Explaining plant assemblies

Effect of soil and grazing-related variables on plant community in Castril, Santiago and Pontones (CSP) pasturelands.

Environmental variables

Soil variables

hist(soil_6$soil_dens, xlab = "Soil bulk density")

hist(soil_6$C, xlab = "C %")

Correlation matrix

res <- cor(soil_6%>% filter(stock>1), method = c("spearman"))
res <- round(res, 2)

upper<-res
upper[upper.tri(res,diag=FALSE)]<-""
upper<-as.data.frame(upper) ;kable(upper)
bare litt ston rock mos ph soil_dens depth hcl chro val ur_t ur_fh dung_au dung_sp stock t_day e_day pl_dens om N C
bare 1
litt 0.21 1
ston -0.47 -0.6 1
rock -0.19 0.19 -0.28 1
mos -0.21 0.28 -0.35 0.24 1
ph -0.1 0.1 0.23 -0.23 -0.14 1
soil_dens 0.13 0.11 0 -0.32 -0.1 0.14 1
depth 0.51 -0.22 -0.07 -0.09 -0.43 0.09 0.04 1
hcl -0.11 -0.15 0.48 -0.53 -0.12 0.48 0.11 -0.1 1
chro 0.21 -0.07 -0.02 -0.09 -0.03 0.1 0.31 0.45 0.09 1
val 0.08 0.22 -0.09 -0.31 0.14 0.5 0.38 0.17 0.4 0.28 1
ur_t 0.31 0.1 -0.42 -0.06 0.27 -0.04 0.23 0.12 0.15 0.37 0.39 1
ur_fh 0.01 -0.06 -0.18 0.01 -0.04 -0.11 0.23 0.12 -0.07 0.03 0.13 0.57 1
dung_au -0.04 0.22 0 0.14 0.31 -0.15 -0.01 -0.3 0.15 0.23 -0.01 0 -0.22 1
dung_sp -0.13 0.17 -0.16 0.22 0.17 -0.3 -0.14 -0.44 -0.16 -0.21 -0.32 0.22 0.25 0.52 1
stock 0 0.26 -0.23 0.26 0.16 -0.2 0.01 -0.3 -0.32 -0.38 -0.15 0.01 0.19 -0.01 0.48 1
t_day -0.19 0.16 0.27 -0.02 -0.03 0.06 0.26 -0.35 0.23 0.09 0.15 -0.32 -0.55 0.31 -0.07 0.06 1
e_day 0.03 -0.16 -0.19 0.11 0.02 -0.34 -0.24 0.05 -0.17 0 -0.3 0.06 0.28 0.1 0.27 -0.01 -0.65 1
pl_dens -0.46 0.15 -0.07 0.13 0.42 0.11 -0.29 -0.53 0.13 -0.54 -0.11 -0.11 0.18 -0.23 0.08 0.27 -0.1 0.03 1
om -0.33 -0.25 0.4 0.44 0.05 -0.2 -0.65 -0.31 -0.17 -0.47 -0.6 -0.56 -0.35 0.18 0.2 0.06 -0.03 0.19 0.19 1
N -0.33 -0.23 0.38 0.42 0.11 -0.25 -0.61 -0.34 -0.24 -0.48 -0.59 -0.52 -0.3 0.21 0.26 0.08 -0.04 0.18 0.13 0.98 1
C -0.04 0.05 0.08 0.04 0.22 0.42 -0.44 -0.25 0.07 -0.44 0.05 -0.21 -0.18 0.1 0.22 0.28 -0.12 0.02 0.25 0.45 0.47 1

correlation between Soil organic matter and Total nitrogen

ggplot(soil_6,aes(x=N,y=om)) + geom_point() + xlab("Soil organic matter %") + ylab("Total nitrogen %") + annotate(geom="text", x=0.3, y=20, label="rho = 0.98",color="black")

Total nitrogen is highly related to soil organic matter. Also these two variables are slightly and negatively associated with Plant Utilisation Rate (PUR) and soil bulk density.

Due to multicollinearity, we just keep soil organic matter in our model.

Redundancy Analysis

Variance Inflation Factors (VIF)

Linear dependencies can be explored by computing the X variables’ Variance Inflation Factors (VIF). VIF greater than 10 should be avoided.

vif.cca(csp_rda_1_bis)
## scores(coord[c(-11, -16), ])x scores(coord[c(-11, -16), ])y 
##                      63.41917                     114.19753 
##                          bare                          litt 
##                      54.41976                      11.95434 
##                          ston                          rock 
##                      77.56150                      21.03297 
##                           mos                            ph 
##                      16.24591                      34.81459 
##                     soil_dens                         depth 
##                      34.33008                      19.67644 
##                           hcl                          chro 
##                      28.40969                      25.82693 
##                           val                         ur_fh 
##                      20.86687                      16.75383 
##                          ur_t                       dung_sp 
##                      65.54123                      14.34461 
##                         stock                         t_day 
##                      13.88128                     145.97920 
##                       pl_dens                            om 
##                      23.58503                      36.85092 
##                         e_day                             C 
##                      82.49753                      17.38069

So our first model features the problem of multicollinearity.Yet, we keep all the variables to have a general view of the relationship between variables.

Result interpretation

From this first model we can draw that Our results reveal that axis 1 is mainly related to soil variables. This axis discriminates plant communities characterized by Thymus serpylloides with a large surface occupied by bare soil, high total carbon from plant communities with Poa bulbosa having a deep soil depth, high chromaticity which corresponds to light soils, therefore not so organic. Interestingly this soil features a high presence of moss (Figure 1-2).

Axis 2 suggests that grazing pressure leads to the differentiation of high-presence communities of Festuca hystrix vs. Poa ligulata and Koeleria vallesiana plant communities. The positive size shows nutrient-rich soils (high organic matter and nitogen) and high density of plants. Whereas the negative size of axes 2 shows nutrient-poor soil, high Plant Utilization Rate (total and for Festuca hystrix), high chromaticity and soil bulk density (Figure 1-2).

The positive size of axis 1 and the negative size of axis 2 suggest plant communities that have been subjected to significant grazing disturbance (Figure 1). Moreover, the presence of Minuartia hybrida an annual plants also suggest this hypothesis. A significant grazing alteration could lead to a increase in soil bulk density and a depletion of soil nutrients (Pulido et al. 2016; Yand et al. 2023).

Plant acronyms

df_acry = tibble(colnames(community_data_presence_2)[1:28],acry)
kable(df_acry)
colnames(community_data_presence_2)[1:28] acry
Thymus_serpylloides TS
Festuca_hystrix FH
Helianthemum_cinereum HC
Poa_ligulata PL
Koeleria_vallesiana KV
Poa_bulbosa PB
Minuartia_hybrida MH
Pilosella_pseudopilosella PP
Bromus_tectorum BT
Helianthemum_appenninum HA
Cerastium_brachypetalum-subsp-brachypetalum CB
Aegilops_geniculata AG
Arenaria_tetraquetra AT
Festuca_larga/suave FL
Vulpia_unilateralis VU
Avenula_bromoides AB
Sedum_amplexicaule SAm
Arenaria_leptoclados AL
Sedum_acre SAc
Xeranthemum_inapertum XI
Veronica_sp Vsp
Asperula_aristata AA
Eryngium_campestre EC
Ononis_pusilla OP
Ononis_spinosa OS
Silene_legionensis SL
Erinacea_anthyllis EA
Helictotrichon_filifolium HF