme_void()
Es werden Heatmaps von Europa erstellt, wo das durchschnittliche Vertrauen in die jeweilige Institution dargestellt wird
#Durchschnittliches Vertrauen in Landesparlamente
g13 <- df_shp %>%
ggplot() +
labs(title = "Durchschnittliches Vertrauen in nationales Parlament") +
gg_theme
g13
ggplotly()
ggsave(filename = "Heatmap_Land.png", plot = g13, width = 8, height = 7, dpi = 600)
#Durchscnittliches Vertrauen in EU-Parlament
g14 <- df_shp_1 %>%
ggplot() +
labs(title = "Durchschnittliches Vertrauen in Europäisches Parlament") +
gg_theme
g14
ggplotly()
ggsave(filename = "Heatmap_Europa.png", plot = g14, width = 8, height = 7, dpi = 600)
#Durchschnittliches Vertrauen in die UN
g15 <- df_shp_2 %>%
ggplot() +
labs(title = "Durchschnittliches Vertrauen in UN") +
gg_theme
g15
ggplotly()
ggsave(filename = "Heatmap_UN.png", plot = g15, width = 8, height = 7, dpi = 600)