Effect of soil and grazing-related variables on plant community in Castril, Santiago and Pontones (CSP) pasturelands.
hist(soil_6$soil_dens, xlab = "Soil bulk density")
hist(soil_6$C, xlab = "C %")
<- cor(soil_6%>% filter(stock>1), method = c("spearman"))
res <- round(res, 2)
res
<-res
upperupper.tri(res,diag=FALSE)]<-""
upper[<-as.data.frame(upper) ;kable(upper) upper
bare | litt | ston | rock | mos | ph | soil_dens | depth | hcl | chro | val | ur_t | ur_fh | dung_au | dung_sp | stock | t_day | e_day | pl_dens | om | N | C | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bare | 1 | |||||||||||||||||||||
litt | 0.21 | 1 | ||||||||||||||||||||
ston | -0.47 | -0.6 | 1 | |||||||||||||||||||
rock | -0.19 | 0.19 | -0.28 | 1 | ||||||||||||||||||
mos | -0.21 | 0.28 | -0.35 | 0.24 | 1 | |||||||||||||||||
ph | -0.1 | 0.1 | 0.23 | -0.23 | -0.14 | 1 | ||||||||||||||||
soil_dens | 0.13 | 0.11 | 0 | -0.32 | -0.1 | 0.14 | 1 | |||||||||||||||
depth | 0.51 | -0.22 | -0.07 | -0.09 | -0.43 | 0.09 | 0.04 | 1 | ||||||||||||||
hcl | -0.11 | -0.15 | 0.48 | -0.53 | -0.12 | 0.48 | 0.11 | -0.1 | 1 | |||||||||||||
chro | 0.21 | -0.07 | -0.02 | -0.09 | -0.03 | 0.1 | 0.31 | 0.45 | 0.09 | 1 | ||||||||||||
val | 0.08 | 0.22 | -0.09 | -0.31 | 0.14 | 0.5 | 0.38 | 0.17 | 0.4 | 0.28 | 1 | |||||||||||
ur_t | 0.31 | 0.1 | -0.42 | -0.06 | 0.27 | -0.04 | 0.23 | 0.12 | 0.15 | 0.37 | 0.39 | 1 | ||||||||||
ur_fh | 0.01 | -0.06 | -0.18 | 0.01 | -0.04 | -0.11 | 0.23 | 0.12 | -0.07 | 0.03 | 0.13 | 0.57 | 1 | |||||||||
dung_au | -0.04 | 0.22 | 0 | 0.14 | 0.31 | -0.15 | -0.01 | -0.3 | 0.15 | 0.23 | -0.01 | 0 | -0.22 | 1 | ||||||||
dung_sp | -0.13 | 0.17 | -0.16 | 0.22 | 0.17 | -0.3 | -0.14 | -0.44 | -0.16 | -0.21 | -0.32 | 0.22 | 0.25 | 0.52 | 1 | |||||||
stock | 0 | 0.26 | -0.23 | 0.26 | 0.16 | -0.2 | 0.01 | -0.3 | -0.32 | -0.38 | -0.15 | 0.01 | 0.19 | -0.01 | 0.48 | 1 | ||||||
t_day | -0.19 | 0.16 | 0.27 | -0.02 | -0.03 | 0.06 | 0.26 | -0.35 | 0.23 | 0.09 | 0.15 | -0.32 | -0.55 | 0.31 | -0.07 | 0.06 | 1 | |||||
e_day | 0.03 | -0.16 | -0.19 | 0.11 | 0.02 | -0.34 | -0.24 | 0.05 | -0.17 | 0 | -0.3 | 0.06 | 0.28 | 0.1 | 0.27 | -0.01 | -0.65 | 1 | ||||
pl_dens | -0.46 | 0.15 | -0.07 | 0.13 | 0.42 | 0.11 | -0.29 | -0.53 | 0.13 | -0.54 | -0.11 | -0.11 | 0.18 | -0.23 | 0.08 | 0.27 | -0.1 | 0.03 | 1 | |||
om | -0.33 | -0.25 | 0.4 | 0.44 | 0.05 | -0.2 | -0.65 | -0.31 | -0.17 | -0.47 | -0.6 | -0.56 | -0.35 | 0.18 | 0.2 | 0.06 | -0.03 | 0.19 | 0.19 | 1 | ||
N | -0.33 | -0.23 | 0.38 | 0.42 | 0.11 | -0.25 | -0.61 | -0.34 | -0.24 | -0.48 | -0.59 | -0.52 | -0.3 | 0.21 | 0.26 | 0.08 | -0.04 | 0.18 | 0.13 | 0.98 | 1 | |
C | -0.04 | 0.05 | 0.08 | 0.04 | 0.22 | 0.42 | -0.44 | -0.25 | 0.07 | -0.44 | 0.05 | -0.21 | -0.18 | 0.1 | 0.22 | 0.28 | -0.12 | 0.02 | 0.25 | 0.45 | 0.47 | 1 |
correlation between Soil organic matter and Total nitrogen
ggplot(soil_6,aes(x=N,y=om)) + geom_point() + xlab("Soil organic matter %") + ylab("Total nitrogen %") + annotate(geom="text", x=0.3, y=20, label="rho = 0.98",color="black")
Total nitrogen is highly related to soil organic matter. Also these two variables are slightly and negatively associated with Plant Utilisation Rate (PUR) and soil bulk density.
Due to multicollinearity, we just keep soil organic matter in our model.
Linear dependencies can be explored by computing the X variables’ Variance Inflation Factors (VIF). VIF greater than 10 should be avoided.
vif.cca(csp_rda_1_bis)
## scores(coord[c(-11, -16), ])x scores(coord[c(-11, -16), ])y
## 63.41917 114.19753
## bare litt
## 54.41976 11.95434
## ston rock
## 77.56150 21.03297
## mos ph
## 16.24591 34.81459
## soil_dens depth
## 34.33008 19.67644
## hcl chro
## 28.40969 25.82693
## val ur_fh
## 20.86687 16.75383
## ur_t dung_sp
## 65.54123 14.34461
## stock t_day
## 13.88128 145.97920
## pl_dens om
## 23.58503 36.85092
## e_day C
## 82.49753 17.38069
So our first model features the problem of multicollinearity.Yet, we keep all the variables to have a general view of the relationship between variables.
From this first model we can draw that Our results reveal that axis 1 is mainly related to soil variables. This axis discriminates plant communities characterized by Thymus serpylloides with a large surface occupied by bare soil, high total carbon from plant communities with Poa bulbosa having a deep soil depth, high chromaticity which corresponds to light soils, therefore not so organic. Interestingly this soil features a high presence of moss (Figure 1-2).
Axis 2 suggests that grazing pressure leads to the differentiation of high-presence communities of Festuca hystrix vs. Poa ligulata and Koeleria vallesiana plant communities. The positive size shows nutrient-rich soils (high organic matter and nitogen) and high density of plants. Whereas the negative size of axes 2 shows nutrient-poor soil, high Plant Utilization Rate (total and for Festuca hystrix), high chromaticity and soil bulk density (Figure 1-2).
The positive size of axis 1 and the negative size of axis 2 suggest plant communities that have been subjected to significant grazing disturbance (Figure 1). Moreover, the presence of Minuartia hybrida an annual plants also suggest this hypothesis. A significant grazing alteration could lead to a increase in soil bulk density and a depletion of soil nutrients (Pulido et al. 2016; Yand et al. 2023).
= tibble(colnames(community_data_presence_2)[1:28],acry)
df_acry kable(df_acry)
colnames(community_data_presence_2)[1:28] | acry |
---|---|
Thymus_serpylloides | TS |
Festuca_hystrix | FH |
Helianthemum_cinereum | HC |
Poa_ligulata | PL |
Koeleria_vallesiana | KV |
Poa_bulbosa | PB |
Minuartia_hybrida | MH |
Pilosella_pseudopilosella | PP |
Bromus_tectorum | BT |
Helianthemum_appenninum | HA |
Cerastium_brachypetalum-subsp-brachypetalum | CB |
Aegilops_geniculata | AG |
Arenaria_tetraquetra | AT |
Festuca_larga/suave | FL |
Vulpia_unilateralis | VU |
Avenula_bromoides | AB |
Sedum_amplexicaule | SAm |
Arenaria_leptoclados | AL |
Sedum_acre | SAc |
Xeranthemum_inapertum | XI |
Veronica_sp | Vsp |
Asperula_aristata | AA |
Eryngium_campestre | EC |
Ononis_pusilla | OP |
Ononis_spinosa | OS |
Silene_legionensis | SL |
Erinacea_anthyllis | EA |
Helictotrichon_filifolium | HF |