Importing the dataset
dataset = read.csv("C:/RClass/Data.csv")
Taking care of missing data
dataset$Age = ifelse(is.na(dataset$Age),
ave(dataset$Age, FUN= function(x) mean(x, na.rm= TRUE)),
dataset$Age)
dataset$Salary = ifelse(is.na(dataset$Salary),
ave(dataset$Salary, FUN= function(x) mean(x, na.rm= TRUE)),
dataset$Salary)
Encoding categorical data
dataset$Country = factor(dataset$Country,
levels = c('France','Spain','Germany'),
labels = c(1, 2, 3))
dataset$Purchased = factor(dataset$Purchased,
levels = c('No','Yes'),
labels = c(0,1))
Splitting the dataset into the Training set and Test set
# install.packages('caTools')
library(caTools)
## Warning: package 'caTools' was built under R version 4.1.3
set.seed(2023)
split = sample.split(dataset$Purchased, SplitRatio = 0.8)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
Feature scaling
dataset = read.csv("C:/RClass/Data.csv")
training_set[,2:3] = scale(training_set[,2:3])
test_set[,2:3] = scale(test_set[,2:3])