data <- read_excel("../00_data/Datasimpler.xlsx")
data
## # A tibble: 45 × 4
## States Colony_Loss Colony_Added `Colony_Gain/Loss`
## <chr> <dbl> <dbl> <dbl>
## 1 Alabama 2700 2800 100
## 2 Arizona 4200 8500 4300
## 3 Arkansas 1600 9000 7400
## 4 California 64000 200000 136000
## 5 Colorado 5500 4800 -700
## 6 Connecticut 60 960 900
## 7 Florida 33000 52000 19000
## 8 Georgia 20000 25000 5000
## 9 Hawaii 630 460 -170
## 10 Idaho 19500 40000 20500
## # … with 35 more rows
Primary keys in my column are States
Divide it using dplyr::select in a way the two have a common variable, which you could use to join the two.
data_1 <- data %>% select(States, Colony_Loss, Colony_Added)
data_1
## # A tibble: 45 × 3
## States Colony_Loss Colony_Added
## <chr> <dbl> <dbl>
## 1 Alabama 2700 2800
## 2 Arizona 4200 8500
## 3 Arkansas 1600 9000
## 4 California 64000 200000
## 5 Colorado 5500 4800
## 6 Connecticut 60 960
## 7 Florida 33000 52000
## 8 Georgia 20000 25000
## 9 Hawaii 630 460
## 10 Idaho 19500 40000
## # … with 35 more rows
data_2 <- data %>% select(States, `Colony_Gain/Loss`)
data_1 %>%
left_join(data_2)
## Joining with `by = join_by(States)`
## # A tibble: 45 × 4
## States Colony_Loss Colony_Added `Colony_Gain/Loss`
## <chr> <dbl> <dbl> <dbl>
## 1 Alabama 2700 2800 100
## 2 Arizona 4200 8500 4300
## 3 Arkansas 1600 9000 7400
## 4 California 64000 200000 136000
## 5 Colorado 5500 4800 -700
## 6 Connecticut 60 960 900
## 7 Florida 33000 52000 19000
## 8 Georgia 20000 25000 5000
## 9 Hawaii 630 460 -170
## 10 Idaho 19500 40000 20500
## # … with 35 more rows
Use tidyr::left_join or other joining functions.
data_1 %>%
left_join(data_2)
## Joining with `by = join_by(States)`
## # A tibble: 45 × 4
## States Colony_Loss Colony_Added `Colony_Gain/Loss`
## <chr> <dbl> <dbl> <dbl>
## 1 Alabama 2700 2800 100
## 2 Arizona 4200 8500 4300
## 3 Arkansas 1600 9000 7400
## 4 California 64000 200000 136000
## 5 Colorado 5500 4800 -700
## 6 Connecticut 60 960 900
## 7 Florida 33000 52000 19000
## 8 Georgia 20000 25000 5000
## 9 Hawaii 630 460 -170
## 10 Idaho 19500 40000 20500
## # … with 35 more rows