Ejercicio
var:223
N=30
IC97%
x=18.5
Resolver z
qnorm(0.985,30) #Z teorico 32.17009
#r=18.5+-( 32.17009)*(raiz(:223)/(raiz (30)))
18.5+ 32.17009* (sqrt(223)/(sqrt (30))) #106.209
18.5- 32.17009*(sqrt(223)/(sqrt (30))) #-69.20898
Anovas (Analisis de varianza )
Se usa qf para determinar el teorico
data("InsectSprays")
conteo<-InsectSprays$count
spray<-InsectSprays$spray
a<-aov(conteo~spray)
summary(a)
plot(a)
boxplot(InsectSprays$count~InsectSprays$spray)
length(spray)
Regresiones y correlaciones
El coeficiente de variacion se llama R, es util para determinar si
hay relacion lineal entre dos variales.
El parametro coficiente de correlacion lineal va de -1 a 1. Es
adimencional
Practica
library(readr)
geo <- read_delim("base de datos/geo.csv",
delim = ";", escape_double = FALSE, trim_ws = TRUE)
str(geo)
View(geo)
#Cargar desde web:
link <- "https://raw.githubusercontent.com/entomolab/bases_datos/master/geo.csv"
geo_2<-read.csv(link, header = T, sep= ";")
#correlacion
#Total_Dist vs DOC
cor(geo$Total_Diss,geo$DOC_mg_L)
plot(geo$Total_Diss,geo$DOC_mg_L)
cor.test(geo$Total_Diss,geo$DOC_mg_L)
#NO3 vs temp
cor.test(geo$NO3_mg_L,geo$Temperatur)
plot(geo$NO3_mg_L,geo$Temperatur)
0.4541717^2 #coeficiente de determinacion
shapiro.test(geo$NO3_mg_L)#"asimetrico"
shapiro.test(geo$Temperatur)#"asimetrico"
#como los datos son asimetricos se utiliza el metodo spearman
cor.test(geo$NO3_mg_L,geo$Temperatur,method= "spearman")
install.packages("corrplot")
library(corrplot)
grafica_corr<-cor(geo[,-c(2,17,38,39)])
corrplot(grafica_corr)
library(PerformanceAnalytics)
dat<-data.frame(geo$NO3_mg_L,geo$Temperatur)
chart.Correlation(dat,method = "s")
Regresiones:
model<-lm(geo$Fe_ug_L~ geo$Hg_ug_L)
summary(model)
anova(model)
#F value: calculado (0.1125)
#F teorico :
qf(0.95,1,38)# 4.098172
windows()
par(mfrow=c(2,2))
plot(model)
#eliminando valores atipicos
#model<-lm(y~x,data)
model1<-lm(Fe_ug_L~ Hg_ug_L, geo[-c(11,20,40), ])
summary(model)
anova(model)
windows()
par(mfrow=c(2,2))
plot(model)
#Library GGplot
windows()
grafico <- ggplot(geo, aes(x=Hg_ug_L, y=Fe_ug_L )) +
geom_point(size=7) +
geom_smooth(method = lm) +
annotate("text", label = "R2=25",
x = 2, y = 500, size = 8, colour = "red") +
theme_bw()
grafico
Practica
modelo1<-lm(geo$Temperatur~geo$pH)
summary(modelo1)
anova(modelo1)
windows()
par(mfrow=c(2,2))
plot(modelo1)
#y=mx+b
y= 2.916(pH)+2.425
y= 2.916*8+2.425
grafico1 <- ggplot(geo, aes(x=geo$pH, y=geo$Temperatur )) +
geom_point(size=3) +
geom_smooth(method = lm)
#+
#annotate("text", label = "R2=25",
#x = 2, y = 500, size = 8, colour = "red") +
theme_bw()
grafico1
LS0tDQp0aXRsZTogIlNlbWFuYSA0ICgyMC9tYXJ6bykiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpFamVyY2ljaW8NCg0KdmFyOjIyMw0KDQpOPTMwDQoNCklDOTclDQoNCng9MTguNQ0KDQpSZXNvbHZlciB6DQoNCmBgYHtyfQ0KDQpxbm9ybSgwLjk4NSwzMCkgI1ogdGVvcmljbyAgMzIuMTcwMDkNCiNyPTE4LjUrLSggIDMyLjE3MDA5KSoocmFpeig6MjIzKS8ocmFpeiAoMzApKSkNCg0KMTguNSsgMzIuMTcwMDkqIChzcXJ0KDIyMykvKHNxcnQgKDMwKSkpICMxMDYuMjA5DQoxOC41LSAzMi4xNzAwOSooc3FydCgyMjMpLyhzcXJ0ICgzMCkpKSAjLTY5LjIwODk4DQoNCg0KYGBgDQoNCkFub3ZhcyAoQW5hbGlzaXMgZGUgdmFyaWFuemEgKQ0KDQpTZSB1c2EgcWYgcGFyYSBkZXRlcm1pbmFyIGVsIHRlb3JpY28NCg0KYGBge3J9DQpkYXRhKCJJbnNlY3RTcHJheXMiKSAgDQpjb250ZW88LUluc2VjdFNwcmF5cyRjb3VudA0Kc3ByYXk8LUluc2VjdFNwcmF5cyRzcHJheQ0KYTwtYW92KGNvbnRlb35zcHJheSkNCnN1bW1hcnkoYSkNCnBsb3QoYSkNCmJveHBsb3QoSW5zZWN0U3ByYXlzJGNvdW50fkluc2VjdFNwcmF5cyRzcHJheSkNCmxlbmd0aChzcHJheSkNCmBgYA0KDQpSZWdyZXNpb25lcyB5IGNvcnJlbGFjaW9uZXMNCg0KRWwgY29lZmljaWVudGUgZGUgdmFyaWFjaW9uIHNlIGxsYW1hIFIsIGVzIHV0aWwgcGFyYSBkZXRlcm1pbmFyIHNpIGhheSByZWxhY2lvbiBsaW5lYWwgZW50cmUgZG9zIHZhcmlhbGVzLg0KDQpFbCBwYXJhbWV0cm8gY29maWNpZW50ZSBkZSBjb3JyZWxhY2lvbiBsaW5lYWwgdmEgZGUgLTEgYSAxLiBFcyBhZGltZW5jaW9uYWwgDQoNClByYWN0aWNhIA0KDQpgYGB7cn0NCg0KbGlicmFyeShyZWFkcikNCmdlbyA8LSByZWFkX2RlbGltKCJiYXNlIGRlIGRhdG9zL2dlby5jc3YiLCANCiAgICBkZWxpbSA9ICI7IiwgZXNjYXBlX2RvdWJsZSA9IEZBTFNFLCB0cmltX3dzID0gVFJVRSkNCnN0cihnZW8pDQpWaWV3KGdlbykNCg0KI0NhcmdhciBkZXNkZSB3ZWI6DQpsaW5rIDwtICJodHRwczovL3Jhdy5naXRodWJ1c2VyY29udGVudC5jb20vZW50b21vbGFiL2Jhc2VzX2RhdG9zL21hc3Rlci9nZW8uY3N2Ig0KZ2VvXzI8LXJlYWQuY3N2KGxpbmssIGhlYWRlciA9IFQsIHNlcD0gIjsiKQ0KDQojY29ycmVsYWNpb24gDQojVG90YWxfRGlzdCB2cyBET0MNCmNvcihnZW8kVG90YWxfRGlzcyxnZW8kRE9DX21nX0wpDQpwbG90KGdlbyRUb3RhbF9EaXNzLGdlbyRET0NfbWdfTCkNCmNvci50ZXN0KGdlbyRUb3RhbF9EaXNzLGdlbyRET0NfbWdfTCkNCg0KI05PMyB2cyB0ZW1wDQpjb3IudGVzdChnZW8kTk8zX21nX0wsZ2VvJFRlbXBlcmF0dXIpDQpwbG90KGdlbyROTzNfbWdfTCxnZW8kVGVtcGVyYXR1cikNCjAuNDU0MTcxN14yICNjb2VmaWNpZW50ZSBkZSBkZXRlcm1pbmFjaW9uIA0Kc2hhcGlyby50ZXN0KGdlbyROTzNfbWdfTCkjImFzaW1ldHJpY28iDQpzaGFwaXJvLnRlc3QoZ2VvJFRlbXBlcmF0dXIpIyJhc2ltZXRyaWNvIg0KI2NvbW8gbG9zIGRhdG9zIHNvbiBhc2ltZXRyaWNvcyBzZSB1dGlsaXphIGVsIG1ldG9kbyBzcGVhcm1hbg0KY29yLnRlc3QoZ2VvJE5PM19tZ19MLGdlbyRUZW1wZXJhdHVyLG1ldGhvZD0gInNwZWFybWFuIikNCmluc3RhbGwucGFja2FnZXMoImNvcnJwbG90IikNCmxpYnJhcnkoY29ycnBsb3QpDQoNCmdyYWZpY2FfY29ycjwtY29yKGdlb1ssLWMoMiwxNywzOCwzOSldKQ0KY29ycnBsb3QoZ3JhZmljYV9jb3JyKQ0KbGlicmFyeShQZXJmb3JtYW5jZUFuYWx5dGljcykNCmRhdDwtZGF0YS5mcmFtZShnZW8kTk8zX21nX0wsZ2VvJFRlbXBlcmF0dXIpDQpjaGFydC5Db3JyZWxhdGlvbihkYXQsbWV0aG9kID0gInMiKQ0KDQpgYGANClJlZ3Jlc2lvbmVzOiANCg0KDQpgYGB7cn0NCg0KbW9kZWw8LWxtKGdlbyRGZV91Z19MfiBnZW8kSGdfdWdfTCkNCg0Kc3VtbWFyeShtb2RlbCkNCmFub3ZhKG1vZGVsKQ0KICNGIHZhbHVlOiBjYWxjdWxhZG8gKDAuMTEyNSkNCiNGIHRlb3JpY28gOg0KDQpxZigwLjk1LDEsMzgpIyA0LjA5ODE3Mg0Kd2luZG93cygpDQpwYXIobWZyb3c9YygyLDIpKQ0KcGxvdChtb2RlbCkNCg0KI2VsaW1pbmFuZG8gdmFsb3JlcyBhdGlwaWNvcw0KI21vZGVsPC1sbSh5fngsZGF0YSkNCm1vZGVsMTwtbG0oRmVfdWdfTH4gSGdfdWdfTCwgZ2VvWy1jKDExLDIwLDQwKSwgXSkNCnN1bW1hcnkobW9kZWwpDQphbm92YShtb2RlbCkNCg0Kd2luZG93cygpDQpwYXIobWZyb3c9YygyLDIpKQ0KcGxvdChtb2RlbCkNCg0KI0xpYnJhcnkgR0dwbG90DQp3aW5kb3dzKCkNCmdyYWZpY28gPC0gZ2dwbG90KGdlbywgYWVzKHg9SGdfdWdfTCwgeT1GZV91Z19MICkpICsNCiAgICAgICAgZ2VvbV9wb2ludChzaXplPTcpICsNCiAgICAgICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gbG0pICsNCiAgICAgICAgYW5ub3RhdGUoInRleHQiLCBsYWJlbCA9ICJSMj0yNSIsDQogICAgeCA9IDIsIHkgPSA1MDAsIHNpemUgPSA4LCBjb2xvdXIgPSAicmVkIikgKw0KICAgIHRoZW1lX2J3KCkNCmdyYWZpY28NCg0KDQpgYGANCg0KDQpQcmFjdGljYQ0KDQpgYGB7cn0NCm1vZGVsbzE8LWxtKGdlbyRUZW1wZXJhdHVyfmdlbyRwSCkNCnN1bW1hcnkobW9kZWxvMSkNCmFub3ZhKG1vZGVsbzEpDQp3aW5kb3dzKCkNCnBhcihtZnJvdz1jKDIsMikpDQpwbG90KG1vZGVsbzEpDQojeT1teCtiDQp5PSAyLjkxNihwSCkrMi40MjUNCnk9IDIuOTE2KjgrMi40MjUNCg0KZ3JhZmljbzEgPC0gZ2dwbG90KGdlbywgYWVzKHg9Z2VvJHBILCB5PWdlbyRUZW1wZXJhdHVyICkpICsNCiAgICAgICAgZ2VvbV9wb2ludChzaXplPTMpICsNCiAgICAgICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gbG0pIA0KIysNCiAgICAgICAgI2Fubm90YXRlKCJ0ZXh0IiwgbGFiZWwgPSAiUjI9MjUiLA0KICAgICN4ID0gMiwgeSA9IDUwMCwgc2l6ZSA9IDgsIGNvbG91ciA9ICJyZWQiKSArDQogICAgdGhlbWVfYncoKQ0KZ3JhZmljbzENCg0KYGBgDQoNCg==