cat("\014")     # clean terminal

rm(list = ls()) # clean workspace
try(dev.off(), silent = TRUE) # close all plots
library(afex)
library(emmeans)
library(ggplot2)
library(ggridges)
library(ggdist)
library(dplyr)
library(reshape2)
library(GGally)
library(forcats)
library(readxl)
theme_set(
  theme_minimal()
)
a_posteriori <- function(afex_aov, sig_level = .05) {
  factors  <- as.list(rownames(afex_aov$anova_table))
  for (j in 1:length(factors)) {
    if (grepl(":", factors[[j]])) {
      factors[[j]] <- unlist(strsplit(factors[[j]], ":"))
    }
  }
  p_values <- afex_aov$anova_table$`Pr(>F)`
  for (i in 1:length(p_values)) {
    if (p_values[i] <= sig_level) {
      print(emmeans(afex_aov, factors[[i]], contr = "pairwise"))
      cat(rep("_", 100), '\n', sep = "")
    }
  }
}
eeg_check <- read_excel(file.path('..', 'bad channels resting 2022.xlsx'))
eeg_check <- eeg_check %>%
  mutate(badchan_num = ifelse(badchan == '0', 0, sapply(strsplit(badchan, " "), length)))
bad_eeg   <- eeg_check$name[eeg_check$commentary != 'ok']
master_dir                 <- '~/Insync/OneDrive/LABWORKS_onedrive/Huepe/Fdcyt_2020/resting/processing'
data_dir                   <- paste(master_dir, 'results',  sep = '/')
alpha_power_data_name      <- paste(data_dir, 'foof_data_2_to_48_Hz.csv', sep='/')
alpha_power_data           <- read.table(alpha_power_data_name, header = TRUE, strip.white = TRUE, sep = ",")
alpha_power_data$vulnerability[grepl("nVul", alpha_power_data$Dataset)]  <- "Invulnerable"
alpha_power_data$vulnerability[!grepl("nVul", alpha_power_data$Dataset)] <- "Vulnerable"
alpha_power_data$belief[grepl("nCr", alpha_power_data$Dataset)]          <- "Unbeliever"
alpha_power_data$belief[!grepl("nCr", alpha_power_data$Dataset)]         <- "Believer"
alpha_power_data$sex[grepl("F", alpha_power_data$Dataset)]               <- "Female"
alpha_power_data$sex[!grepl("F", alpha_power_data$Dataset)]              <- "Male"
alpha_power_data$Dataset   <- factor(alpha_power_data$Dataset)
alpha_power_data$Electrode <- factor(alpha_power_data$Electrode)
alpha_power_data$Subject   <- factor(alpha_power_data$Subject)
alpha_power_data$vulnerability <- factor(alpha_power_data$vulnerability)
alpha_power_data$belief        <- factor(alpha_power_data$belief)
alpha_power_data$sex           <- factor(alpha_power_data$sex)
alpha_power_data$hemisphere[alpha_power_data$Electrode %in% c('Fp1',  'E092-AF3a',  'AF7',  'E089-F1a',  'E100-F3a',  'E101-F5a',  'F7',  'E088-FC1a')] <- 'Left'
alpha_power_data$hemisphere[alpha_power_data$Electrode %in% c('Fp2',  'E079-AF4a',  'AF8',  'E076-F2a',  'E068-F4a',  'E069-F6a',  'F8',  'E075-FC2a')] <- 'Right'
alpha_power_data$hemisphere <- factor(alpha_power_data$hemisphere)
alpha_power_data$electrode_pair[alpha_power_data$Electrode %in% c('Fp1' , 'Fp2')]  <- 'Fp1-Fp2'
alpha_power_data$electrode_pair[alpha_power_data$Electrode %in% c('E092-AF3a', 'E079-AF4a')] <- 'AF3-AF4'
alpha_power_data$electrode_pair[alpha_power_data$Electrode %in% c('AF7' , 'AF8')]  <- 'AF7-AF8'
alpha_power_data$electrode_pair[alpha_power_data$Electrode %in% c('E089-F1a' , 'E076-F2a')]  <- 'F1-F2'
alpha_power_data$electrode_pair[alpha_power_data$Electrode %in% c('E100-F3a' , 'E068-F4a')]  <- 'F3-F4'
alpha_power_data$electrode_pair[alpha_power_data$Electrode %in% c('E101-F5a' , 'E069-F6a')]  <- 'F5-F6'
alpha_power_data$electrode_pair[alpha_power_data$Electrode %in% c('F7'  , 'F8')]   <- 'F7-F8'
alpha_power_data$electrode_pair[alpha_power_data$Electrode %in% c('E088-FC1a', 'E075-FC2a')] <- 'FC1-FC2'
alpha_power_data$electrode_pair <- factor(alpha_power_data$electrode_pair, levels = c('Fp1-Fp2', 'AF3-AF4', 'AF7-AF8', 'F1-F2', 'F3-F4','F5-F6', 'F7-F8', 'FC1-FC2'))
write.csv(alpha_power_data,  paste(data_dir, '/alpha_power_data_clean.csv', sep = ''),  row.names = FALSE)
asymmetry_Fp2_Fp1 <- c()
asymmetry_AF4_AF3 <- c()
asymmetry_AF8_AF7 <- c()
asymmetry_F2_F1   <- c()
asymmetry_F4_F3   <- c()
asymmetry_F6_F5   <- c()
asymmetry_F8_F7   <- c()
asymmetry_FC2_FC1 <- c()
subj_block <- unique(alpha_power_data[c("Subject" ,"vulnerability" ,"belief" ,"sex")])
for (subj in subj_block$Subject) {
  subject_data <- subset(alpha_power_data, Subject == subj)
  asymmetry_Fp2_Fp1 <- c(asymmetry_Fp2_Fp1, subject_data[which(subject_data$Electrode == 'Fp2') ,      5] - subject_data[which(subject_data$Electrode=='Fp1') ,      5])
  asymmetry_AF4_AF3 <- c(asymmetry_AF4_AF3, subject_data[which(subject_data$Electrode == 'E079-AF4a'), 5] - subject_data[which(subject_data$Electrode=='E092-AF3a'), 5])
  asymmetry_AF8_AF7 <- c(asymmetry_AF8_AF7, subject_data[which(subject_data$Electrode == 'AF8') ,      5] - subject_data[which(subject_data$Electrode=='AF7') ,      5])
  asymmetry_F2_F1   <- c(asymmetry_F2_F1  , subject_data[which(subject_data$Electrode == 'E076-F2a') , 5] - subject_data[which(subject_data$Electrode=='E089-F1a') , 5])
  asymmetry_F4_F3   <- c(asymmetry_F4_F3  , subject_data[which(subject_data$Electrode == 'E068-F4a') , 5] - subject_data[which(subject_data$Electrode=='E100-F3a') , 5])
  asymmetry_F6_F5   <- c(asymmetry_F6_F5  , subject_data[which(subject_data$Electrode == 'E069-F6a') , 5] - subject_data[which(subject_data$Electrode=='E101-F5a') , 5])
  asymmetry_F8_F7   <- c(asymmetry_F8_F7  , subject_data[which(subject_data$Electrode == 'F8')  ,      5] - subject_data[which(subject_data$Electrode=='F7')  ,      5])
  asymmetry_FC2_FC1 <- c(asymmetry_FC2_FC1, subject_data[which(subject_data$Electrode == 'E075-FC2a'), 5] - subject_data[which(subject_data$Electrode=='E088-FC1a'), 5])
}
alpha_asymmetry_data <- data.frame(subj_block, asymmetry_Fp2_Fp1, asymmetry_AF4_AF3, asymmetry_AF8_AF7, asymmetry_F2_F1, asymmetry_F4_F3, asymmetry_F6_F5, asymmetry_F8_F7, asymmetry_FC2_FC1)
write.csv(alpha_asymmetry_data,  paste(data_dir, '/alpha_asymmetry_data_clean.csv', sep = ''),  row.names = FALSE)

1 Spectral decomposition

options(width = 100)
mytable <- xtabs(~ sex + belief, data = alpha_asymmetry_data)
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              24         24  48
Male                17         15  32
Sum                 41         39  80
  • Infinity Reference or Reference Electrode Standardization Technique (REST).
  • 120 consecutive segments, 5 seconds each.
  • PSD computed with Welch’s method.

1.1 Scalp Map, mean power 9-11 Hz

1.2 PSD topography, 1 to 55 Hz, grand average

1.3 PSD topography, 4 to 30 Hz, grand average

1.4 Frontal Electrodes, 4 to 30 Hz, grand average

  • 2 standard error bands Frontal electrodes

2 Parameterization of neural power spectra

  • Each individual PSD is regarded as a combination of an aperiodic component and putative periodic oscillatory peaks.

2.1 Individual Electrodes

2.2 Individual Subject

3 General Description

options(width = 100)
summary(alpha_asymmetry_data)
    Subject        vulnerability        belief       sex     asymmetry_Fp2_Fp1  
 1      : 1   Invulnerable:66    Believer  :41   Female:48   Min.   :-0.464384  
 3      : 1   Vulnerable  :14    Unbeliever:39   Male  :32   1st Qu.:-0.067196  
 6      : 1                                                  Median :-0.010091  
 10     : 1                                                  Mean   :-0.004637  
 15     : 1                                                  3rd Qu.: 0.050836  
 16     : 1                                                  Max.   : 0.332207  
 (Other):74                                                  NA's   :15         
 asymmetry_AF4_AF3   asymmetry_AF8_AF7  asymmetry_F2_F1    asymmetry_F4_F3    asymmetry_F6_F5   
 Min.   :-0.287080   Min.   :-0.34744   Min.   :-0.29279   Min.   :-0.35884   Min.   :-0.25410  
 1st Qu.:-0.064502   1st Qu.:-0.06967   1st Qu.:-0.03297   1st Qu.:-0.05566   1st Qu.:-0.08199  
 Median :-0.009179   Median : 0.03051   Median : 0.01824   Median : 0.01913   Median : 0.05753  
 Mean   :-0.004620   Mean   : 0.03278   Mean   : 0.00464   Mean   : 0.03268   Mean   : 0.06435  
 3rd Qu.: 0.064638   3rd Qu.: 0.09241   3rd Qu.: 0.05174   3rd Qu.: 0.09606   3rd Qu.: 0.14422  
 Max.   : 0.378251   Max.   : 0.50837   Max.   : 0.23987   Max.   : 0.55158   Max.   : 0.52575  
 NA's   :16          NA's   :18         NA's   :9          NA's   :11         NA's   :15        
 asymmetry_F8_F7    asymmetry_FC2_FC1  
 Min.   :-0.30543   Min.   :-0.441154  
 1st Qu.:-0.06689   1st Qu.:-0.052937  
 Median : 0.03141   Median : 0.000638  
 Mean   : 0.05029   Mean   :-0.008126  
 3rd Qu.: 0.12120   3rd Qu.: 0.061400  
 Max.   : 0.61090   Max.   : 0.238582  
 NA's   :17         NA's   :7          
asymmetry_pairs <- c('asymmetry_Fp2_Fp1', 'asymmetry_AF4_AF3', 'asymmetry_AF8_AF7', 'asymmetry_F2_F1', 'asymmetry_F4_F3', 'asymmetry_F6_F5', 'asymmetry_F8_F7', 'asymmetry_FC2_FC1')
asymmetry_pairs_pairs <- ggpairs(alpha_asymmetry_data,
                       columns = asymmetry_pairs,
                       aes(colour = sex, alpha = .25),
                       progress = FALSE,
                       lower = list(continuous = wrap("points")))
suppressWarnings(print(asymmetry_pairs_pairs))

4 Alpha Asymmetry

4.1 Fp2-Fp1 pair

options(width = 100)
alpha_asymmetry_rep_anova = aov_ez("Subject", "asymmetry_Fp2_Fp1", alpha_asymmetry_data, between = c("belief", "sex"))
Warning: Missing values for following ID(s):
3, 10, 16, 24, 29, 33, 41, 62, 64, 74, 77, 81, 83, 107, 115
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_asymmetry_rep_anova$data$long)
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              18         22  40
Male                12         13  25
Sum                 30         35  65
alpha_asymmetry_rain <- ggplot(alpha_asymmetry_rep_anova$data$long, aes(y = asymmetry_Fp2_Fp1, x = belief, color = sex, fill = sex)) +
  # ggtitle("alpha_asymmetry") +
  ylab("power") +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  # theme(legend.position='none')
  # geom_boxplot(width = .15, alpha = .2, outlier.shape = NA) +
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_asymmetry_rain))

alpha_asymmetry_afex_plot <-
  afex_plot(
    alpha_asymmetry_rep_anova,
    x = "belief",
    trace = "sex",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_asymmetry_afex_plot))

nice(alpha_asymmetry_rep_anova)
Anova Table (Type 3 tests)

Response: asymmetry_Fp2_Fp1
      Effect    df  MSE    F   ges p.value
1     belief 1, 61 0.01 0.09  .002    .759
2        sex 1, 61 0.01 0.01 <.001    .914
3 belief:sex 1, 61 0.01 0.01 <.001    .911
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1
a_posteriori(alpha_asymmetry_rep_anova)

4.2 AF4-AF3 pair

options(width = 100)
alpha_asymmetry_rep_anova = aov_ez("Subject", "asymmetry_AF4_AF3", alpha_asymmetry_data, between = c("belief", "sex"))
Warning: Missing values for following ID(s):
3, 16, 20, 24, 29, 31, 33, 41, 62, 64, 74, 77, 81, 83, 107, 115
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_asymmetry_rep_anova$data$long)
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              17         22  39
Male                13         12  25
Sum                 30         34  64
alpha_asymmetry_rain <- ggplot(alpha_asymmetry_rep_anova$data$long, aes(y = asymmetry_AF4_AF3, x = belief, color = sex, fill = sex)) +
  # ggtitle("alpha_asymmetry") +
  ylab("power") +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  # theme(legend.position='none')
  # geom_boxplot(width = .15, alpha = .2, outlier.shape = NA) +
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_asymmetry_rain))

alpha_asymmetry_afex_plot <-
  afex_plot(
    alpha_asymmetry_rep_anova,
    x = "belief",
    trace = "sex",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_asymmetry_afex_plot))

nice(alpha_asymmetry_rep_anova)
Anova Table (Type 3 tests)

Response: asymmetry_AF4_AF3
      Effect    df  MSE    F   ges p.value
1     belief 1, 60 0.02 0.04 <.001    .850
2        sex 1, 60 0.02 0.01 <.001    .907
3 belief:sex 1, 60 0.02 0.02 <.001    .876
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1
a_posteriori(alpha_asymmetry_rep_anova)

4.3 AF8-AF7 pair

options(width = 100)
alpha_asymmetry_rep_anova = aov_ez("Subject", "asymmetry_AF8_AF7", alpha_asymmetry_data, between = c("belief", "sex"))
Warning: Missing values for following ID(s):
3, 10, 16, 24, 29, 33, 41, 60, 62, 64, 68, 74, 77, 81, 83, 98, 107, 115
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_asymmetry_rep_anova$data$long)
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              18         21  39
Male                11         12  23
Sum                 29         33  62
alpha_asymmetry_rain <- ggplot(alpha_asymmetry_rep_anova$data$long, aes(y = asymmetry_AF8_AF7, x = belief, color = sex, fill = sex)) +
  # ggtitle("alpha_asymmetry") +
  ylab("power") +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  # theme(legend.position='none')
  # geom_boxplot(width = .15, alpha = .2, outlier.shape = NA) +
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_asymmetry_rain))
alpha_asymmetry_afex_plot <-
  afex_plot(
    alpha_asymmetry_rep_anova,
    x = "belief",
    trace = "sex",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_asymmetry_afex_plot))

nice(alpha_asymmetry_rep_anova)
Anova Table (Type 3 tests)

Response: asymmetry_AF8_AF7
      Effect    df  MSE    F   ges p.value
1     belief 1, 58 0.03 0.01 <.001    .904
2        sex 1, 58 0.03 0.09  .001    .770
3 belief:sex 1, 58 0.03 0.11  .002    .740
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1
a_posteriori(alpha_asymmetry_rep_anova)

4.4 F2-F1 pair

nice(alpha_asymmetry_rep_anova)
Anova Table (Type 3 tests)

Response: asymmetry_F2_F1
      Effect    df  MSE    F  ges p.value
1     belief 1, 67 0.01 0.13 .002    .719
2        sex 1, 67 0.01 0.63 .009    .430
3 belief:sex 1, 67 0.01 0.90 .013    .347
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1
a_posteriori(alpha_asymmetry_rep_anova)
alpha_asymmetry_afex_plot <-
  afex_plot(
    alpha_asymmetry_rep_anova,
    x = "belief",
    trace = "sex",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_asymmetry_afex_plot))
options(width = 100)
alpha_asymmetry_rep_anova = aov_ez("Subject", "asymmetry_F2_F1", alpha_asymmetry_data, between = c("belief", "sex"))
Warning: Missing values for following ID(s):
24, 29, 33, 43, 64, 74, 77, 81, 107
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_asymmetry_rep_anova$data$long)
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              20         23  43
Male                14         14  28
Sum                 34         37  71
alpha_asymmetry_rain <- ggplot(alpha_asymmetry_rep_anova$data$long, aes(y = asymmetry_F2_F1, x = belief, color = sex, fill = sex)) +
  # ggtitle("alpha_asymmetry") +
  ylab("power") +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  # theme(legend.position='none')
  # geom_boxplot(width = .15, alpha = .2, outlier.shape = NA) +
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_asymmetry_rain))
alpha_asymmetry_afex_plot <-
  afex_plot(
    alpha_asymmetry_rep_anova,
    x = "belief",
    trace = "sex",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_asymmetry_afex_plot))

4.5 F4-F3 pair

options(width = 100)
alpha_asymmetry_rep_anova = aov_ez("Subject", "asymmetry_F4_F3", alpha_asymmetry_data, between = c("belief", "sex"))
Warning: Missing values for following ID(s):
24, 29, 33, 37, 43, 55, 62, 64, 77, 98, 107
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_asymmetry_rep_anova$data$long)
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              21         22  43
Male                14         12  26
Sum                 35         34  69
alpha_asymmetry_rain <- ggplot(alpha_asymmetry_rep_anova$data$long, aes(y = asymmetry_F4_F3, x = belief, color = sex, fill = sex)) +
  # ggtitle("alpha_asymmetry") +
  ylab("power") +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  # theme(legend.position='none')
  # geom_boxplot(width = .15, alpha = .2, outlier.shape = NA) +
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_asymmetry_rain))

alpha_asymmetry_afex_plot <-
  afex_plot(
    alpha_asymmetry_rep_anova,
    x = "belief",
    trace = "sex",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_asymmetry_afex_plot))

nice(alpha_asymmetry_rep_anova)
Anova Table (Type 3 tests)

Response: asymmetry_F4_F3
      Effect    df  MSE    F   ges p.value
1     belief 1, 65 0.02 0.04 <.001    .837
2        sex 1, 65 0.02 0.71  .011    .404
3 belief:sex 1, 65 0.02 0.30  .005    .585
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1
a_posteriori(alpha_asymmetry_rep_anova)

4.6 F6-F5 pair

options(width = 100)
alpha_asymmetry_rep_anova = aov_ez("Subject", "asymmetry_F6_F5", alpha_asymmetry_data, between = c("belief", "sex"))
Warning: Missing values for following ID(s):
3, 24, 29, 33, 37, 43, 55, 62, 64, 74, 77, 81, 83, 107, 115
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_asymmetry_rep_anova$data$long)
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              19         21  40
Male                12         13  25
Sum                 31         34  65
alpha_asymmetry_rain <- ggplot(alpha_asymmetry_rep_anova$data$long, aes(y = asymmetry_F6_F5, x = belief, color = sex, fill = sex)) +
  # ggtitle("alpha_asymmetry") +
  ylab("power") +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  # theme(legend.position='none')
  # geom_boxplot(width = .15, alpha = .2, outlier.shape = NA) +
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_asymmetry_rain))

alpha_asymmetry_afex_plot <-
  afex_plot(
    alpha_asymmetry_rep_anova,
    x = "belief",
    trace = "sex",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_asymmetry_afex_plot))

nice(alpha_asymmetry_rep_anova)
Anova Table (Type 3 tests)

Response: asymmetry_F6_F5
      Effect    df  MSE    F   ges p.value
1     belief 1, 61 0.03 0.04 <.001    .840
2        sex 1, 61 0.03 0.01 <.001    .944
3 belief:sex 1, 61 0.03 1.21  .020    .275
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1
a_posteriori(alpha_asymmetry_rep_anova)

4.7 F8-F7 pair

options(width = 100)
alpha_asymmetry_rep_anova = aov_ez("Subject", "asymmetry_F8_F7", alpha_asymmetry_data, between = c("belief", "sex"))
Warning: Missing values for following ID(s):
3, 10, 16, 24, 29, 33, 37, 60, 62, 63, 68, 74, 77, 81, 83, 107, 115
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_asymmetry_rep_anova$data$long)
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              18         21  39
Male                11         13  24
Sum                 29         34  63
alpha_asymmetry_rain <- ggplot(alpha_asymmetry_rep_anova$data$long, aes(y = asymmetry_F8_F7, x = belief, color = sex, fill = sex)) +
  # ggtitle("alpha_asymmetry") +
  ylab("power") +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  # theme(legend.position='none')
  # geom_boxplot(width = .15, alpha = .2, outlier.shape = NA) +
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_asymmetry_rain))

alpha_asymmetry_afex_plot <-
  afex_plot(
    alpha_asymmetry_rep_anova,
    x = "belief",
    trace = "sex",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_asymmetry_afex_plot))

nice(alpha_asymmetry_rep_anova)
Anova Table (Type 3 tests)

Response: asymmetry_F8_F7
      Effect    df  MSE    F   ges p.value
1     belief 1, 59 0.03 0.04 <.001    .837
2        sex 1, 59 0.03 0.86  .014    .359
3 belief:sex 1, 59 0.03 0.00 <.001    .958
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1
a_posteriori(alpha_asymmetry_rep_anova)

4.8 FC2-FC1 pair

options(width = 100)
alpha_asymmetry_rep_anova = aov_ez("Subject", "asymmetry_FC2_FC1", alpha_asymmetry_data, between = c("belief", "sex"))
Warning: Missing values for following ID(s):
24, 29, 33, 43, 63, 77, 107
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_asymmetry_rep_anova$data$long)
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              21         23  44
Male                15         14  29
Sum                 36         37  73
alpha_asymmetry_rain <- ggplot(alpha_asymmetry_rep_anova$data$long, aes(y = asymmetry_FC2_FC1, x = belief, color = sex, fill = sex)) +
  # ggtitle("alpha_asymmetry") +
  ylab("power") +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  # theme(legend.position='none')
  # geom_boxplot(width = .15, alpha = .2, outlier.shape = NA) +
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_asymmetry_rain))

alpha_asymmetry_afex_plot <-
  afex_plot(
    alpha_asymmetry_rep_anova,
    x = "belief",
    trace = "sex",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_asymmetry_afex_plot))

nice(alpha_asymmetry_rep_anova)
Anova Table (Type 3 tests)

Response: asymmetry_FC2_FC1
      Effect    df  MSE    F   ges p.value
1     belief 1, 69 0.01 0.07  .001    .787
2        sex 1, 69 0.01 0.03 <.001    .855
3 belief:sex 1, 69 0.01 0.06 <.001    .811
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1
a_posteriori(alpha_asymmetry_rep_anova)

5 Alpha peak parameters and aperiodic activity

options(width = 100)
summary(alpha_power_data)
                         Dataset        Subject         Electrode     Frequency     
 S001VulCrF20957113_psd.csv  :  16   1      :  16   AF7      : 80   Min.   : 7.038  
 S003nVulCrM18466555_psd.csv :  16   3      :  16   AF8      : 80   1st Qu.: 9.186  
 S006nVulCrM17923449_psd.csv :  16   6      :  16   E068-F4a : 80   Median :10.439  
 S010nVulCrM193177867_psd.csv:  16   10     :  16   E069-F6a : 80   Mean   :10.148  
 S015nVulCrM18833005_psd.csv :  16   15     :  16   E075-FC2a: 80   3rd Qu.:10.998  
 S016VulCrF19423156_psd.csv  :  16   16     :  16   E076-F2a : 80   Max.   :12.817  
 (Other)                     :1184   (Other):1184   (Other)  :800   NA's   :154     
   Amplitude           Width           Offset            Slope           r_squared     
 Min.   :0.03165   Min.   :1.000   Min.   :-0.8527   Min.   :-0.4634   Min.   :0.1005  
 1st Qu.:0.36521   1st Qu.:1.910   1st Qu.: 0.7246   1st Qu.: 0.9929   1st Qu.:0.9624  
 Median :0.61276   Median :2.465   Median : 1.0366   Median : 1.2708   Median :0.9866  
 Mean   :0.64807   Mean   :2.570   Mean   : 1.0670   Mean   : 1.2576   Mean   :0.9572  
 3rd Qu.:0.91668   3rd Qu.:3.118   3rd Qu.: 1.3956   3rd Qu.: 1.5131   3rd Qu.:0.9942  
 Max.   :1.59599   Max.   :5.000   Max.   : 3.1870   Max.   : 2.6788   Max.   :0.9990  
 NA's   :154       NA's   :154                                                         
     error            n_peaks          f_inf       f_sup      alpha_inf   alpha_sup 
 Min.   :0.01270   Min.   :0.000   Min.   :2   Min.   :48   Min.   :7   Min.   :13  
 1st Qu.:0.03031   1st Qu.:2.000   1st Qu.:2   1st Qu.:48   1st Qu.:7   1st Qu.:13  
 Median :0.04179   Median :3.000   Median :2   Median :48   Median :7   Median :13  
 Mean   :0.05024   Mean   :2.754   Mean   :2   Mean   :48   Mean   :7   Mean   :13  
 3rd Qu.:0.05967   3rd Qu.:4.000   3rd Qu.:2   3rd Qu.:48   3rd Qu.:7   3rd Qu.:13  
 Max.   :0.24311   Max.   :4.000   Max.   :2   Max.   :48   Max.   :7   Max.   :13  
                                                                                    
      vulnerability         belief        sex      hemisphere  electrode_pair
 Invulnerable:1056   Believer  :656   Female:768   Left :640   Fp1-Fp2:160   
 Vulnerable  : 224   Unbeliever:624   Male  :512   Right:640   AF3-AF4:160   
                                                               AF7-AF8:160   
                                                               F1-F2  :160   
                                                               F3-F4  :160   
                                                               F5-F6  :160   
                                                               (Other):320   
spec_params <- c('Amplitude', 'Frequency', 'Width', 'Offset', 'Slope')
spec_params_pairs <- ggpairs(alpha_power_data,
                       columns = spec_params,
                       aes(colour = vulnerability, alpha = .25),
                       progress = FALSE,
                       lower = list(continuous = wrap("points")))
suppressWarnings(print(spec_params_pairs))

5.1 Alpha Power

options(width = 100)
alpha_param_rep_anova = aov_ez("Subject", "Amplitude", alpha_power_data, between = c("belief", "sex"), within = c("hemisphere", "electrode_pair"))
Warning: Missing values for following ID(s):
3, 10, 16, 20, 24, 29, 31, 33, 37, 41, 43, 55, 60, 62, 63, 64, 68, 74, 77, 81, 83, 98, 107, 115
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_param_rep_anova$data$long) / length(levels(alpha_param_rep_anova$data$long$electrode_pair)) / length(levels(alpha_param_rep_anova$data$long$hemisphere))
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              17         20  37
Male                 9         10  19
Sum                 26         30  56
alpha_param_rain <- ggplot(alpha_param_rep_anova$data$long, aes(y = Amplitude, x = belief, color = sex, fill = sex)) +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_param_rain))

alpha_param_afex_plot <-
  afex_plot(
    alpha_param_rep_anova,
    x = "belief",
    trace = "sex",
    panel = "hemisphere",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_param_afex_plot))

nice(alpha_param_rep_anova)
Anova Table (Type 3 tests)

Response: Amplitude
                                 Effect           df  MSE         F   ges p.value
1                                belief        1, 52 1.27      0.34  .006    .564
2                                   sex        1, 52 1.27      0.03 <.001    .864
3                            belief:sex        1, 52 1.27      0.70  .012    .408
4                            hemisphere        1, 52 0.04    2.81 +  .002    .100
5                     belief:hemisphere        1, 52 0.04      0.00 <.001    .958
6                        sex:hemisphere        1, 52 0.04      0.05 <.001    .821
7                 belief:sex:hemisphere        1, 52 0.04      0.05 <.001    .831
8                        electrode_pair 3.66, 190.21 0.02 31.79 ***  .032   <.001
9                 belief:electrode_pair 3.66, 190.21 0.02      1.77  .002    .143
10                   sex:electrode_pair 3.66, 190.21 0.02      1.78  .002    .140
11            belief:sex:electrode_pair 3.66, 190.21 0.02      0.33 <.001    .845
12            hemisphere:electrode_pair 4.22, 219.69 0.01   3.59 **  .002    .006
13     belief:hemisphere:electrode_pair 4.22, 219.69 0.01      0.11 <.001    .982
14        sex:hemisphere:electrode_pair 4.22, 219.69 0.01      0.53 <.001    .720
15 belief:sex:hemisphere:electrode_pair 4.22, 219.69 0.01      0.39 <.001    .827
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a_posteriori(alpha_param_rep_anova)
$emmeans
 electrode_pair emmean     SE df lower.CL upper.CL
 Fp1.Fp2         0.698 0.0405 52    0.617    0.780
 AF3.AF4         0.727 0.0405 52    0.646    0.808
 AF7.AF8         0.668 0.0388 52    0.590    0.746
 F1.F2           0.794 0.0414 52    0.711    0.877
 F3.F4           0.753 0.0424 52    0.668    0.838
 F5.F6           0.704 0.0409 52    0.622    0.786
 F7.F8           0.666 0.0399 52    0.586    0.746
 FC1.FC2         0.831 0.0430 52    0.744    0.917

Results are averaged over the levels of: belief, sex, hemisphere 
Confidence level used: 0.95 

$contrasts
 contrast          estimate      SE df t.ratio p.value
 Fp1.Fp2 - AF3.AF4 -0.02871 0.00675 52  -4.254  0.0021
 Fp1.Fp2 - AF7.AF8  0.03016 0.01170 52   2.578  0.1876
 Fp1.Fp2 - F1.F2   -0.09547 0.01489 52  -6.411  <.0001
 Fp1.Fp2 - F3.F4   -0.05509 0.01746 52  -3.156  0.0502
 Fp1.Fp2 - F5.F6   -0.00589 0.01632 52  -0.361  1.0000
 Fp1.Fp2 - F7.F8    0.03219 0.01535 52   2.098  0.4300
 Fp1.Fp2 - FC1.FC2 -0.13214 0.01878 52  -7.038  <.0001
 AF3.AF4 - AF7.AF8  0.05887 0.01403 52   4.197  0.0025
 AF3.AF4 - F1.F2   -0.06676 0.01207 52  -5.529  <.0001
 AF3.AF4 - F3.F4   -0.02638 0.01626 52  -1.622  0.7348
 AF3.AF4 - F5.F6    0.02282 0.01540 52   1.481  0.8137
 AF3.AF4 - F7.F8    0.06090 0.01516 52   4.017  0.0044
 AF3.AF4 - FC1.FC2 -0.10343 0.01594 52  -6.487  <.0001
 AF7.AF8 - F1.F2   -0.12563 0.01713 52  -7.334  <.0001
 AF7.AF8 - F3.F4   -0.08525 0.01498 52  -5.689  <.0001
 AF7.AF8 - F5.F6   -0.03605 0.01436 52  -2.512  0.2136
 AF7.AF8 - F7.F8    0.00203 0.01292 52   0.157  1.0000
 AF7.AF8 - FC1.FC2 -0.16230 0.01931 52  -8.403  <.0001
 F1.F2 - F3.F4      0.04038 0.01230 52   3.282  0.0362
 F1.F2 - F5.F6      0.08958 0.01649 52   5.432  <.0001
 F1.F2 - F7.F8      0.12766 0.01649 52   7.743  <.0001
 F1.F2 - FC1.FC2   -0.03667 0.00874 52  -4.196  0.0025
 F3.F4 - F5.F6      0.04920 0.01166 52   4.221  0.0023
 F3.F4 - F7.F8      0.08728 0.01409 52   6.193  <.0001
 F3.F4 - FC1.FC2   -0.07705 0.01334 52  -5.777  <.0001
 F5.F6 - F7.F8      0.03808 0.01021 52   3.731  0.0104
 F5.F6 - FC1.FC2   -0.12625 0.01690 52  -7.471  <.0001
 F7.F8 - FC1.FC2   -0.16433 0.01683 52  -9.766  <.0001

Results are averaged over the levels of: belief, sex, hemisphere 
P value adjustment: tukey method for comparing a family of 8 estimates 

____________________________________________________________________________________________________
$emmeans
 hemisphere electrode_pair emmean     SE df lower.CL upper.CL
 Left       Fp1.Fp2         0.700 0.0405 52    0.619    0.781
 Right      Fp1.Fp2         0.697 0.0424 52    0.612    0.782
 Left       AF3.AF4         0.725 0.0411 52    0.643    0.808
 Right      AF3.AF4         0.729 0.0418 52    0.645    0.813
 Left       AF7.AF8         0.648 0.0385 52    0.571    0.726
 Right      AF7.AF8         0.688 0.0428 52    0.602    0.774
 Left       F1.F2           0.795 0.0426 52    0.709    0.880
 Right      F1.F2           0.793 0.0414 52    0.710    0.876
 Left       F3.F4           0.741 0.0454 52    0.650    0.832
 Right      F3.F4           0.766 0.0424 52    0.681    0.851
 Left       F5.F6           0.671 0.0427 52    0.586    0.757
 Right      F5.F6           0.737 0.0427 52    0.651    0.823
 Left       F7.F8           0.632 0.0406 52    0.551    0.714
 Right      F7.F8           0.700 0.0432 52    0.614    0.787
 Left       FC1.FC2         0.835 0.0441 52    0.746    0.923
 Right      FC1.FC2         0.826 0.0436 52    0.739    0.914

Results are averaged over the levels of: belief, sex 
Confidence level used: 0.95 

$contrasts
 contrast                       estimate      SE df t.ratio p.value
 Left Fp1.Fp2 - Right Fp1.Fp2   0.002810 0.01741 52   0.161  1.0000
 Left Fp1.Fp2 - Left AF3.AF4   -0.025639 0.00959 52  -2.674  0.3740
 Left Fp1.Fp2 - Right AF3.AF4  -0.028965 0.01695 52  -1.708  0.9351
 Left Fp1.Fp2 - Left AF7.AF8    0.051510 0.01688 52   3.052  0.1838
 Left Fp1.Fp2 - Right AF7.AF8   0.011629 0.02113 52   0.550  1.0000
 Left Fp1.Fp2 - Left F1.F2     -0.094748 0.01690 52  -5.607  0.0001
 Left Fp1.Fp2 - Right F1.F2    -0.093373 0.01920 52  -4.863  0.0011
 Left Fp1.Fp2 - Left F3.F4     -0.040856 0.02299 52  -1.777  0.9135
 Left Fp1.Fp2 - Right F3.F4    -0.066514 0.02071 52  -3.212  0.1294
 Left Fp1.Fp2 - Left F5.F6      0.028380 0.02192 52   1.295  0.9944
 Left Fp1.Fp2 - Right F5.F6    -0.037349 0.02051 52  -1.821  0.8975
 Left Fp1.Fp2 - Left F7.F8      0.067756 0.02091 52   3.241  0.1211
 Left Fp1.Fp2 - Right F7.F8    -0.000561 0.02157 52  -0.026  1.0000
 Left Fp1.Fp2 - Left FC1.FC2   -0.134957 0.02166 52  -6.230  <.0001
 Left Fp1.Fp2 - Right FC1.FC2  -0.126512 0.02213 52  -5.718  0.0001
 Right Fp1.Fp2 - Left AF3.AF4  -0.028449 0.01754 52  -1.622  0.9566
 Right Fp1.Fp2 - Right AF3.AF4 -0.031775 0.01000 52  -3.177  0.1401
 Right Fp1.Fp2 - Left AF7.AF8   0.048700 0.02375 52   2.050  0.7861
 Right Fp1.Fp2 - Right AF7.AF8  0.008819 0.01336 52   0.660  1.0000
 Right Fp1.Fp2 - Left F1.F2    -0.097558 0.01968 52  -4.957  0.0008
 Right Fp1.Fp2 - Right F1.F2   -0.096183 0.01872 52  -5.137  0.0004
 Right Fp1.Fp2 - Left F3.F4    -0.043666 0.02657 52  -1.643  0.9519
 Right Fp1.Fp2 - Right F3.F4   -0.069324 0.01976 52  -3.508  0.0632
 Right Fp1.Fp2 - Left F5.F6     0.025570 0.02549 52   1.003  0.9997
 Right Fp1.Fp2 - Right F5.F6   -0.040159 0.02015 52  -1.993  0.8178
 Right Fp1.Fp2 - Left F7.F8     0.064946 0.02369 52   2.741  0.3341
 Right Fp1.Fp2 - Right F7.F8   -0.003371 0.02109 52  -0.160  1.0000
 Right Fp1.Fp2 - Left FC1.FC2  -0.137767 0.02358 52  -5.842  <.0001
 Right Fp1.Fp2 - Right FC1.FC2 -0.129322 0.02217 52  -5.834  <.0001
 Left AF3.AF4 - Right AF3.AF4  -0.003326 0.01737 52  -0.191  1.0000
 Left AF3.AF4 - Left AF7.AF8    0.077149 0.02061 52   3.743  0.0339
 Left AF3.AF4 - Right AF7.AF8   0.037269 0.02123 52   1.755  0.9208
 Left AF3.AF4 - Left F1.F2     -0.069109 0.01425 52  -4.850  0.0011
 Left AF3.AF4 - Right F1.F2    -0.067734 0.01953 52  -3.468  0.0699
 Left AF3.AF4 - Left F3.F4     -0.015217 0.02142 52  -0.710  1.0000
 Left AF3.AF4 - Right F3.F4    -0.040875 0.01993 52  -2.051  0.7857
 Left AF3.AF4 - Left F5.F6      0.054019 0.02099 52   2.573  0.4382
 Left AF3.AF4 - Right F5.F6    -0.011710 0.01888 52  -0.620  1.0000
 Left AF3.AF4 - Left F7.F8      0.093395 0.02193 52   4.258  0.0076
 Left AF3.AF4 - Right F7.F8     0.025078 0.02052 52   1.222  0.9969
 Left AF3.AF4 - Left FC1.FC2   -0.109318 0.01903 52  -5.743  0.0001
 Left AF3.AF4 - Right FC1.FC2  -0.100872 0.02096 52  -4.812  0.0013
 Right AF3.AF4 - Left AF7.AF8   0.080475 0.02428 52   3.314  0.1019
 Right AF3.AF4 - Right AF7.AF8  0.040594 0.01570 52   2.585  0.4304
 Right AF3.AF4 - Left F1.F2    -0.065783 0.01644 52  -4.000  0.0163
 Right AF3.AF4 - Right F1.F2   -0.064408 0.01523 52  -4.229  0.0083
 Right AF3.AF4 - Left F3.F4    -0.011891 0.02710 52  -0.439  1.0000
 Right AF3.AF4 - Right F3.F4   -0.037550 0.01735 52  -2.164  0.7162
 Right AF3.AF4 - Left F5.F6     0.057345 0.02599 52   2.207  0.6885
 Right AF3.AF4 - Right F5.F6   -0.008384 0.01916 52  -0.438  1.0000
 Right AF3.AF4 - Left F7.F8     0.096721 0.02402 52   4.026  0.0152
 Right AF3.AF4 - Right F7.F8    0.028403 0.02013 52   1.411  0.9871
 Right AF3.AF4 - Left FC1.FC2  -0.105993 0.02205 52  -4.806  0.0013
 Right AF3.AF4 - Right FC1.FC2 -0.097547 0.01800 52  -5.420  0.0002
 Left AF7.AF8 - Right AF7.AF8  -0.039880 0.02496 52  -1.598  0.9617
 Left AF7.AF8 - Left F1.F2     -0.146258 0.02295 52  -6.372  <.0001
 Left AF7.AF8 - Right F1.F2    -0.144883 0.02471 52  -5.864  <.0001
 Left AF7.AF8 - Left F3.F4     -0.092366 0.02239 52  -4.126  0.0113
 Left AF7.AF8 - Right F3.F4    -0.118024 0.02412 52  -4.893  0.0010
 Left AF7.AF8 - Left F5.F6     -0.023130 0.02241 52  -1.032  0.9995
 Left AF7.AF8 - Right F5.F6    -0.088859 0.02495 52  -3.562  0.0550
 Left AF7.AF8 - Left F7.F8      0.016246 0.01989 52   0.817  1.0000
 Left AF7.AF8 - Right F7.F8    -0.052071 0.02511 52  -2.074  0.7723
 Left AF7.AF8 - Left FC1.FC2   -0.186467 0.02476 52  -7.531  <.0001
 Left AF7.AF8 - Right FC1.FC2  -0.178022 0.02712 52  -6.564  <.0001
 Right AF7.AF8 - Left F1.F2    -0.106377 0.02174 52  -4.893  0.0010
 Right AF7.AF8 - Right F1.F2   -0.105002 0.01972 52  -5.325  0.0002
 Right AF7.AF8 - Left F3.F4    -0.052486 0.02602 52  -2.017  0.8048
 Right AF7.AF8 - Right F3.F4   -0.078144 0.01713 52  -4.562  0.0029
 Right AF7.AF8 - Left F5.F6     0.016751 0.02477 52   0.676  1.0000
 Right AF7.AF8 - Right F5.F6   -0.048978 0.01726 52  -2.838  0.2808
 Right AF7.AF8 - Left F7.F8     0.056126 0.02520 52   2.227  0.6748
 Right AF7.AF8 - Right F7.F8   -0.012191 0.01711 52  -0.712  1.0000
 Right AF7.AF8 - Left FC1.FC2  -0.146587 0.02364 52  -6.200  <.0001
 Right AF7.AF8 - Right FC1.FC2 -0.138141 0.02238 52  -6.172  <.0001
 Left F1.F2 - Right F1.F2       0.001375 0.01421 52   0.097  1.0000
 Left F1.F2 - Left F3.F4        0.053892 0.01910 52   2.821  0.2896
 Left F1.F2 - Right F3.F4       0.028234 0.01649 52   1.712  0.9341
 Left F1.F2 - Left F5.F6        0.123128 0.02223 52   5.540  0.0001
 Left F1.F2 - Right F5.F6       0.057399 0.02027 52   2.832  0.2838
 Left F1.F2 - Left F7.F8        0.162504 0.02136 52   7.606  <.0001
 Left F1.F2 - Right F7.F8       0.094187 0.02217 52   4.249  0.0078
 Left F1.F2 - Left FC1.FC2     -0.040210 0.01274 52  -3.155  0.1471
 Left F1.F2 - Right FC1.FC2    -0.031764 0.01559 52  -2.037  0.7935
 Right F1.F2 - Left F3.F4       0.052517 0.02334 52   2.250  0.6594
 Right F1.F2 - Right F3.F4      0.026859 0.01257 52   2.137  0.7335
 Right F1.F2 - Left F5.F6       0.121753 0.02562 52   4.752  0.0016
 Right F1.F2 - Right F5.F6      0.056024 0.01782 52   3.144  0.1507
 Right F1.F2 - Left F7.F8       0.161129 0.02389 52   6.745  <.0001
 Right F1.F2 - Right F7.F8      0.092812 0.02084 52   4.454  0.0041
 Right F1.F2 - Left FC1.FC2    -0.041584 0.01656 52  -2.511  0.4795
 Right F1.F2 - Right FC1.FC2   -0.033139 0.01100 52  -3.012  0.1995
 Left F3.F4 - Right F3.F4      -0.025658 0.02307 52  -1.112  0.9989
 Left F3.F4 - Left F5.F6        0.069236 0.01588 52   4.360  0.0055
 Left F3.F4 - Right F5.F6       0.003507 0.02427 52   0.145  1.0000
 Left F3.F4 - Left F7.F8        0.108612 0.01966 52   5.526  0.0001
 Left F3.F4 - Right F7.F8       0.040295 0.02527 52   1.595  0.9623
 Left F3.F4 - Left FC1.FC2     -0.094101 0.01778 52  -5.292  0.0003
 Left F3.F4 - Right FC1.FC2    -0.085656 0.02529 52  -3.386  0.0856
 Right F3.F4 - Left F5.F6       0.094894 0.02583 52   3.674  0.0409
 Right F3.F4 - Right F5.F6      0.029165 0.01249 52   2.335  0.6012
 Right F3.F4 - Left F7.F8       0.134270 0.02650 52   5.067  0.0005
 Right F3.F4 - Right F7.F8      0.065953 0.01621 52   4.068  0.0134
 Right F3.F4 - Left FC1.FC2    -0.068443 0.01906 52  -3.590  0.0510
 Right F3.F4 - Right FC1.FC2   -0.059997 0.01475 52  -4.068  0.0134
 Left F5.F6 - Right F5.F6      -0.065729 0.02426 52  -2.709  0.3528
 Left F5.F6 - Left F7.F8        0.039376 0.01672 52   2.356  0.5868
 Left F5.F6 - Right F7.F8      -0.028941 0.02383 52  -1.214  0.9971
 Left F5.F6 - Left FC1.FC2     -0.163338 0.02232 52  -7.318  <.0001
 Left F5.F6 - Right FC1.FC2    -0.154892 0.02722 52  -5.691  0.0001
 Right F5.F6 - Left F7.F8       0.105105 0.02633 52   3.992  0.0167
 Right F5.F6 - Right F7.F8      0.036788 0.01133 52   3.246  0.1196
 Right F5.F6 - Left FC1.FC2    -0.097609 0.02060 52  -4.739  0.0016
 Right F5.F6 - Right FC1.FC2   -0.089163 0.01900 52  -4.693  0.0019
 Left F7.F8 - Right F7.F8      -0.068317 0.02576 52  -2.652  0.3875
 Left F7.F8 - Left FC1.FC2     -0.202713 0.02077 52  -9.760  <.0001
 Left F7.F8 - Right FC1.FC2    -0.194267 0.02602 52  -7.466  <.0001
 Right F7.F8 - Left FC1.FC2    -0.134396 0.02150 52  -6.250  <.0001
 Right F7.F8 - Right FC1.FC2   -0.125950 0.02277 52  -5.533  0.0001
 Left FC1.FC2 - Right FC1.FC2   0.008446 0.01712 52   0.493  1.0000

Results are averaged over the levels of: belief, sex 
P value adjustment: tukey method for comparing a family of 16 estimates 

____________________________________________________________________________________________________

5.2 Alpha Frequency

options(width = 100)
alpha_param_rep_anova = aov_ez("Subject", "Frequency", alpha_power_data, between = c("belief", "sex"), within = c("hemisphere", "electrode_pair"))
Warning: Missing values for following ID(s):
3, 10, 16, 20, 24, 29, 31, 33, 37, 41, 43, 55, 60, 62, 63, 64, 68, 74, 77, 81, 83, 98, 107, 115
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_param_rep_anova$data$long) / length(levels(alpha_param_rep_anova$data$long$electrode_pair)) / length(levels(alpha_param_rep_anova$data$long$hemisphere))
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              17         20  37
Male                 9         10  19
Sum                 26         30  56
alpha_param_rain <- ggplot(alpha_param_rep_anova$data$long, aes(y = Frequency, x = belief, color = sex, fill = sex)) +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_param_rain))

alpha_param_afex_plot <-
  afex_plot(
    alpha_param_rep_anova,
    x = "belief",
    trace = "sex",
    panel = "hemisphere",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_param_afex_plot))

nice(alpha_param_rep_anova)
Anova Table (Type 3 tests)

Response: Frequency
                                 Effect           df   MSE    F   ges p.value
1                                belief        1, 52 19.49 0.43  .007    .517
2                                   sex        1, 52 19.49 0.21  .004    .646
3                            belief:sex        1, 52 19.49 0.39  .007    .534
4                            hemisphere        1, 52  0.20 0.49 <.001    .488
5                     belief:hemisphere        1, 52  0.20 0.75 <.001    .392
6                        sex:hemisphere        1, 52  0.20 0.06 <.001    .803
7                 belief:sex:hemisphere        1, 52  0.20 2.06 <.001    .157
8                        electrode_pair 3.51, 182.77  0.26 1.54  .001    .198
9                 belief:electrode_pair 3.51, 182.77  0.26 0.55 <.001    .675
10                   sex:electrode_pair 3.51, 182.77  0.26 0.45 <.001    .746
11            belief:sex:electrode_pair 3.51, 182.77  0.26 1.06 <.001    .372
12            hemisphere:electrode_pair 2.58, 134.13  0.30 1.19 <.001    .315
13     belief:hemisphere:electrode_pair 2.58, 134.13  0.30 1.54  .001    .212
14        sex:hemisphere:electrode_pair 2.58, 134.13  0.30 0.11 <.001    .938
15 belief:sex:hemisphere:electrode_pair 2.58, 134.13  0.30 0.31 <.001    .788
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a_posteriori(alpha_param_rep_anova)

5.3 Alpha Bandwidth

options(width = 100)
alpha_param_rep_anova = aov_ez("Subject", "Width", alpha_power_data, between = c("belief", "sex"), within = c("hemisphere", "electrode_pair"))
Warning: Missing values for following ID(s):
3, 10, 16, 20, 24, 29, 31, 33, 37, 41, 43, 55, 60, 62, 63, 64, 68, 74, 77, 81, 83, 98, 107, 115
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = alpha_param_rep_anova$data$long) / length(levels(alpha_param_rep_anova$data$long$electrode_pair)) / length(levels(alpha_param_rep_anova$data$long$hemisphere))
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              17         20  37
Male                 9         10  19
Sum                 26         30  56
alpha_param_rain <- ggplot(alpha_param_rep_anova$data$long, aes(y = Width, x = belief, color = sex, fill = sex)) +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(alpha_param_rain))

alpha_param_afex_plot <-
  afex_plot(
    alpha_param_rep_anova,
    x = "belief",
    trace = "sex",
    panel = "hemisphere",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(alpha_param_afex_plot))

nice(alpha_param_rep_anova)
Anova Table (Type 3 tests)

Response: Width
                                 Effect           df  MSE         F   ges p.value
1                                belief        1, 52 8.45      0.94  .013    .337
2                                   sex        1, 52 8.45    3.28 +  .045    .076
3                            belief:sex        1, 52 8.45      0.08  .001    .784
4                            hemisphere        1, 52 0.52      2.67  .002    .108
5                     belief:hemisphere        1, 52 0.52      0.01 <.001    .908
6                        sex:hemisphere        1, 52 0.52      0.20 <.001    .659
7                 belief:sex:hemisphere        1, 52 0.52      2.14  .002    .149
8                        electrode_pair 3.81, 198.21 0.41 14.65 ***  .037   <.001
9                 belief:electrode_pair 3.81, 198.21 0.41      0.73  .002    .563
10                   sex:electrode_pair 3.81, 198.21 0.41      0.38 <.001    .815
11            belief:sex:electrode_pair 3.81, 198.21 0.41      0.45  .001    .763
12            hemisphere:electrode_pair 4.68, 243.60 0.18      0.80  .001    .541
13     belief:hemisphere:electrode_pair 4.68, 243.60 0.18      1.01  .001    .408
14        sex:hemisphere:electrode_pair 4.68, 243.60 0.18      1.21  .002    .308
15 belief:sex:hemisphere:electrode_pair 4.68, 243.60 0.18      1.72  .002    .136
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a_posteriori(alpha_param_rep_anova)
$emmeans
 electrode_pair emmean     SE df lower.CL upper.CL
 Fp1.Fp2          2.42 0.1069 52     2.21     2.64
 AF3.AF4          2.53 0.1153 52     2.30     2.76
 AF7.AF8          2.42 0.1100 52     2.20     2.64
 F1.F2            2.79 0.1246 52     2.54     3.04
 F3.F4            2.63 0.1037 52     2.42     2.83
 F5.F6            2.52 0.1069 52     2.31     2.73
 F7.F8            2.43 0.0991 52     2.24     2.63
 FC1.FC2          2.90 0.1248 52     2.65     3.15

Results are averaged over the levels of: belief, sex, hemisphere 
Confidence level used: 0.95 

$contrasts
 contrast          estimate     SE df t.ratio p.value
 Fp1.Fp2 - AF3.AF4  -0.1126 0.0417 52  -2.700  0.1456
 Fp1.Fp2 - AF7.AF8  -0.0021 0.0609 52  -0.035  1.0000
 Fp1.Fp2 - F1.F2    -0.3672 0.0684 52  -5.368  <.0001
 Fp1.Fp2 - F3.F4    -0.2057 0.0691 52  -2.976  0.0781
 Fp1.Fp2 - F5.F6    -0.0995 0.0705 52  -1.411  0.8483
 Fp1.Fp2 - F7.F8    -0.0130 0.0762 52  -0.170  1.0000
 Fp1.Fp2 - FC1.FC2  -0.4818 0.0899 52  -5.360  0.0001
 AF3.AF4 - AF7.AF8   0.1105 0.0742 52   1.490  0.8093
 AF3.AF4 - F1.F2    -0.2546 0.0487 52  -5.228  0.0001
 AF3.AF4 - F3.F4    -0.0931 0.0648 52  -1.436  0.8361
 AF3.AF4 - F5.F6     0.0131 0.0672 52   0.196  1.0000
 AF3.AF4 - F7.F8     0.0996 0.0667 52   1.495  0.8067
 AF3.AF4 - FC1.FC2  -0.3692 0.0720 52  -5.124  0.0001
 AF7.AF8 - F1.F2    -0.3651 0.0825 52  -4.424  0.0012
 AF7.AF8 - F3.F4    -0.2036 0.0645 52  -3.159  0.0498
 AF7.AF8 - F5.F6    -0.0974 0.0646 52  -1.506  0.8007
 AF7.AF8 - F7.F8    -0.0109 0.0806 52  -0.135  1.0000
 AF7.AF8 - FC1.FC2  -0.4797 0.0955 52  -5.021  0.0002
 F1.F2 - F3.F4       0.1615 0.0583 52   2.768  0.1258
 F1.F2 - F5.F6       0.2677 0.0596 52   4.490  0.0010
 F1.F2 - F7.F8       0.3542 0.0634 52   5.590  <.0001
 F1.F2 - FC1.FC2    -0.1146 0.0504 52  -2.275  0.3268
 F3.F4 - F5.F6       0.1063 0.0359 52   2.959  0.0814
 F3.F4 - F7.F8       0.1928 0.0529 52   3.643  0.0134
 F3.F4 - FC1.FC2    -0.2760 0.0616 52  -4.482  0.0010
 F5.F6 - F7.F8       0.0865 0.0423 52   2.043  0.4643
 F5.F6 - FC1.FC2    -0.3823 0.0714 52  -5.352  0.0001
 F7.F8 - FC1.FC2    -0.4688 0.0688 52  -6.818  <.0001

Results are averaged over the levels of: belief, sex, hemisphere 
P value adjustment: tukey method for comparing a family of 8 estimates 

____________________________________________________________________________________________________

5.4 Aperiodic Offset

options(width = 100)
aperiodic_offset_rep_anova = aov_ez("Subject", "Offset", alpha_power_data, between = c("belief", "sex"), within = c("hemisphere", "electrode_pair"))
Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = aperiodic_offset_rep_anova$data$long) / length(levels(aperiodic_offset_rep_anova$data$long$electrode_pair)) / length(levels(aperiodic_offset_rep_anova$data$long$hemisphere))
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              24         24  48
Male                17         15  32
Sum                 41         39  80
aperiodic_param_rain <- ggplot(aperiodic_offset_rep_anova$data$long, aes(y = Offset, x = belief, color = sex, fill = sex)) +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(aperiodic_param_rain))

aperiodic_param_afex_plot <-
  afex_plot(
    aperiodic_offset_rep_anova,
    x = "belief",
    trace = "sex",
    panel = "hemisphere",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(aperiodic_param_afex_plot))

nice(aperiodic_offset_rep_anova)
Anova Table (Type 3 tests)

Response: Offset
                                 Effect           df  MSE         F   ges p.value
1                                belief        1, 76 3.35      0.73  .007    .394
2                                   sex        1, 76 3.35      0.81  .008    .371
3                            belief:sex        1, 76 3.35      0.15  .001    .696
4                            hemisphere        1, 76 0.34    5.80 *  .006    .018
5                     belief:hemisphere        1, 76 0.34    2.88 +  .003    .094
6                        sex:hemisphere        1, 76 0.34      0.99 <.001    .322
7                 belief:sex:hemisphere        1, 76 0.34      0.01 <.001    .938
8                        electrode_pair 2.00, 151.80 0.41 40.49 ***  .084   <.001
9                 belief:electrode_pair 2.00, 151.80 0.41      0.72  .002    .486
10                   sex:electrode_pair 2.00, 151.80 0.41      0.74  .002    .477
11            belief:sex:electrode_pair 2.00, 151.80 0.41      0.90  .002    .409
12            hemisphere:electrode_pair 4.40, 334.35 0.05   3.48 **  .002    .007
13     belief:hemisphere:electrode_pair 4.40, 334.35 0.05      1.55 <.001    .181
14        sex:hemisphere:electrode_pair 4.40, 334.35 0.05      1.04 <.001    .389
15 belief:sex:hemisphere:electrode_pair 4.40, 334.35 0.05      1.49 <.001    .200
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a_posteriori(aperiodic_offset_rep_anova)
$emmeans
 hemisphere emmean     SE df lower.CL upper.CL
 Left         1.10 0.0570 76    0.984     1.21
 Right        1.02 0.0528 76    0.911     1.12

Results are averaged over the levels of: belief, sex, electrode_pair 
Confidence level used: 0.95 

$contrasts
 contrast     estimate     SE df t.ratio p.value
 Left - Right   0.0807 0.0335 76   2.408  0.0184

Results are averaged over the levels of: belief, sex, electrode_pair 

____________________________________________________________________________________________________
$emmeans
 electrode_pair emmean     SE df lower.CL upper.CL
 Fp1.Fp2         1.286 0.0748 76    1.136    1.435
 AF3.AF4         1.243 0.0707 76    1.102    1.384
 AF7.AF8         1.079 0.0623 76    0.955    1.203
 F1.F2           1.190 0.0509 76    1.088    1.291
 F3.F4           0.893 0.0486 76    0.796    0.990
 F5.F6           0.822 0.0513 76    0.720    0.924
 F7.F8           0.891 0.0523 76    0.787    0.996
 FC1.FC2         1.051 0.0488 76    0.954    1.148

Results are averaged over the levels of: belief, sex, hemisphere 
Confidence level used: 0.95 

$contrasts
 contrast          estimate     SE df t.ratio p.value
 Fp1.Fp2 - AF3.AF4  0.04222 0.0138 76   3.070  0.0566
 Fp1.Fp2 - AF7.AF8  0.20632 0.0240 76   8.579  <.0001
 Fp1.Fp2 - F1.F2    0.09574 0.0502 76   1.906  0.5510
 Fp1.Fp2 - F3.F4    0.39248 0.0514 76   7.637  <.0001
 Fp1.Fp2 - F5.F6    0.46373 0.0464 76   9.991  <.0001
 Fp1.Fp2 - F7.F8    0.39407 0.0456 76   8.647  <.0001
 Fp1.Fp2 - FC1.FC2  0.23423 0.0654 76   3.582  0.0133
 AF3.AF4 - AF7.AF8  0.16410 0.0245 76   6.688  <.0001
 AF3.AF4 - F1.F2    0.05352 0.0451 76   1.186  0.9335
 AF3.AF4 - F3.F4    0.35026 0.0452 76   7.745  <.0001
 AF3.AF4 - F5.F6    0.42151 0.0403 76  10.459  <.0001
 AF3.AF4 - F7.F8    0.35186 0.0408 76   8.622  <.0001
 AF3.AF4 - FC1.FC2  0.19201 0.0603 76   3.184  0.0418
 AF7.AF8 - F1.F2   -0.11058 0.0422 76  -2.620  0.1651
 AF7.AF8 - F3.F4    0.18617 0.0381 76   4.885  0.0001
 AF7.AF8 - F5.F6    0.25741 0.0334 76   7.701  <.0001
 AF7.AF8 - F7.F8    0.18776 0.0325 76   5.780  <.0001
 AF7.AF8 - FC1.FC2  0.02791 0.0518 76   0.539  0.9994
 F1.F2 - F3.F4      0.29674 0.0287 76  10.342  <.0001
 F1.F2 - F5.F6      0.36799 0.0299 76  12.314  <.0001
 F1.F2 - F7.F8      0.29833 0.0359 76   8.310  <.0001
 F1.F2 - FC1.FC2    0.13849 0.0309 76   4.478  0.0007
 F3.F4 - F5.F6      0.07125 0.0155 76   4.607  0.0004
 F3.F4 - F7.F8      0.00159 0.0232 76   0.069  1.0000
 F3.F4 - FC1.FC2   -0.15826 0.0278 76  -5.689  <.0001
 F5.F6 - F7.F8     -0.06966 0.0174 76  -3.994  0.0036
 F5.F6 - FC1.FC2   -0.22950 0.0326 76  -7.048  <.0001
 F7.F8 - FC1.FC2   -0.15985 0.0375 76  -4.265  0.0014

Results are averaged over the levels of: belief, sex, hemisphere 
P value adjustment: tukey method for comparing a family of 8 estimates 

____________________________________________________________________________________________________
$emmeans
 hemisphere electrode_pair emmean     SE df lower.CL upper.CL
 Left       Fp1.Fp2         1.322 0.0794 76    1.164    1.480
 Right      Fp1.Fp2         1.249 0.0755 76    1.099    1.399
 Left       AF3.AF4         1.291 0.0741 76    1.143    1.439
 Right      AF3.AF4         1.196 0.0724 76    1.052    1.340
 Left       AF7.AF8         1.176 0.0730 76    1.030    1.321
 Right      AF7.AF8         0.983 0.0627 76    0.858    1.108
 Left       F1.F2           1.233 0.0548 76    1.124    1.342
 Right      F1.F2           1.147 0.0535 76    1.040    1.253
 Left       F3.F4           0.910 0.0519 76    0.806    1.013
 Right      F3.F4           0.877 0.0532 76    0.771    0.983
 Left       F5.F6           0.830 0.0582 76    0.714    0.945
 Right      F5.F6           0.814 0.0538 76    0.707    0.921
 Left       F7.F8           0.929 0.0609 76    0.808    1.051
 Right      F7.F8           0.854 0.0543 76    0.746    0.962
 Left       FC1.FC2         1.088 0.0493 76    0.990    1.187
 Right      FC1.FC2         1.014 0.0540 76    0.907    1.122

Results are averaged over the levels of: belief, sex 
Confidence level used: 0.95 

$contrasts
 contrast                      estimate     SE df t.ratio p.value
 Left Fp1.Fp2 - Right Fp1.Fp2    0.0730 0.0401 76   1.820  0.9011
 Left Fp1.Fp2 - Left AF3.AF4     0.0310 0.0180 76   1.723  0.9338
 Left Fp1.Fp2 - Right AF3.AF4    0.1264 0.0393 76   3.219  0.1170
 Left Fp1.Fp2 - Left AF7.AF8     0.1463 0.0234 76   6.262  <.0001
 Left Fp1.Fp2 - Right AF7.AF8    0.3394 0.0538 76   6.310  <.0001
 Left Fp1.Fp2 - Left F1.F2       0.0892 0.0510 76   1.749  0.9259
 Left Fp1.Fp2 - Right F1.F2      0.1753 0.0631 76   2.779  0.3033
 Left Fp1.Fp2 - Left F3.F4       0.4125 0.0518 76   7.957  <.0001
 Left Fp1.Fp2 - Right F3.F4      0.4455 0.0657 76   6.779  <.0001
 Left Fp1.Fp2 - Left F5.F6       0.4925 0.0485 76  10.160  <.0001
 Left Fp1.Fp2 - Right F5.F6      0.5080 0.0612 76   8.300  <.0001
 Left Fp1.Fp2 - Left F7.F8       0.3929 0.0468 76   8.394  <.0001
 Left Fp1.Fp2 - Right F7.F8      0.4683 0.0649 76   7.217  <.0001
 Left Fp1.Fp2 - Left FC1.FC2     0.2336 0.0662 76   3.529  0.0520
 Left Fp1.Fp2 - Right FC1.FC2    0.3079 0.0742 76   4.151  0.0078
 Right Fp1.Fp2 - Left AF3.AF4   -0.0420 0.0412 76  -1.020  0.9996
 Right Fp1.Fp2 - Right AF3.AF4   0.0534 0.0157 76   3.409  0.0720
 Right Fp1.Fp2 - Left AF7.AF8    0.0733 0.0457 76   1.604  0.9628
 Right Fp1.Fp2 - Right AF7.AF8   0.2663 0.0377 76   7.073  <.0001
 Right Fp1.Fp2 - Left F1.F2      0.0162 0.0596 76   0.272  1.0000
 Right Fp1.Fp2 - Right F1.F2     0.1023 0.0540 76   1.894  0.8702
 Right Fp1.Fp2 - Left F3.F4      0.3395 0.0588 76   5.773  <.0001
 Right Fp1.Fp2 - Right F3.F4     0.3725 0.0576 76   6.466  <.0001
 Right Fp1.Fp2 - Left F5.F6      0.4195 0.0579 76   7.250  <.0001
 Right Fp1.Fp2 - Right F5.F6     0.4350 0.0530 76   8.212  <.0001
 Right Fp1.Fp2 - Left F7.F8      0.3199 0.0535 76   5.974  <.0001
 Right Fp1.Fp2 - Right F7.F8     0.3953 0.0548 76   7.210  <.0001
 Right Fp1.Fp2 - Left FC1.FC2    0.1606 0.0711 76   2.259  0.6535
 Right Fp1.Fp2 - Right FC1.FC2   0.2348 0.0705 76   3.330  0.0886
 Left AF3.AF4 - Right AF3.AF4    0.0954 0.0380 76   2.513  0.4733
 Left AF3.AF4 - Left AF7.AF8     0.1153 0.0281 76   4.110  0.0089
 Left AF3.AF4 - Right AF7.AF8    0.3083 0.0522 76   5.910  <.0001
 Left AF3.AF4 - Left F1.F2       0.0582 0.0483 76   1.206  0.9976
 Left AF3.AF4 - Right F1.F2      0.1443 0.0578 76   2.496  0.4857
 Left AF3.AF4 - Left F3.F4       0.3815 0.0447 76   8.527  <.0001
 Left AF3.AF4 - Right F3.F4      0.4145 0.0606 76   6.838  <.0001
 Left AF3.AF4 - Left F5.F6       0.4615 0.0409 76  11.285  <.0001
 Left AF3.AF4 - Right F5.F6      0.4770 0.0564 76   8.454  <.0001
 Left AF3.AF4 - Left F7.F8       0.3619 0.0405 76   8.929  <.0001
 Left AF3.AF4 - Right F7.F8      0.4373 0.0606 76   7.217  <.0001
 Left AF3.AF4 - Left FC1.FC2     0.2026 0.0618 76   3.278  0.1011
 Left AF3.AF4 - Right FC1.FC2    0.2769 0.0696 76   3.976  0.0137
 Right AF3.AF4 - Left AF7.AF8    0.0199 0.0450 76   0.442  1.0000
 Right AF3.AF4 - Right AF7.AF8   0.2129 0.0366 76   5.817  <.0001
 Right AF3.AF4 - Left F1.F2     -0.0372 0.0544 76  -0.684  1.0000
 Right AF3.AF4 - Right F1.F2     0.0488 0.0480 76   1.018  0.9997
 Right AF3.AF4 - Left F3.F4      0.2860 0.0528 76   5.417  0.0001
 Right AF3.AF4 - Right F3.F4     0.3191 0.0526 76   6.066  <.0001
 Right AF3.AF4 - Left F5.F6      0.3661 0.0526 76   6.960  <.0001
 Right AF3.AF4 - Right F5.F6     0.3815 0.0484 76   7.889  <.0001
 Right AF3.AF4 - Left F7.F8      0.2664 0.0499 76   5.341  0.0001
 Right AF3.AF4 - Right F7.F8     0.3418 0.0516 76   6.630  <.0001
 Right AF3.AF4 - Left FC1.FC2    0.1072 0.0656 76   1.633  0.9569
 Right AF3.AF4 - Right FC1.FC2   0.1814 0.0649 76   2.795  0.2943
 Left AF7.AF8 - Right AF7.AF8    0.1930 0.0550 76   3.512  0.0545
 Left AF7.AF8 - Left F1.F2      -0.0571 0.0460 76  -1.241  0.9968
 Left AF7.AF8 - Right F1.F2      0.0290 0.0593 76   0.489  1.0000
 Left AF7.AF8 - Left F3.F4       0.2662 0.0473 76   5.629  <.0001
 Left AF7.AF8 - Right F3.F4      0.2992 0.0617 76   4.849  0.0007
 Left AF7.AF8 - Left F5.F6       0.3462 0.0441 76   7.851  <.0001
 Left AF7.AF8 - Right F5.F6      0.3617 0.0577 76   6.266  <.0001
 Left AF7.AF8 - Left F7.F8       0.2466 0.0406 76   6.074  <.0001
 Left AF7.AF8 - Right F7.F8      0.3220 0.0619 76   5.205  0.0002
 Left AF7.AF8 - Left FC1.FC2     0.0873 0.0590 76   1.479  0.9817
 Left AF7.AF8 - Right FC1.FC2    0.1616 0.0672 76   2.405  0.5502
 Right AF7.AF8 - Left F1.F2     -0.2501 0.0572 76  -4.372  0.0037
 Right AF7.AF8 - Right F1.F2    -0.1641 0.0509 76  -3.223  0.1159
 Right AF7.AF8 - Left F3.F4      0.0731 0.0525 76   1.393  0.9896
 Right AF7.AF8 - Right F3.F4     0.1062 0.0405 76   2.622  0.3994
 Right AF7.AF8 - Left F5.F6      0.1532 0.0551 76   2.781  0.3024
 Right AF7.AF8 - Right F5.F6     0.1686 0.0347 76   4.862  0.0006
 Right AF7.AF8 - Left F7.F8      0.0535 0.0520 76   1.029  0.9996
 Right AF7.AF8 - Right F7.F8     0.1289 0.0376 76   3.427  0.0687
 Right AF7.AF8 - Left FC1.FC2   -0.1057 0.0594 76  -1.781  0.9156
 Right AF7.AF8 - Right FC1.FC2  -0.0315 0.0586 76  -0.538  1.0000
 Left F1.F2 - Right F1.F2        0.0861 0.0367 76   2.345  0.5925
 Left F1.F2 - Left F3.F4         0.3233 0.0331 76   9.761  <.0001
 Left F1.F2 - Right F3.F4        0.3563 0.0444 76   8.033  <.0001
 Left F1.F2 - Left F5.F6         0.4033 0.0371 76  10.872  <.0001
 Left F1.F2 - Right F5.F6        0.4188 0.0458 76   9.141  <.0001
 Left F1.F2 - Left F7.F8         0.3037 0.0431 76   7.040  <.0001
 Left F1.F2 - Right F7.F8        0.3791 0.0508 76   7.461  <.0001
 Left F1.F2 - Left FC1.FC2       0.1444 0.0337 76   4.287  0.0049
 Left F1.F2 - Right FC1.FC2      0.2186 0.0454 76   4.818  0.0007
 Right F1.F2 - Left F3.F4        0.2372 0.0438 76   5.414  0.0001
 Right F1.F2 - Right F3.F4       0.2702 0.0356 76   7.600  <.0001
 Right F1.F2 - Left F5.F6        0.3172 0.0453 76   6.997  <.0001
 Right F1.F2 - Right F5.F6       0.3327 0.0376 76   8.857  <.0001
 Right F1.F2 - Left F7.F8        0.2176 0.0508 76   4.285  0.0050
 Right F1.F2 - Right F7.F8       0.2930 0.0429 76   6.834  <.0001
 Right F1.F2 - Left FC1.FC2      0.0583 0.0427 76   1.365  0.9915
 Right F1.F2 - Right FC1.FC2     0.1326 0.0367 76   3.610  0.0414
 Left F3.F4 - Right F3.F4        0.0330 0.0401 76   0.824  1.0000
 Left F3.F4 - Left F5.F6         0.0800 0.0224 76   3.573  0.0461
 Left F3.F4 - Right F5.F6        0.0955 0.0418 76   2.287  0.6342
 Left F3.F4 - Left F7.F8        -0.0196 0.0312 76  -0.629  1.0000
 Left F3.F4 - Right F7.F8        0.0558 0.0456 76   1.225  0.9972
 Left F3.F4 - Left FC1.FC2      -0.1789 0.0324 76  -5.516  0.0001
 Left F3.F4 - Right FC1.FC2     -0.1046 0.0480 76  -2.179  0.7085
 Right F3.F4 - Left F5.F6        0.0470 0.0449 76   1.046  0.9995
 Right F3.F4 - Right F5.F6       0.0625 0.0180 76   3.469  0.0614
 Right F3.F4 - Left F7.F8       -0.0526 0.0478 76  -1.101  0.9991
 Right F3.F4 - Right F7.F8       0.0228 0.0281 76   0.810  1.0000
 Right F3.F4 - Left FC1.FC2     -0.2119 0.0382 76  -5.552  <.0001
 Right F3.F4 - Right FC1.FC2    -0.1376 0.0330 76  -4.177  0.0071
 Left F5.F6 - Right F5.F6        0.0155 0.0450 76   0.344  1.0000
 Left F5.F6 - Left F7.F8        -0.0996 0.0267 76  -3.735  0.0288
 Left F5.F6 - Right F7.F8       -0.0242 0.0493 76  -0.491  1.0000
 Left F5.F6 - Left FC1.FC2      -0.2589 0.0399 76  -6.493  <.0001
 Left F5.F6 - Right FC1.FC2     -0.1846 0.0518 76  -3.566  0.0469
 Right F5.F6 - Left F7.F8       -0.1151 0.0455 76  -2.530  0.4615
 Right F5.F6 - Right F7.F8      -0.0397 0.0196 76  -2.022  0.8052
 Right F5.F6 - Left FC1.FC2     -0.2744 0.0424 76  -6.468  <.0001
 Right F5.F6 - Right FC1.FC2    -0.2001 0.0373 76  -5.367  0.0001
 Left F7.F8 - Right F7.F8        0.0754 0.0485 76   1.553  0.9717
 Left F7.F8 - Left FC1.FC2      -0.1593 0.0455 76  -3.504  0.0558
 Left F7.F8 - Right FC1.FC2     -0.0850 0.0563 76  -1.511  0.9779
 Right F7.F8 - Left FC1.FC2     -0.2347 0.0466 76  -5.040  0.0003
 Right F7.F8 - Right FC1.FC2    -0.1604 0.0421 76  -3.814  0.0227
 Left FC1.FC2 - Right FC1.FC2    0.0743 0.0346 76   2.147  0.7290

Results are averaged over the levels of: belief, sex 
P value adjustment: tukey method for comparing a family of 16 estimates 

____________________________________________________________________________________________________

5.5 Aperiodic Slope

options(width = 100)
aperiodic_slope_rep_anova = aov_ez("Subject", "Slope", alpha_power_data, between = c("belief", "sex"), within = c("hemisphere", "electrode_pair"))
Contrasts set to contr.sum for the following variables: belief, sex
mytable <- xtabs(~ sex + belief, data = aperiodic_slope_rep_anova$data$long) / length(levels(aperiodic_slope_rep_anova$data$long$electrode_pair)) / length(levels(aperiodic_slope_rep_anova$data$long$hemisphere))
ftable(addmargins(mytable))
       belief Believer Unbeliever Sum
sex                                  
Female              24         24  48
Male                17         15  32
Sum                 41         39  80
aperiodic_param_rain <- ggplot(aperiodic_slope_rep_anova$data$long, aes(y = Slope, x = belief, color = sex, fill = sex)) +
  stat_halfeye(
    trim   = FALSE, 
    adjust = 1, 
    .width = 0, 
    justification = -.15, 
    alpha  = .5,
    point_colour = NA) + 
  geom_point(size = 2, alpha = .4, position = position_jitter(width = .05, height = 0)) 
suppressWarnings(print(aperiodic_param_rain))

aperiodic_param_afex_plot <-
  afex_plot(
    aperiodic_slope_rep_anova,
    x = "belief",
    trace = "sex",
    panel = "hemisphere",
    error = "between",
    error_arg = list(width = .1),
    dodge = -.5,
    mapping = c("color"),
    point_arg = list(size = 4)
  )
suppressWarnings(print(aperiodic_param_afex_plot))

nice(aperiodic_slope_rep_anova)
Anova Table (Type 3 tests)

Response: Slope
                                 Effect           df  MSE         F   ges p.value
1                                belief        1, 76 2.00      0.57  .005    .452
2                                   sex        1, 76 2.00      1.35  .012    .248
3                            belief:sex        1, 76 2.00      0.34  .003    .560
4                            hemisphere        1, 76 0.17      0.01 <.001    .921
5                     belief:hemisphere        1, 76 0.17    2.90 +  .002    .093
6                        sex:hemisphere        1, 76 0.17      0.62 <.001    .434
7                 belief:sex:hemisphere        1, 76 0.17      0.00 <.001    .989
8                        electrode_pair 2.21, 168.00 0.23 51.96 ***  .108   <.001
9                 belief:electrode_pair 2.21, 168.00 0.23      0.45  .001    .658
10                   sex:electrode_pair 2.21, 168.00 0.23      0.11 <.001    .914
11            belief:sex:electrode_pair 2.21, 168.00 0.23      1.26  .003    .288
12            hemisphere:electrode_pair 4.79, 364.00 0.03   4.06 **  .003    .002
13     belief:hemisphere:electrode_pair 4.79, 364.00 0.03      1.14 <.001    .340
14        sex:hemisphere:electrode_pair 4.79, 364.00 0.03      0.54 <.001    .737
15 belief:sex:hemisphere:electrode_pair 4.79, 364.00 0.03      1.23 <.001    .295
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a_posteriori(aperiodic_slope_rep_anova)
$emmeans
 electrode_pair emmean     SE df lower.CL upper.CL
 Fp1.Fp2          1.38 0.0579 76    1.267     1.50
 AF3.AF4          1.39 0.0539 76    1.284     1.50
 AF7.AF8          1.18 0.0502 76    1.082     1.28
 F1.F2            1.45 0.0379 76    1.373     1.52
 F3.F4            1.17 0.0401 76    1.089     1.25
 F5.F6            1.07 0.0405 76    0.989     1.15
 F7.F8            1.09 0.0404 76    1.005     1.17
 FC1.FC2          1.41 0.0352 76    1.337     1.48

Results are averaged over the levels of: belief, sex, hemisphere 
Confidence level used: 0.95 

$contrasts
 contrast          estimate     SE df t.ratio p.value
 Fp1.Fp2 - AF3.AF4 -0.00934 0.0115 76  -0.808  0.9922
 Fp1.Fp2 - AF7.AF8  0.20038 0.0209 76   9.579  <.0001
 Fp1.Fp2 - F1.F2   -0.06630 0.0368 76  -1.800  0.6221
 Fp1.Fp2 - F3.F4    0.21359 0.0400 76   5.340  <.0001
 Fp1.Fp2 - F5.F6    0.31205 0.0364 76   8.562  <.0001
 Fp1.Fp2 - F7.F8    0.29672 0.0356 76   8.343  <.0001
 Fp1.Fp2 - FC1.FC2 -0.02506 0.0485 76  -0.517  0.9995
 AF3.AF4 - AF7.AF8  0.20972 0.0224 76   9.349  <.0001
 AF3.AF4 - F1.F2   -0.05696 0.0324 76  -1.758  0.6497
 AF3.AF4 - F3.F4    0.22293 0.0353 76   6.322  <.0001
 AF3.AF4 - F5.F6    0.32139 0.0315 76  10.207  <.0001
 AF3.AF4 - F7.F8    0.30606 0.0318 76   9.637  <.0001
 AF3.AF4 - FC1.FC2 -0.01572 0.0439 76  -0.358  1.0000
 AF7.AF8 - F1.F2   -0.26668 0.0339 76  -7.877  <.0001
 AF7.AF8 - F3.F4    0.01321 0.0348 76   0.380  0.9999
 AF7.AF8 - F5.F6    0.11167 0.0301 76   3.707  0.0090
 AF7.AF8 - F7.F8    0.09634 0.0293 76   3.287  0.0314
 AF7.AF8 - FC1.FC2 -0.22544 0.0435 76  -5.181  <.0001
 F1.F2 - F3.F4      0.27989 0.0211 76  13.258  <.0001
 F1.F2 - F5.F6      0.37835 0.0220 76  17.177  <.0001
 F1.F2 - F7.F8      0.36302 0.0255 76  14.250  <.0001
 F1.F2 - FC1.FC2    0.04124 0.0195 76   2.118  0.4130
 F3.F4 - F5.F6      0.09846 0.0162 76   6.063  <.0001
 F3.F4 - F7.F8      0.08313 0.0218 76   3.819  0.0063
 F3.F4 - FC1.FC2   -0.23865 0.0208 76 -11.462  <.0001
 F5.F6 - F7.F8     -0.01533 0.0182 76  -0.842  0.9900
 F5.F6 - FC1.FC2   -0.33711 0.0256 76 -13.150  <.0001
 F7.F8 - FC1.FC2   -0.32178 0.0293 76 -10.989  <.0001

Results are averaged over the levels of: belief, sex, hemisphere 
P value adjustment: tukey method for comparing a family of 8 estimates 

____________________________________________________________________________________________________
$emmeans
 hemisphere electrode_pair emmean     SE df lower.CL upper.CL
 Left       Fp1.Fp2          1.40 0.0632 76    1.271     1.52
 Right      Fp1.Fp2          1.37 0.0563 76    1.255     1.48
 Left       AF3.AF4          1.42 0.0582 76    1.300     1.53
 Right      AF3.AF4          1.37 0.0541 76    1.259     1.47
 Left       AF7.AF8          1.21 0.0590 76    1.093     1.33
 Right      AF7.AF8          1.15 0.0490 76    1.055     1.25
 Left       F1.F2            1.46 0.0416 76    1.378     1.54
 Right      F1.F2            1.44 0.0374 76    1.361     1.51
 Left       F3.F4            1.15 0.0456 76    1.059     1.24
 Right      F3.F4            1.19 0.0408 76    1.106     1.27
 Left       F5.F6            1.03 0.0474 76    0.935     1.12
 Right      F5.F6            1.11 0.0423 76    1.026     1.19
 Left       F7.F8            1.07 0.0473 76    0.972     1.16
 Right      F7.F8            1.10 0.0418 76    1.021     1.19
 Left       FC1.FC2          1.41 0.0376 76    1.339     1.49
 Right      FC1.FC2          1.40 0.0360 76    1.328     1.47

Results are averaged over the levels of: belief, sex 
Confidence level used: 0.95 

$contrasts
 contrast                       estimate     SE df t.ratio p.value
 Left Fp1.Fp2 - Right Fp1.Fp2   0.029911 0.0307 76   0.974  0.9998
 Left Fp1.Fp2 - Left AF3.AF4   -0.019110 0.0179 76  -1.067  0.9994
 Left Fp1.Fp2 - Right AF3.AF4   0.030350 0.0309 76   0.981  0.9998
 Left Fp1.Fp2 - Left AF7.AF8    0.186781 0.0251 76   7.432  <.0001
 Left Fp1.Fp2 - Right AF7.AF8   0.243895 0.0416 76   5.861  <.0001
 Left Fp1.Fp2 - Left F1.F2     -0.063890 0.0394 76  -1.624  0.9588
 Left Fp1.Fp2 - Right F1.F2    -0.038791 0.0471 76  -0.824  1.0000
 Left Fp1.Fp2 - Left F3.F4      0.247253 0.0439 76   5.630  <.0001
 Left Fp1.Fp2 - Right F3.F4     0.209839 0.0507 76   4.138  0.0081
 Left Fp1.Fp2 - Left F5.F6      0.367571 0.0431 76   8.530  <.0001
 Left Fp1.Fp2 - Right F5.F6     0.286449 0.0465 76   6.157  <.0001
 Left Fp1.Fp2 - Left F7.F8      0.330958 0.0432 76   7.668  <.0001
 Left Fp1.Fp2 - Right F7.F8     0.292402 0.0475 76   6.154  <.0001
 Left Fp1.Fp2 - Left FC1.FC2   -0.017298 0.0517 76  -0.334  1.0000
 Left Fp1.Fp2 - Right FC1.FC2  -0.002904 0.0550 76  -0.053  1.0000
 Right Fp1.Fp2 - Left AF3.AF4  -0.049021 0.0324 76  -1.511  0.9778
 Right Fp1.Fp2 - Right AF3.AF4  0.000439 0.0114 76   0.039  1.0000
 Right Fp1.Fp2 - Left AF7.AF8   0.156869 0.0350 76   4.477  0.0026
 Right Fp1.Fp2 - Right AF7.AF8  0.213983 0.0282 76   7.578  <.0001
 Right Fp1.Fp2 - Left F1.F2    -0.093801 0.0402 76  -2.332  0.6019
 Right Fp1.Fp2 - Right F1.F2   -0.068702 0.0387 76  -1.777  0.9167
 Right Fp1.Fp2 - Left F3.F4     0.217342 0.0454 76   4.790  0.0008
 Right Fp1.Fp2 - Right F3.F4    0.179927 0.0430 76   4.184  0.0070
 Right Fp1.Fp2 - Left F5.F6     0.337659 0.0469 76   7.206  <.0001
 Right Fp1.Fp2 - Right F5.F6    0.256538 0.0396 76   6.481  <.0001
 Right Fp1.Fp2 - Left F7.F8     0.301047 0.0430 76   7.000  <.0001
 Right Fp1.Fp2 - Right F7.F8    0.262491 0.0385 76   6.821  <.0001
 Right Fp1.Fp2 - Left FC1.FC2  -0.047210 0.0500 76  -0.944  0.9999
 Right Fp1.Fp2 - Right FC1.FC2 -0.032815 0.0510 76  -0.643  1.0000
 Left AF3.AF4 - Right AF3.AF4   0.049460 0.0314 76   1.578  0.9676
 Left AF3.AF4 - Left AF7.AF8    0.205891 0.0286 76   7.194  <.0001
 Left AF3.AF4 - Right AF7.AF8   0.263005 0.0417 76   6.314  <.0001
 Left AF3.AF4 - Left F1.F2     -0.044780 0.0363 76  -1.234  0.9970
 Left AF3.AF4 - Right F1.F2    -0.019681 0.0425 76  -0.463  1.0000
 Left AF3.AF4 - Left F3.F4      0.266363 0.0386 76   6.898  <.0001
 Left AF3.AF4 - Right F3.F4     0.228948 0.0466 76   4.909  0.0005
 Left AF3.AF4 - Left F5.F6      0.386680 0.0386 76  10.029  <.0001
 Left AF3.AF4 - Right F5.F6     0.305559 0.0421 76   7.264  <.0001
 Left AF3.AF4 - Left F7.F8      0.350068 0.0397 76   8.820  <.0001
 Left AF3.AF4 - Right F7.F8     0.311512 0.0439 76   7.089  <.0001
 Left AF3.AF4 - Left FC1.FC2    0.001811 0.0474 76   0.038  1.0000
 Left AF3.AF4 - Right FC1.FC2   0.016206 0.0502 76   0.323  1.0000
 Right AF3.AF4 - Left AF7.AF8   0.156431 0.0359 76   4.361  0.0038
 Right AF3.AF4 - Right AF7.AF8  0.213545 0.0292 76   7.321  <.0001
 Right AF3.AF4 - Left F1.F2    -0.094240 0.0375 76  -2.515  0.4722
 Right AF3.AF4 - Right F1.F2   -0.069141 0.0340 76  -2.034  0.7984
 Right AF3.AF4 - Left F3.F4     0.216903 0.0425 76   5.103  0.0003
 Right AF3.AF4 - Right F3.F4    0.179488 0.0394 76   4.561  0.0019
 Right AF3.AF4 - Left F5.F6     0.337221 0.0438 76   7.691  <.0001
 Right AF3.AF4 - Right F5.F6    0.256099 0.0360 76   7.110  <.0001
 Right AF3.AF4 - Left F7.F8     0.300608 0.0410 76   7.326  <.0001
 Right AF3.AF4 - Right F7.F8    0.262052 0.0357 76   7.339  <.0001
 Right AF3.AF4 - Left FC1.FC2  -0.047648 0.0469 76  -1.016  0.9997
 Right AF3.AF4 - Right FC1.FC2 -0.033254 0.0466 76  -0.714  1.0000
 Left AF7.AF8 - Right AF7.AF8   0.057114 0.0412 76   1.387  0.9900
 Left AF7.AF8 - Left F1.F2     -0.250670 0.0396 76  -6.327  <.0001
 Left AF7.AF8 - Right F1.F2    -0.225572 0.0471 76  -4.786  0.0008
 Left AF7.AF8 - Left F3.F4      0.060473 0.0434 76   1.395  0.9895
 Left AF7.AF8 - Right F3.F4     0.023058 0.0502 76   0.459  1.0000
 Left AF7.AF8 - Left F5.F6      0.180790 0.0409 76   4.421  0.0031
 Left AF7.AF8 - Right F5.F6     0.099668 0.0465 76   2.145  0.7305
 Left AF7.AF8 - Left F7.F8      0.144177 0.0397 76   3.634  0.0387
 Left AF7.AF8 - Right F7.F8     0.105621 0.0474 76   2.226  0.6762
 Left AF7.AF8 - Left FC1.FC2   -0.204079 0.0507 76  -4.026  0.0117
 Left AF7.AF8 - Right FC1.FC2  -0.189685 0.0538 76  -3.528  0.0522
 Right AF7.AF8 - Left F1.F2    -0.307784 0.0398 76  -7.727  <.0001
 Right AF7.AF8 - Right F1.F2   -0.282686 0.0375 76  -7.532  <.0001
 Right AF7.AF8 - Left F3.F4     0.003358 0.0449 76   0.075  1.0000
 Right AF7.AF8 - Right F3.F4   -0.034056 0.0344 76  -0.990  0.9998
 Right AF7.AF8 - Left F5.F6     0.123676 0.0469 76   2.637  0.3901
 Right AF7.AF8 - Right F5.F6    0.042554 0.0287 76   1.484  0.9812
 Right AF7.AF8 - Left F7.F8     0.087063 0.0424 76   2.055  0.7863
 Right AF7.AF8 - Right F7.F8    0.048507 0.0310 76   1.565  0.9697
 Right AF7.AF8 - Left FC1.FC2  -0.261193 0.0464 76  -5.628  <.0001
 Right AF7.AF8 - Right FC1.FC2 -0.246799 0.0460 76  -5.365  0.0001
 Left F1.F2 - Right F1.F2       0.025099 0.0225 76   1.116  0.9990
 Left F1.F2 - Left F3.F4        0.311143 0.0259 76  12.020  <.0001
 Left F1.F2 - Right F3.F4       0.273728 0.0321 76   8.530  <.0001
 Left F1.F2 - Left F5.F6        0.431460 0.0297 76  14.543  <.0001
 Left F1.F2 - Right F5.F6       0.350339 0.0335 76  10.466  <.0001
 Left F1.F2 - Left F7.F8        0.394848 0.0327 76  12.083  <.0001
 Left F1.F2 - Right F7.F8       0.356292 0.0337 76  10.584  <.0001
 Left F1.F2 - Left FC1.FC2      0.046591 0.0224 76   2.080  0.7717
 Left F1.F2 - Right FC1.FC2     0.060985 0.0275 76   2.214  0.6849
 Right F1.F2 - Left F3.F4       0.286044 0.0321 76   8.920  <.0001
 Right F1.F2 - Right F3.F4      0.248630 0.0250 76   9.942  <.0001
 Right F1.F2 - Left F5.F6       0.406362 0.0346 76  11.728  <.0001
 Right F1.F2 - Right F5.F6      0.325240 0.0278 76  11.700  <.0001
 Right F1.F2 - Left F7.F8       0.369749 0.0383 76   9.655  <.0001
 Right F1.F2 - Right F7.F8      0.331193 0.0297 76  11.152  <.0001
 Right F1.F2 - Left FC1.FC2     0.021493 0.0268 76   0.801  1.0000
 Right F1.F2 - Right FC1.FC2    0.035887 0.0224 76   1.601  0.9633
 Left F3.F4 - Right F3.F4      -0.037415 0.0326 76  -1.146  0.9986
 Left F3.F4 - Left F5.F6        0.120317 0.0235 76   5.111  0.0002
 Left F3.F4 - Right F5.F6       0.039196 0.0369 76   1.064  0.9994
 Left F3.F4 - Left F7.F8        0.083705 0.0281 76   2.974  0.2054
 Left F3.F4 - Right F7.F8       0.045149 0.0387 76   1.167  0.9984
 Left F3.F4 - Left FC1.FC2     -0.264552 0.0226 76 -11.718  <.0001
 Left F3.F4 - Right FC1.FC2    -0.250157 0.0330 76  -7.579  <.0001
 Right F3.F4 - Left F5.F6       0.157732 0.0368 76   4.285  0.0050
 Right F3.F4 - Right F5.F6      0.076611 0.0195 76   3.930  0.0159
 Right F3.F4 - Left F7.F8       0.121120 0.0370 76   3.270  0.1032
 Right F3.F4 - Right F7.F8      0.082563 0.0273 76   3.023  0.1846
 Right F3.F4 - Left FC1.FC2    -0.227137 0.0304 76  -7.475  <.0001
 Right F3.F4 - Right FC1.FC2   -0.212743 0.0272 76  -7.830  <.0001
 Left F5.F6 - Right F5.F6      -0.081122 0.0391 76  -2.076  0.7741
 Left F5.F6 - Left F7.F8       -0.036613 0.0288 76  -1.270  0.9959
 Left F5.F6 - Right F7.F8      -0.075169 0.0410 76  -1.832  0.8967
 Left F5.F6 - Left FC1.FC2     -0.384869 0.0312 76 -12.345  <.0001
 Left F5.F6 - Right FC1.FC2    -0.370475 0.0367 76 -10.083  <.0001
 Right F5.F6 - Left F7.F8       0.044509 0.0366 76   1.218  0.9974
 Right F5.F6 - Right F7.F8      0.005953 0.0212 76   0.281  1.0000
 Right F5.F6 - Left FC1.FC2    -0.303747 0.0354 76  -8.582  <.0001
 Right F5.F6 - Right FC1.FC2   -0.289353 0.0323 76  -8.958  <.0001
 Left F7.F8 - Right F7.F8      -0.038556 0.0381 76  -1.013  0.9997
 Left F7.F8 - Left FC1.FC2     -0.348256 0.0338 76 -10.312  <.0001
 Left F7.F8 - Right FC1.FC2    -0.333862 0.0417 76  -8.009  <.0001
 Right F7.F8 - Left FC1.FC2    -0.309700 0.0358 76  -8.649  <.0001
 Right F7.F8 - Right FC1.FC2   -0.295306 0.0343 76  -8.601  <.0001
 Left FC1.FC2 - Right FC1.FC2   0.014394 0.0215 76   0.670  1.0000

Results are averaged over the levels of: belief, sex 
P value adjustment: tukey method for comparing a family of 16 estimates 

____________________________________________________________________________________________________
LS0tCnRpdGxlOiAiRnJvbnRhbCBBbHBoYSBBc3ltbWV0cnksIFBlTXlDcmVQIgphdXRob3I6ICJBbHZhcm8gUml2ZXJhLVJlaSIKZGF0ZTogImByIGZvcm1hdChTeXMudGltZSgpLCAnJWQgJUIsICVZJylgIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgaGlnaGxpZ2h0OiB0YW5nbwogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMKICAgIHRoZW1lOiBjZXJ1bGVhbgogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDoKICAgICAgY29sbGFwc2VkOiBubwogICAgICBzbW9vdGhfc2Nyb2xsOiBubwogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCnN1YnRpdGxlOiBSZWZlcmVuY2UgYXQgSW5maW5pdHksIFJFU1QgKFJlZmVyZW5jZSBFbGVjdHJvZGUgU3RhbmRhcmRpemF0aW9uIFRlY2huaXF1ZSkuCi0tLQoKYGBge3IgQ2xlYW4gYW5kIExvYWQgTGlicmFyaWVzfQpjYXQoIlwwMTQiKSAgICAgIyBjbGVhbiB0ZXJtaW5hbApybShsaXN0ID0gbHMoKSkgIyBjbGVhbiB3b3Jrc3BhY2UKdHJ5KGRldi5vZmYoKSwgc2lsZW50ID0gVFJVRSkgIyBjbG9zZSBhbGwgcGxvdHMKbGlicmFyeShhZmV4KQpsaWJyYXJ5KGVtbWVhbnMpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShnZ3JpZGdlcykKbGlicmFyeShnZ2Rpc3QpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkocmVzaGFwZTIpCmxpYnJhcnkoR0dhbGx5KQpsaWJyYXJ5KGZvcmNhdHMpCmxpYnJhcnkocmVhZHhsKQpgYGAKCmBgYHtyIFNldCBEZWZhdWx0c30KdGhlbWVfc2V0KAogIHRoZW1lX21pbmltYWwoKQopCmFfcG9zdGVyaW9yaSA8LSBmdW5jdGlvbihhZmV4X2Fvdiwgc2lnX2xldmVsID0gLjA1KSB7CiAgZmFjdG9ycyAgPC0gYXMubGlzdChyb3duYW1lcyhhZmV4X2FvdiRhbm92YV90YWJsZSkpCiAgZm9yIChqIGluIDE6bGVuZ3RoKGZhY3RvcnMpKSB7CiAgICBpZiAoZ3JlcGwoIjoiLCBmYWN0b3JzW1tqXV0pKSB7CiAgICAgIGZhY3RvcnNbW2pdXSA8LSB1bmxpc3Qoc3Ryc3BsaXQoZmFjdG9yc1tbal1dLCAiOiIpKQogICAgfQogIH0KICBwX3ZhbHVlcyA8LSBhZmV4X2FvdiRhbm92YV90YWJsZSRgUHIoPkYpYAogIGZvciAoaSBpbiAxOmxlbmd0aChwX3ZhbHVlcykpIHsKICAgIGlmIChwX3ZhbHVlc1tpXSA8PSBzaWdfbGV2ZWwpIHsKICAgICAgcHJpbnQoZW1tZWFucyhhZmV4X2FvdiwgZmFjdG9yc1tbaV1dLCBjb250ciA9ICJwYWlyd2lzZSIpKQogICAgICBjYXQocmVwKCJfIiwgMTAwKSwgJ1xuJywgc2VwID0gIiIpCiAgICB9CiAgfQp9CmBgYAoKYGBge3IgTG9hZCBEYXRhfQplZWdfY2hlY2sgPC0gcmVhZF9leGNlbChmaWxlLnBhdGgoJy4uJywgJ2JhZCBjaGFubmVscyByZXN0aW5nIDIwMjIueGxzeCcpKQplZWdfY2hlY2sgPC0gZWVnX2NoZWNrICU+JQogIG11dGF0ZShiYWRjaGFuX251bSA9IGlmZWxzZShiYWRjaGFuID09ICcwJywgMCwgc2FwcGx5KHN0cnNwbGl0KGJhZGNoYW4sICIgIiksIGxlbmd0aCkpKQpiYWRfZWVnICAgPC0gZWVnX2NoZWNrJG5hbWVbZWVnX2NoZWNrJGNvbW1lbnRhcnkgIT0gJ29rJ10KbWFzdGVyX2RpciAgICAgICAgICAgICAgICAgPC0gJ34vSW5zeW5jL09uZURyaXZlL0xBQldPUktTX29uZWRyaXZlL0h1ZXBlL0ZkY3l0XzIwMjAvcmVzdGluZy9wcm9jZXNzaW5nJwpkYXRhX2RpciAgICAgICAgICAgICAgICAgICA8LSBwYXN0ZShtYXN0ZXJfZGlyLCAncmVzdWx0cycsICBzZXAgPSAnLycpCmFscGhhX3Bvd2VyX2RhdGFfbmFtZSAgICAgIDwtIHBhc3RlKGRhdGFfZGlyLCAnZm9vZl9kYXRhXzJfdG9fNDhfSHouY3N2Jywgc2VwPScvJykKYWxwaGFfcG93ZXJfZGF0YSAgICAgICAgICAgPC0gcmVhZC50YWJsZShhbHBoYV9wb3dlcl9kYXRhX25hbWUsIGhlYWRlciA9IFRSVUUsIHN0cmlwLndoaXRlID0gVFJVRSwgc2VwID0gIiwiKQphbHBoYV9wb3dlcl9kYXRhJHZ1bG5lcmFiaWxpdHlbZ3JlcGwoIm5WdWwiLCBhbHBoYV9wb3dlcl9kYXRhJERhdGFzZXQpXSAgPC0gIkludnVsbmVyYWJsZSIKYWxwaGFfcG93ZXJfZGF0YSR2dWxuZXJhYmlsaXR5WyFncmVwbCgiblZ1bCIsIGFscGhhX3Bvd2VyX2RhdGEkRGF0YXNldCldIDwtICJWdWxuZXJhYmxlIgphbHBoYV9wb3dlcl9kYXRhJGJlbGllZltncmVwbCgibkNyIiwgYWxwaGFfcG93ZXJfZGF0YSREYXRhc2V0KV0gICAgICAgICAgPC0gIlVuYmVsaWV2ZXIiCmFscGhhX3Bvd2VyX2RhdGEkYmVsaWVmWyFncmVwbCgibkNyIiwgYWxwaGFfcG93ZXJfZGF0YSREYXRhc2V0KV0gICAgICAgICA8LSAiQmVsaWV2ZXIiCmFscGhhX3Bvd2VyX2RhdGEkc2V4W2dyZXBsKCJGIiwgYWxwaGFfcG93ZXJfZGF0YSREYXRhc2V0KV0gICAgICAgICAgICAgICA8LSAiRmVtYWxlIgphbHBoYV9wb3dlcl9kYXRhJHNleFshZ3JlcGwoIkYiLCBhbHBoYV9wb3dlcl9kYXRhJERhdGFzZXQpXSAgICAgICAgICAgICAgPC0gIk1hbGUiCmFscGhhX3Bvd2VyX2RhdGEkRGF0YXNldCAgIDwtIGZhY3RvcihhbHBoYV9wb3dlcl9kYXRhJERhdGFzZXQpCmFscGhhX3Bvd2VyX2RhdGEkRWxlY3Ryb2RlIDwtIGZhY3RvcihhbHBoYV9wb3dlcl9kYXRhJEVsZWN0cm9kZSkKYWxwaGFfcG93ZXJfZGF0YSRTdWJqZWN0ICAgPC0gZmFjdG9yKGFscGhhX3Bvd2VyX2RhdGEkU3ViamVjdCkKYWxwaGFfcG93ZXJfZGF0YSR2dWxuZXJhYmlsaXR5IDwtIGZhY3RvcihhbHBoYV9wb3dlcl9kYXRhJHZ1bG5lcmFiaWxpdHkpCmFscGhhX3Bvd2VyX2RhdGEkYmVsaWVmICAgICAgICA8LSBmYWN0b3IoYWxwaGFfcG93ZXJfZGF0YSRiZWxpZWYpCmFscGhhX3Bvd2VyX2RhdGEkc2V4ICAgICAgICAgICA8LSBmYWN0b3IoYWxwaGFfcG93ZXJfZGF0YSRzZXgpCmFscGhhX3Bvd2VyX2RhdGEkaGVtaXNwaGVyZVthbHBoYV9wb3dlcl9kYXRhJEVsZWN0cm9kZSAlaW4lIGMoJ0ZwMScsICAnRTA5Mi1BRjNhJywgICdBRjcnLCAgJ0UwODktRjFhJywgICdFMTAwLUYzYScsICAnRTEwMS1GNWEnLCAgJ0Y3JywgICdFMDg4LUZDMWEnKV0gPC0gJ0xlZnQnCmFscGhhX3Bvd2VyX2RhdGEkaGVtaXNwaGVyZVthbHBoYV9wb3dlcl9kYXRhJEVsZWN0cm9kZSAlaW4lIGMoJ0ZwMicsICAnRTA3OS1BRjRhJywgICdBRjgnLCAgJ0UwNzYtRjJhJywgICdFMDY4LUY0YScsICAnRTA2OS1GNmEnLCAgJ0Y4JywgICdFMDc1LUZDMmEnKV0gPC0gJ1JpZ2h0JwphbHBoYV9wb3dlcl9kYXRhJGhlbWlzcGhlcmUgPC0gZmFjdG9yKGFscGhhX3Bvd2VyX2RhdGEkaGVtaXNwaGVyZSkKYWxwaGFfcG93ZXJfZGF0YSRlbGVjdHJvZGVfcGFpclthbHBoYV9wb3dlcl9kYXRhJEVsZWN0cm9kZSAlaW4lIGMoJ0ZwMScgLCAnRnAyJyldICA8LSAnRnAxLUZwMicKYWxwaGFfcG93ZXJfZGF0YSRlbGVjdHJvZGVfcGFpclthbHBoYV9wb3dlcl9kYXRhJEVsZWN0cm9kZSAlaW4lIGMoJ0UwOTItQUYzYScsICdFMDc5LUFGNGEnKV0gPC0gJ0FGMy1BRjQnCmFscGhhX3Bvd2VyX2RhdGEkZWxlY3Ryb2RlX3BhaXJbYWxwaGFfcG93ZXJfZGF0YSRFbGVjdHJvZGUgJWluJSBjKCdBRjcnICwgJ0FGOCcpXSAgPC0gJ0FGNy1BRjgnCmFscGhhX3Bvd2VyX2RhdGEkZWxlY3Ryb2RlX3BhaXJbYWxwaGFfcG93ZXJfZGF0YSRFbGVjdHJvZGUgJWluJSBjKCdFMDg5LUYxYScgLCAnRTA3Ni1GMmEnKV0gIDwtICdGMS1GMicKYWxwaGFfcG93ZXJfZGF0YSRlbGVjdHJvZGVfcGFpclthbHBoYV9wb3dlcl9kYXRhJEVsZWN0cm9kZSAlaW4lIGMoJ0UxMDAtRjNhJyAsICdFMDY4LUY0YScpXSAgPC0gJ0YzLUY0JwphbHBoYV9wb3dlcl9kYXRhJGVsZWN0cm9kZV9wYWlyW2FscGhhX3Bvd2VyX2RhdGEkRWxlY3Ryb2RlICVpbiUgYygnRTEwMS1GNWEnICwgJ0UwNjktRjZhJyldICA8LSAnRjUtRjYnCmFscGhhX3Bvd2VyX2RhdGEkZWxlY3Ryb2RlX3BhaXJbYWxwaGFfcG93ZXJfZGF0YSRFbGVjdHJvZGUgJWluJSBjKCdGNycgICwgJ0Y4JyldICAgPC0gJ0Y3LUY4JwphbHBoYV9wb3dlcl9kYXRhJGVsZWN0cm9kZV9wYWlyW2FscGhhX3Bvd2VyX2RhdGEkRWxlY3Ryb2RlICVpbiUgYygnRTA4OC1GQzFhJywgJ0UwNzUtRkMyYScpXSA8LSAnRkMxLUZDMicKYWxwaGFfcG93ZXJfZGF0YSRlbGVjdHJvZGVfcGFpciA8LSBmYWN0b3IoYWxwaGFfcG93ZXJfZGF0YSRlbGVjdHJvZGVfcGFpciwgbGV2ZWxzID0gYygnRnAxLUZwMicsICdBRjMtQUY0JywgJ0FGNy1BRjgnLCAnRjEtRjInLCAnRjMtRjQnLCdGNS1GNicsICdGNy1GOCcsICdGQzEtRkMyJykpCndyaXRlLmNzdihhbHBoYV9wb3dlcl9kYXRhLCAgcGFzdGUoZGF0YV9kaXIsICcvYWxwaGFfcG93ZXJfZGF0YV9jbGVhbi5jc3YnLCBzZXAgPSAnJyksICByb3cubmFtZXMgPSBGQUxTRSkKYXN5bW1ldHJ5X0ZwMl9GcDEgPC0gYygpCmFzeW1tZXRyeV9BRjRfQUYzIDwtIGMoKQphc3ltbWV0cnlfQUY4X0FGNyA8LSBjKCkKYXN5bW1ldHJ5X0YyX0YxICAgPC0gYygpCmFzeW1tZXRyeV9GNF9GMyAgIDwtIGMoKQphc3ltbWV0cnlfRjZfRjUgICA8LSBjKCkKYXN5bW1ldHJ5X0Y4X0Y3ICAgPC0gYygpCmFzeW1tZXRyeV9GQzJfRkMxIDwtIGMoKQpzdWJqX2Jsb2NrIDwtIHVuaXF1ZShhbHBoYV9wb3dlcl9kYXRhW2MoIlN1YmplY3QiICwidnVsbmVyYWJpbGl0eSIgLCJiZWxpZWYiICwic2V4IildKQpmb3IgKHN1YmogaW4gc3Vial9ibG9jayRTdWJqZWN0KSB7CiAgc3ViamVjdF9kYXRhIDwtIHN1YnNldChhbHBoYV9wb3dlcl9kYXRhLCBTdWJqZWN0ID09IHN1YmopCiAgYXN5bW1ldHJ5X0ZwMl9GcDEgPC0gYyhhc3ltbWV0cnlfRnAyX0ZwMSwgc3ViamVjdF9kYXRhW3doaWNoKHN1YmplY3RfZGF0YSRFbGVjdHJvZGUgPT0gJ0ZwMicpICwgICAgICA1XSAtIHN1YmplY3RfZGF0YVt3aGljaChzdWJqZWN0X2RhdGEkRWxlY3Ryb2RlPT0nRnAxJykgLCAgICAgIDVdKQogIGFzeW1tZXRyeV9BRjRfQUYzIDwtIGMoYXN5bW1ldHJ5X0FGNF9BRjMsIHN1YmplY3RfZGF0YVt3aGljaChzdWJqZWN0X2RhdGEkRWxlY3Ryb2RlID09ICdFMDc5LUFGNGEnKSwgNV0gLSBzdWJqZWN0X2RhdGFbd2hpY2goc3ViamVjdF9kYXRhJEVsZWN0cm9kZT09J0UwOTItQUYzYScpLCA1XSkKICBhc3ltbWV0cnlfQUY4X0FGNyA8LSBjKGFzeW1tZXRyeV9BRjhfQUY3LCBzdWJqZWN0X2RhdGFbd2hpY2goc3ViamVjdF9kYXRhJEVsZWN0cm9kZSA9PSAnQUY4JykgLCAgICAgIDVdIC0gc3ViamVjdF9kYXRhW3doaWNoKHN1YmplY3RfZGF0YSRFbGVjdHJvZGU9PSdBRjcnKSAsICAgICAgNV0pCiAgYXN5bW1ldHJ5X0YyX0YxICAgPC0gYyhhc3ltbWV0cnlfRjJfRjEgICwgc3ViamVjdF9kYXRhW3doaWNoKHN1YmplY3RfZGF0YSRFbGVjdHJvZGUgPT0gJ0UwNzYtRjJhJykgLCA1XSAtIHN1YmplY3RfZGF0YVt3aGljaChzdWJqZWN0X2RhdGEkRWxlY3Ryb2RlPT0nRTA4OS1GMWEnKSAsIDVdKQogIGFzeW1tZXRyeV9GNF9GMyAgIDwtIGMoYXN5bW1ldHJ5X0Y0X0YzICAsIHN1YmplY3RfZGF0YVt3aGljaChzdWJqZWN0X2RhdGEkRWxlY3Ryb2RlID09ICdFMDY4LUY0YScpICwgNV0gLSBzdWJqZWN0X2RhdGFbd2hpY2goc3ViamVjdF9kYXRhJEVsZWN0cm9kZT09J0UxMDAtRjNhJykgLCA1XSkKICBhc3ltbWV0cnlfRjZfRjUgICA8LSBjKGFzeW1tZXRyeV9GNl9GNSAgLCBzdWJqZWN0X2RhdGFbd2hpY2goc3ViamVjdF9kYXRhJEVsZWN0cm9kZSA9PSAnRTA2OS1GNmEnKSAsIDVdIC0gc3ViamVjdF9kYXRhW3doaWNoKHN1YmplY3RfZGF0YSRFbGVjdHJvZGU9PSdFMTAxLUY1YScpICwgNV0pCiAgYXN5bW1ldHJ5X0Y4X0Y3ICAgPC0gYyhhc3ltbWV0cnlfRjhfRjcgICwgc3ViamVjdF9kYXRhW3doaWNoKHN1YmplY3RfZGF0YSRFbGVjdHJvZGUgPT0gJ0Y4JykgICwgICAgICA1XSAtIHN1YmplY3RfZGF0YVt3aGljaChzdWJqZWN0X2RhdGEkRWxlY3Ryb2RlPT0nRjcnKSAgLCAgICAgIDVdKQogIGFzeW1tZXRyeV9GQzJfRkMxIDwtIGMoYXN5bW1ldHJ5X0ZDMl9GQzEsIHN1YmplY3RfZGF0YVt3aGljaChzdWJqZWN0X2RhdGEkRWxlY3Ryb2RlID09ICdFMDc1LUZDMmEnKSwgNV0gLSBzdWJqZWN0X2RhdGFbd2hpY2goc3ViamVjdF9kYXRhJEVsZWN0cm9kZT09J0UwODgtRkMxYScpLCA1XSkKfQphbHBoYV9hc3ltbWV0cnlfZGF0YSA8LSBkYXRhLmZyYW1lKHN1YmpfYmxvY2ssIGFzeW1tZXRyeV9GcDJfRnAxLCBhc3ltbWV0cnlfQUY0X0FGMywgYXN5bW1ldHJ5X0FGOF9BRjcsIGFzeW1tZXRyeV9GMl9GMSwgYXN5bW1ldHJ5X0Y0X0YzLCBhc3ltbWV0cnlfRjZfRjUsIGFzeW1tZXRyeV9GOF9GNywgYXN5bW1ldHJ5X0ZDMl9GQzEpCndyaXRlLmNzdihhbHBoYV9hc3ltbWV0cnlfZGF0YSwgIHBhc3RlKGRhdGFfZGlyLCAnL2FscGhhX2FzeW1tZXRyeV9kYXRhX2NsZWFuLmNzdicsIHNlcCA9ICcnKSwgIHJvdy5uYW1lcyA9IEZBTFNFKQpgYGAKIyBTcGVjdHJhbCBkZWNvbXBvc2l0aW9uCgpgYGB7ciBwYXJ0aWNpcGFudHMsIGZpZy53aWR0aCA9IDEyfQpvcHRpb25zKHdpZHRoID0gMTAwKQpteXRhYmxlIDwtIHh0YWJzKH4gc2V4ICsgYmVsaWVmLCBkYXRhID0gYWxwaGFfYXN5bW1ldHJ5X2RhdGEpCmZ0YWJsZShhZGRtYXJnaW5zKG15dGFibGUpKQpgYGAKCi0gSW5maW5pdHkgUmVmZXJlbmNlIG9yIFJlZmVyZW5jZSBFbGVjdHJvZGUgU3RhbmRhcmRpemF0aW9uIFRlY2huaXF1ZSAoUkVTVCkuXAotIDEyMCBjb25zZWN1dGl2ZSBzZWdtZW50cywgNSBzZWNvbmRzIGVhY2guXAotIFBTRCBjb21wdXRlZCB3aXRoIFdlbGNoJ3MgbWV0aG9kLgoKIyMgU2NhbHAgTWFwLCBtZWFuIHBvd2VyIDktMTEgSHoKIVtdKHNjYWxwX3Jlc3RpbmdfcGVteWNyZXBfcHNkLnBuZykKCiMjIFBTRCB0b3BvZ3JhcGh5LCAxIHRvIDU1IEh6LCBncmFuZCBhdmVyYWdlCiFbXSh0b3BvX3Jlc3RpbmdfcGVteWNyZXBfcHNkLnBuZykKCiMjIFBTRCB0b3BvZ3JhcGh5LCA0IHRvIDMwIEh6LCBncmFuZCBhdmVyYWdlCiFbXSh0b3BvXzRfdG9fMzBfSHpfcmVzdGluZ19wZW15Y3JlcF9wc2QucG5nKQoKIyMgRnJvbnRhbCBFbGVjdHJvZGVzLCA0IHRvIDMwIEh6LCBncmFuZCBhdmVyYWdlCi0gMiBzdGFuZGFyZCBlcnJvciBiYW5kcwohW0Zyb250YWwgZWxlY3Ryb2Rlc10oZnJvbnRhbF80X3RvXzMwX0h6X3Jlc3RpbmdfcGVteWNyZXBfcHNkLnBuZykKCiMgUGFyYW1ldGVyaXphdGlvbiBvZiBuZXVyYWwgcG93ZXIgc3BlY3RyYQotIEVhY2ggaW5kaXZpZHVhbCBQU0QgaXMgcmVnYXJkZWQgYXMgYSBjb21iaW5hdGlvbiBvZiBhbiBhcGVyaW9kaWMgY29tcG9uZW50IGFuZCBwdXRhdGl2ZSBwZXJpb2RpYyBvc2NpbGxhdG9yeSBwZWFrcy4KCiMjIEluZGl2aWR1YWwgRWxlY3Ryb2RlcwohW10oLi4vZnJvbnRhbF9mb29vZl9wbG90c19ieV9lbGVjdHJvZGUvUzAzMlZ1bG5Dck0xOTMyMjgxMV9wc2RfRnAxLnBuZykKIVtdKC4uL2Zyb250YWxfZm9vb2ZfcGxvdHNfYnlfZWxlY3Ryb2RlL1MwMzJWdWxuQ3JNMTkzMjI4MTFfcHNkX0ZwMi5wbmcpCgojIyBJbmRpdmlkdWFsIFN1YmplY3QKIVtdKC4uL2Zyb250YWxfZm9vb2ZfcGxvdHNfYnlfc3ViamVjdC9TMDMyVnVsbkNyTTE5MzIyODExX3BzZC5wbmcpCgojIEdlbmVyYWwgRGVzY3JpcHRpb24KYGBge3IgZ2VuZXJhbCwgZmlnLndpZHRoID0gMTJ9Cm9wdGlvbnMod2lkdGggPSAxMDApCnN1bW1hcnkoYWxwaGFfYXN5bW1ldHJ5X2RhdGEpCmFzeW1tZXRyeV9wYWlycyA8LSBjKCdhc3ltbWV0cnlfRnAyX0ZwMScsICdhc3ltbWV0cnlfQUY0X0FGMycsICdhc3ltbWV0cnlfQUY4X0FGNycsICdhc3ltbWV0cnlfRjJfRjEnLCAnYXN5bW1ldHJ5X0Y0X0YzJywgJ2FzeW1tZXRyeV9GNl9GNScsICdhc3ltbWV0cnlfRjhfRjcnLCAnYXN5bW1ldHJ5X0ZDMl9GQzEnKQphc3ltbWV0cnlfcGFpcnNfcGFpcnMgPC0gZ2dwYWlycyhhbHBoYV9hc3ltbWV0cnlfZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICBjb2x1bW5zID0gYXN5bW1ldHJ5X3BhaXJzLAogICAgICAgICAgICAgICAgICAgICAgIGFlcyhjb2xvdXIgPSBzZXgsIGFscGhhID0gLjI1KSwKICAgICAgICAgICAgICAgICAgICAgICBwcm9ncmVzcyA9IEZBTFNFLAogICAgICAgICAgICAgICAgICAgICAgIGxvd2VyID0gbGlzdChjb250aW51b3VzID0gd3JhcCgicG9pbnRzIikpKQpzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFzeW1tZXRyeV9wYWlyc19wYWlycykpCmBgYAoKIyBBbHBoYSBBc3ltbWV0cnkKIyMgRnAyLUZwMSBwYWlyCgpgYGB7ciBhc3ltbWV0cnlfRnAyX0ZwMSwgZmlnLndpZHRoID0gMTJ9Cm9wdGlvbnMod2lkdGggPSAxMDApCmFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEgPSBhb3ZfZXooIlN1YmplY3QiLCAiYXN5bW1ldHJ5X0ZwMl9GcDEiLCBhbHBoYV9hc3ltbWV0cnlfZGF0YSwgYmV0d2VlbiA9IGMoImJlbGllZiIsICJzZXgiKSkKbXl0YWJsZSA8LSB4dGFicyh+IHNleCArIGJlbGllZiwgZGF0YSA9IGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nKQpmdGFibGUoYWRkbWFyZ2lucyhteXRhYmxlKSkKYWxwaGFfYXN5bW1ldHJ5X3JhaW4gPC0gZ2dwbG90KGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nLCBhZXMoeSA9IGFzeW1tZXRyeV9GcDJfRnAxLCB4ID0gYmVsaWVmLCBjb2xvciA9IHNleCwgZmlsbCA9IHNleCkpICsKICAjIGdndGl0bGUoImFscGhhX2FzeW1tZXRyeSIpICsKICB5bGFiKCJwb3dlciIpICsKICBzdGF0X2hhbGZleWUoCiAgICB0cmltICAgPSBGQUxTRSwgCiAgICBhZGp1c3QgPSAxLCAKICAgIC53aWR0aCA9IDAsIAogICAganVzdGlmaWNhdGlvbiA9IC0uMTUsIAogICAgYWxwaGEgID0gLjUsCiAgICBwb2ludF9jb2xvdXIgPSBOQSkgKyAKICAjIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbj0nbm9uZScpCiAgIyBnZW9tX2JveHBsb3Qod2lkdGggPSAuMTUsIGFscGhhID0gLjIsIG91dGxpZXIuc2hhcGUgPSBOQSkgKwogIGdlb21fcG9pbnQoc2l6ZSA9IDIsIGFscGhhID0gLjQsIHBvc2l0aW9uID0gcG9zaXRpb25faml0dGVyKHdpZHRoID0gLjA1LCBoZWlnaHQgPSAwKSkgCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfYXN5bW1ldHJ5X3JhaW4pKQphbHBoYV9hc3ltbWV0cnlfYWZleF9wbG90IDwtCiAgYWZleF9wbG90KAogICAgYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSwKICAgIHggPSAiYmVsaWVmIiwKICAgIHRyYWNlID0gInNleCIsCiAgICBlcnJvciA9ICJiZXR3ZWVuIiwKICAgIGVycm9yX2FyZyA9IGxpc3Qod2lkdGggPSAuMSksCiAgICBkb2RnZSA9IC0uNSwKICAgIG1hcHBpbmcgPSBjKCJjb2xvciIpLAogICAgcG9pbnRfYXJnID0gbGlzdChzaXplID0gNCkKICApCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfYXN5bW1ldHJ5X2FmZXhfcGxvdCkpCm5pY2UoYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSkKYV9wb3N0ZXJpb3JpKGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEpCmBgYAoKIyMgQUY0LUFGMyBwYWlyCgpgYGB7ciBhc3ltbWV0cnlfQUY0X0FGMywgZmlnLndpZHRoID0gMTJ9Cm9wdGlvbnMod2lkdGggPSAxMDApCmFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEgPSBhb3ZfZXooIlN1YmplY3QiLCAiYXN5bW1ldHJ5X0FGNF9BRjMiLCBhbHBoYV9hc3ltbWV0cnlfZGF0YSwgYmV0d2VlbiA9IGMoImJlbGllZiIsICJzZXgiKSkKbXl0YWJsZSA8LSB4dGFicyh+IHNleCArIGJlbGllZiwgZGF0YSA9IGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nKQpmdGFibGUoYWRkbWFyZ2lucyhteXRhYmxlKSkKYWxwaGFfYXN5bW1ldHJ5X3JhaW4gPC0gZ2dwbG90KGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nLCBhZXMoeSA9IGFzeW1tZXRyeV9BRjRfQUYzLCB4ID0gYmVsaWVmLCBjb2xvciA9IHNleCwgZmlsbCA9IHNleCkpICsKICAjIGdndGl0bGUoImFscGhhX2FzeW1tZXRyeSIpICsKICB5bGFiKCJwb3dlciIpICsKICBzdGF0X2hhbGZleWUoCiAgICB0cmltICAgPSBGQUxTRSwgCiAgICBhZGp1c3QgPSAxLCAKICAgIC53aWR0aCA9IDAsIAogICAganVzdGlmaWNhdGlvbiA9IC0uMTUsIAogICAgYWxwaGEgID0gLjUsCiAgICBwb2ludF9jb2xvdXIgPSBOQSkgKyAKICAjIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbj0nbm9uZScpCiAgIyBnZW9tX2JveHBsb3Qod2lkdGggPSAuMTUsIGFscGhhID0gLjIsIG91dGxpZXIuc2hhcGUgPSBOQSkgKwogIGdlb21fcG9pbnQoc2l6ZSA9IDIsIGFscGhhID0gLjQsIHBvc2l0aW9uID0gcG9zaXRpb25faml0dGVyKHdpZHRoID0gLjA1LCBoZWlnaHQgPSAwKSkgCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfYXN5bW1ldHJ5X3JhaW4pKQphbHBoYV9hc3ltbWV0cnlfYWZleF9wbG90IDwtCiAgYWZleF9wbG90KAogICAgYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSwKICAgIHggPSAiYmVsaWVmIiwKICAgIHRyYWNlID0gInNleCIsCiAgICBlcnJvciA9ICJiZXR3ZWVuIiwKICAgIGVycm9yX2FyZyA9IGxpc3Qod2lkdGggPSAuMSksCiAgICBkb2RnZSA9IC0uNSwKICAgIG1hcHBpbmcgPSBjKCJjb2xvciIpLAogICAgcG9pbnRfYXJnID0gbGlzdChzaXplID0gNCkKICApCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfYXN5bW1ldHJ5X2FmZXhfcGxvdCkpCm5pY2UoYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSkKYV9wb3N0ZXJpb3JpKGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEpCmBgYAoKIyMgQUY4LUFGNyBwYWlyCgpgYGB7ciBhc3ltbWV0cnlfQUY4X0FGNywgZmlnLndpZHRoID0gMTJ9Cm9wdGlvbnMod2lkdGggPSAxMDApCmFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEgPSBhb3ZfZXooIlN1YmplY3QiLCAiYXN5bW1ldHJ5X0FGOF9BRjciLCBhbHBoYV9hc3ltbWV0cnlfZGF0YSwgYmV0d2VlbiA9IGMoImJlbGllZiIsICJzZXgiKSkKbXl0YWJsZSA8LSB4dGFicyh+IHNleCArIGJlbGllZiwgZGF0YSA9IGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nKQpmdGFibGUoYWRkbWFyZ2lucyhteXRhYmxlKSkKYWxwaGFfYXN5bW1ldHJ5X3JhaW4gPC0gZ2dwbG90KGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nLCBhZXMoeSA9IGFzeW1tZXRyeV9BRjhfQUY3LCB4ID0gYmVsaWVmLCBjb2xvciA9IHNleCwgZmlsbCA9IHNleCkpICsKICAjIGdndGl0bGUoImFscGhhX2FzeW1tZXRyeSIpICsKICB5bGFiKCJwb3dlciIpICsKICBzdGF0X2hhbGZleWUoCiAgICB0cmltICAgPSBGQUxTRSwgCiAgICBhZGp1c3QgPSAxLCAKICAgIC53aWR0aCA9IDAsIAogICAganVzdGlmaWNhdGlvbiA9IC0uMTUsIAogICAgYWxwaGEgID0gLjUsCiAgICBwb2ludF9jb2xvdXIgPSBOQSkgKyAKICAjIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbj0nbm9uZScpCiAgIyBnZW9tX2JveHBsb3Qod2lkdGggPSAuMTUsIGFscGhhID0gLjIsIG91dGxpZXIuc2hhcGUgPSBOQSkgKwogIGdlb21fcG9pbnQoc2l6ZSA9IDIsIGFscGhhID0gLjQsIHBvc2l0aW9uID0gcG9zaXRpb25faml0dGVyKHdpZHRoID0gLjA1LCBoZWlnaHQgPSAwKSkgCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfYXN5bW1ldHJ5X3JhaW4pKQphbHBoYV9hc3ltbWV0cnlfYWZleF9wbG90IDwtCiAgYWZleF9wbG90KAogICAgYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSwKICAgIHggPSAiYmVsaWVmIiwKICAgIHRyYWNlID0gInNleCIsCiAgICBlcnJvciA9ICJiZXR3ZWVuIiwKICAgIGVycm9yX2FyZyA9IGxpc3Qod2lkdGggPSAuMSksCiAgICBkb2RnZSA9IC0uNSwKICAgIG1hcHBpbmcgPSBjKCJjb2xvciIpLAogICAgcG9pbnRfYXJnID0gbGlzdChzaXplID0gNCkKICApCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfYXN5bW1ldHJ5X2FmZXhfcGxvdCkpCm5pY2UoYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSkKYV9wb3N0ZXJpb3JpKGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEpCmBgYAojIyBGMi1GMSBwYWlyCgpgYGB7ciBhc3ltbWV0cnlfRjJfRjEsIGZpZy53aWR0aCA9IDEyfQpvcHRpb25zKHdpZHRoID0gMTAwKQphbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhID0gYW92X2V6KCJTdWJqZWN0IiwgImFzeW1tZXRyeV9GMl9GMSIsIGFscGhhX2FzeW1tZXRyeV9kYXRhLCBiZXR3ZWVuID0gYygiYmVsaWVmIiwgInNleCIpKQpteXRhYmxlIDwtIHh0YWJzKH4gc2V4ICsgYmVsaWVmLCBkYXRhID0gYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSRkYXRhJGxvbmcpCmZ0YWJsZShhZGRtYXJnaW5zKG15dGFibGUpKQphbHBoYV9hc3ltbWV0cnlfcmFpbiA8LSBnZ3Bsb3QoYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSRkYXRhJGxvbmcsIGFlcyh5ID0gYXN5bW1ldHJ5X0YyX0YxLCB4ID0gYmVsaWVmLCBjb2xvciA9IHNleCwgZmlsbCA9IHNleCkpICsKICAjIGdndGl0bGUoImFscGhhX2FzeW1tZXRyeSIpICsKICB5bGFiKCJwb3dlciIpICsKICBzdGF0X2hhbGZleWUoCiAgICB0cmltICAgPSBGQUxTRSwgCiAgICBhZGp1c3QgPSAxLCAKICAgIC53aWR0aCA9IDAsIAogICAganVzdGlmaWNhdGlvbiA9IC0uMTUsIAogICAgYWxwaGEgID0gLjUsCiAgICBwb2ludF9jb2xvdXIgPSBOQSkgKyAKICAjIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbj0nbm9uZScpCiAgIyBnZW9tX2JveHBsb3Qod2lkdGggPSAuMTUsIGFscGhhID0gLjIsIG91dGxpZXIuc2hhcGUgPSBOQSkgKwogIGdlb21fcG9pbnQoc2l6ZSA9IDIsIGFscGhhID0gLjQsIHBvc2l0aW9uID0gcG9zaXRpb25faml0dGVyKHdpZHRoID0gLjA1LCBoZWlnaHQgPSAwKSkgCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfYXN5bW1ldHJ5X3JhaW4pKQphbHBoYV9hc3ltbWV0cnlfYWZleF9wbG90IDwtCiAgYWZleF9wbG90KAogICAgYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSwKICAgIHggPSAiYmVsaWVmIiwKICAgIHRyYWNlID0gInNleCIsCiAgICBlcnJvciA9ICJiZXR3ZWVuIiwKICAgIGVycm9yX2FyZyA9IGxpc3Qod2lkdGggPSAuMSksCiAgICBkb2RnZSA9IC0uNSwKICAgIG1hcHBpbmcgPSBjKCJjb2xvciIpLAogICAgcG9pbnRfYXJnID0gbGlzdChzaXplID0gNCkKICApCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfYXN5bW1ldHJ5X2FmZXhfcGxvdCkpCm5pY2UoYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSkKYV9wb3N0ZXJpb3JpKGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEpCmBgYAoKIyMgRjQtRjMgcGFpcgoKYGBge3IgYXN5bW1ldHJ5X0Y0X0YzLCBmaWcud2lkdGggPSAxMn0Kb3B0aW9ucyh3aWR0aCA9IDEwMCkKYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSA9IGFvdl9leigiU3ViamVjdCIsICJhc3ltbWV0cnlfRjRfRjMiLCBhbHBoYV9hc3ltbWV0cnlfZGF0YSwgYmV0d2VlbiA9IGMoImJlbGllZiIsICJzZXgiKSkKbXl0YWJsZSA8LSB4dGFicyh+IHNleCArIGJlbGllZiwgZGF0YSA9IGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nKQpmdGFibGUoYWRkbWFyZ2lucyhteXRhYmxlKSkKYWxwaGFfYXN5bW1ldHJ5X3JhaW4gPC0gZ2dwbG90KGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nLCBhZXMoeSA9IGFzeW1tZXRyeV9GNF9GMywgeCA9IGJlbGllZiwgY29sb3IgPSBzZXgsIGZpbGwgPSBzZXgpKSArCiAgIyBnZ3RpdGxlKCJhbHBoYV9hc3ltbWV0cnkiKSArCiAgeWxhYigicG93ZXIiKSArCiAgc3RhdF9oYWxmZXllKAogICAgdHJpbSAgID0gRkFMU0UsIAogICAgYWRqdXN0ID0gMSwgCiAgICAud2lkdGggPSAwLCAKICAgIGp1c3RpZmljYXRpb24gPSAtLjE1LCAKICAgIGFscGhhICA9IC41LAogICAgcG9pbnRfY29sb3VyID0gTkEpICsgCiAgIyB0aGVtZShsZWdlbmQucG9zaXRpb249J25vbmUnKQogICMgZ2VvbV9ib3hwbG90KHdpZHRoID0gLjE1LCBhbHBoYSA9IC4yLCBvdXRsaWVyLnNoYXBlID0gTkEpICsKICBnZW9tX3BvaW50KHNpemUgPSAyLCBhbHBoYSA9IC40LCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcih3aWR0aCA9IC4wNSwgaGVpZ2h0ID0gMCkpIApzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFscGhhX2FzeW1tZXRyeV9yYWluKSkKYWxwaGFfYXN5bW1ldHJ5X2FmZXhfcGxvdCA8LQogIGFmZXhfcGxvdCgKICAgIGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEsCiAgICB4ID0gImJlbGllZiIsCiAgICB0cmFjZSA9ICJzZXgiLAogICAgZXJyb3IgPSAiYmV0d2VlbiIsCiAgICBlcnJvcl9hcmcgPSBsaXN0KHdpZHRoID0gLjEpLAogICAgZG9kZ2UgPSAtLjUsCiAgICBtYXBwaW5nID0gYygiY29sb3IiKSwKICAgIHBvaW50X2FyZyA9IGxpc3Qoc2l6ZSA9IDQpCiAgKQpzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFscGhhX2FzeW1tZXRyeV9hZmV4X3Bsb3QpKQpuaWNlKGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEpCmFfcG9zdGVyaW9yaShhbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhKQpgYGAKCiMjIEY2LUY1IHBhaXIKCmBgYHtyIGFzeW1tZXRyeV9GNl9GNSwgZmlnLndpZHRoID0gMTJ9Cm9wdGlvbnMod2lkdGggPSAxMDApCmFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEgPSBhb3ZfZXooIlN1YmplY3QiLCAiYXN5bW1ldHJ5X0Y2X0Y1IiwgYWxwaGFfYXN5bW1ldHJ5X2RhdGEsIGJldHdlZW4gPSBjKCJiZWxpZWYiLCAic2V4IikpCm15dGFibGUgPC0geHRhYnMofiBzZXggKyBiZWxpZWYsIGRhdGEgPSBhbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhJGRhdGEkbG9uZykKZnRhYmxlKGFkZG1hcmdpbnMobXl0YWJsZSkpCmFscGhhX2FzeW1tZXRyeV9yYWluIDwtIGdncGxvdChhbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhJGRhdGEkbG9uZywgYWVzKHkgPSBhc3ltbWV0cnlfRjZfRjUsIHggPSBiZWxpZWYsIGNvbG9yID0gc2V4LCBmaWxsID0gc2V4KSkgKwogICMgZ2d0aXRsZSgiYWxwaGFfYXN5bW1ldHJ5IikgKwogIHlsYWIoInBvd2VyIikgKwogIHN0YXRfaGFsZmV5ZSgKICAgIHRyaW0gICA9IEZBTFNFLCAKICAgIGFkanVzdCA9IDEsIAogICAgLndpZHRoID0gMCwgCiAgICBqdXN0aWZpY2F0aW9uID0gLS4xNSwgCiAgICBhbHBoYSAgPSAuNSwKICAgIHBvaW50X2NvbG91ciA9IE5BKSArIAogICMgdGhlbWUobGVnZW5kLnBvc2l0aW9uPSdub25lJykKICAjIGdlb21fYm94cGxvdCh3aWR0aCA9IC4xNSwgYWxwaGEgPSAuMiwgb3V0bGllci5zaGFwZSA9IE5BKSArCiAgZ2VvbV9wb2ludChzaXplID0gMiwgYWxwaGEgPSAuNCwgcG9zaXRpb24gPSBwb3NpdGlvbl9qaXR0ZXIod2lkdGggPSAuMDUsIGhlaWdodCA9IDApKSAKc3VwcHJlc3NXYXJuaW5ncyhwcmludChhbHBoYV9hc3ltbWV0cnlfcmFpbikpCmFscGhhX2FzeW1tZXRyeV9hZmV4X3Bsb3QgPC0KICBhZmV4X3Bsb3QoCiAgICBhbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhLAogICAgeCA9ICJiZWxpZWYiLAogICAgdHJhY2UgPSAic2V4IiwKICAgIGVycm9yID0gImJldHdlZW4iLAogICAgZXJyb3JfYXJnID0gbGlzdCh3aWR0aCA9IC4xKSwKICAgIGRvZGdlID0gLS41LAogICAgbWFwcGluZyA9IGMoImNvbG9yIiksCiAgICBwb2ludF9hcmcgPSBsaXN0KHNpemUgPSA0KQogICkKc3VwcHJlc3NXYXJuaW5ncyhwcmludChhbHBoYV9hc3ltbWV0cnlfYWZleF9wbG90KSkKbmljZShhbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhKQphX3Bvc3RlcmlvcmkoYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSkKYGBgCgojIyBGOC1GNyBwYWlyCgpgYGB7ciBhYXN5bW1ldHJ5X0Y4X0Y3LCBmaWcud2lkdGggPSAxMn0Kb3B0aW9ucyh3aWR0aCA9IDEwMCkKYWxwaGFfYXN5bW1ldHJ5X3JlcF9hbm92YSA9IGFvdl9leigiU3ViamVjdCIsICJhc3ltbWV0cnlfRjhfRjciLCBhbHBoYV9hc3ltbWV0cnlfZGF0YSwgYmV0d2VlbiA9IGMoImJlbGllZiIsICJzZXgiKSkKbXl0YWJsZSA8LSB4dGFicyh+IHNleCArIGJlbGllZiwgZGF0YSA9IGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nKQpmdGFibGUoYWRkbWFyZ2lucyhteXRhYmxlKSkKYWxwaGFfYXN5bW1ldHJ5X3JhaW4gPC0gZ2dwbG90KGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEkZGF0YSRsb25nLCBhZXMoeSA9IGFzeW1tZXRyeV9GOF9GNywgeCA9IGJlbGllZiwgY29sb3IgPSBzZXgsIGZpbGwgPSBzZXgpKSArCiAgIyBnZ3RpdGxlKCJhbHBoYV9hc3ltbWV0cnkiKSArCiAgeWxhYigicG93ZXIiKSArCiAgc3RhdF9oYWxmZXllKAogICAgdHJpbSAgID0gRkFMU0UsIAogICAgYWRqdXN0ID0gMSwgCiAgICAud2lkdGggPSAwLCAKICAgIGp1c3RpZmljYXRpb24gPSAtLjE1LCAKICAgIGFscGhhICA9IC41LAogICAgcG9pbnRfY29sb3VyID0gTkEpICsgCiAgIyB0aGVtZShsZWdlbmQucG9zaXRpb249J25vbmUnKQogICMgZ2VvbV9ib3hwbG90KHdpZHRoID0gLjE1LCBhbHBoYSA9IC4yLCBvdXRsaWVyLnNoYXBlID0gTkEpICsKICBnZW9tX3BvaW50KHNpemUgPSAyLCBhbHBoYSA9IC40LCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcih3aWR0aCA9IC4wNSwgaGVpZ2h0ID0gMCkpIApzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFscGhhX2FzeW1tZXRyeV9yYWluKSkKYWxwaGFfYXN5bW1ldHJ5X2FmZXhfcGxvdCA8LQogIGFmZXhfcGxvdCgKICAgIGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEsCiAgICB4ID0gImJlbGllZiIsCiAgICB0cmFjZSA9ICJzZXgiLAogICAgZXJyb3IgPSAiYmV0d2VlbiIsCiAgICBlcnJvcl9hcmcgPSBsaXN0KHdpZHRoID0gLjEpLAogICAgZG9kZ2UgPSAtLjUsCiAgICBtYXBwaW5nID0gYygiY29sb3IiKSwKICAgIHBvaW50X2FyZyA9IGxpc3Qoc2l6ZSA9IDQpCiAgKQpzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFscGhhX2FzeW1tZXRyeV9hZmV4X3Bsb3QpKQpuaWNlKGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEpCmFfcG9zdGVyaW9yaShhbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhKQpgYGAKCiMjIEZDMi1GQzEgcGFpcgoKYGBge3IgYXN5bW1ldHJ5X0ZDMl9GQzEsIGZpZy53aWR0aCA9IDEyfQpvcHRpb25zKHdpZHRoID0gMTAwKQphbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhID0gYW92X2V6KCJTdWJqZWN0IiwgImFzeW1tZXRyeV9GQzJfRkMxIiwgYWxwaGFfYXN5bW1ldHJ5X2RhdGEsIGJldHdlZW4gPSBjKCJiZWxpZWYiLCAic2V4IikpCm15dGFibGUgPC0geHRhYnMofiBzZXggKyBiZWxpZWYsIGRhdGEgPSBhbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhJGRhdGEkbG9uZykKZnRhYmxlKGFkZG1hcmdpbnMobXl0YWJsZSkpCmFscGhhX2FzeW1tZXRyeV9yYWluIDwtIGdncGxvdChhbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhJGRhdGEkbG9uZywgYWVzKHkgPSBhc3ltbWV0cnlfRkMyX0ZDMSwgeCA9IGJlbGllZiwgY29sb3IgPSBzZXgsIGZpbGwgPSBzZXgpKSArCiAgIyBnZ3RpdGxlKCJhbHBoYV9hc3ltbWV0cnkiKSArCiAgeWxhYigicG93ZXIiKSArCiAgc3RhdF9oYWxmZXllKAogICAgdHJpbSAgID0gRkFMU0UsIAogICAgYWRqdXN0ID0gMSwgCiAgICAud2lkdGggPSAwLCAKICAgIGp1c3RpZmljYXRpb24gPSAtLjE1LCAKICAgIGFscGhhICA9IC41LAogICAgcG9pbnRfY29sb3VyID0gTkEpICsgCiAgIyB0aGVtZShsZWdlbmQucG9zaXRpb249J25vbmUnKQogICMgZ2VvbV9ib3hwbG90KHdpZHRoID0gLjE1LCBhbHBoYSA9IC4yLCBvdXRsaWVyLnNoYXBlID0gTkEpICsKICBnZW9tX3BvaW50KHNpemUgPSAyLCBhbHBoYSA9IC40LCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcih3aWR0aCA9IC4wNSwgaGVpZ2h0ID0gMCkpIApzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFscGhhX2FzeW1tZXRyeV9yYWluKSkKYWxwaGFfYXN5bW1ldHJ5X2FmZXhfcGxvdCA8LQogIGFmZXhfcGxvdCgKICAgIGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEsCiAgICB4ID0gImJlbGllZiIsCiAgICB0cmFjZSA9ICJzZXgiLAogICAgZXJyb3IgPSAiYmV0d2VlbiIsCiAgICBlcnJvcl9hcmcgPSBsaXN0KHdpZHRoID0gLjEpLAogICAgZG9kZ2UgPSAtLjUsCiAgICBtYXBwaW5nID0gYygiY29sb3IiKSwKICAgIHBvaW50X2FyZyA9IGxpc3Qoc2l6ZSA9IDQpCiAgKQpzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFscGhhX2FzeW1tZXRyeV9hZmV4X3Bsb3QpKQpuaWNlKGFscGhhX2FzeW1tZXRyeV9yZXBfYW5vdmEpCmFfcG9zdGVyaW9yaShhbHBoYV9hc3ltbWV0cnlfcmVwX2Fub3ZhKQpgYGAKCiMgQWxwaGEgcGVhayBwYXJhbWV0ZXJzIGFuZCBhcGVyaW9kaWMgYWN0aXZpdHkKCmBgYHtyIHBlYWtfcGFyYW1zLCBmaWcud2lkdGggPSAxMn0Kb3B0aW9ucyh3aWR0aCA9IDEwMCkKc3VtbWFyeShhbHBoYV9wb3dlcl9kYXRhKQpzcGVjX3BhcmFtcyA8LSBjKCdBbXBsaXR1ZGUnLCAnRnJlcXVlbmN5JywgJ1dpZHRoJywgJ09mZnNldCcsICdTbG9wZScpCnNwZWNfcGFyYW1zX3BhaXJzIDwtIGdncGFpcnMoYWxwaGFfcG93ZXJfZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICBjb2x1bW5zID0gc3BlY19wYXJhbXMsCiAgICAgICAgICAgICAgICAgICAgICAgYWVzKGNvbG91ciA9IHZ1bG5lcmFiaWxpdHksIGFscGhhID0gLjI1KSwKICAgICAgICAgICAgICAgICAgICAgICBwcm9ncmVzcyA9IEZBTFNFLAogICAgICAgICAgICAgICAgICAgICAgIGxvd2VyID0gbGlzdChjb250aW51b3VzID0gd3JhcCgicG9pbnRzIikpKQpzdXBwcmVzc1dhcm5pbmdzKHByaW50KHNwZWNfcGFyYW1zX3BhaXJzKSkKYGBgCgojIyBBbHBoYSBQb3dlcgoKYGBge3IgYWxwaGFfcG93ZXIsIGZpZy53aWR0aCA9IDEyfQpvcHRpb25zKHdpZHRoID0gMTAwKQphbHBoYV9wYXJhbV9yZXBfYW5vdmEgPSBhb3ZfZXooIlN1YmplY3QiLCAiQW1wbGl0dWRlIiwgYWxwaGFfcG93ZXJfZGF0YSwgYmV0d2VlbiA9IGMoImJlbGllZiIsICJzZXgiKSwgd2l0aGluID0gYygiaGVtaXNwaGVyZSIsICJlbGVjdHJvZGVfcGFpciIpKQpteXRhYmxlIDwtIHh0YWJzKH4gc2V4ICsgYmVsaWVmLCBkYXRhID0gYWxwaGFfcGFyYW1fcmVwX2Fub3ZhJGRhdGEkbG9uZykgLyBsZW5ndGgobGV2ZWxzKGFscGhhX3BhcmFtX3JlcF9hbm92YSRkYXRhJGxvbmckZWxlY3Ryb2RlX3BhaXIpKSAvIGxlbmd0aChsZXZlbHMoYWxwaGFfcGFyYW1fcmVwX2Fub3ZhJGRhdGEkbG9uZyRoZW1pc3BoZXJlKSkKZnRhYmxlKGFkZG1hcmdpbnMobXl0YWJsZSkpCmFscGhhX3BhcmFtX3JhaW4gPC0gZ2dwbG90KGFscGhhX3BhcmFtX3JlcF9hbm92YSRkYXRhJGxvbmcsIGFlcyh5ID0gQW1wbGl0dWRlLCB4ID0gYmVsaWVmLCBjb2xvciA9IHNleCwgZmlsbCA9IHNleCkpICsKICBzdGF0X2hhbGZleWUoCiAgICB0cmltICAgPSBGQUxTRSwgCiAgICBhZGp1c3QgPSAxLCAKICAgIC53aWR0aCA9IDAsIAogICAganVzdGlmaWNhdGlvbiA9IC0uMTUsIAogICAgYWxwaGEgID0gLjUsCiAgICBwb2ludF9jb2xvdXIgPSBOQSkgKyAKICBnZW9tX3BvaW50KHNpemUgPSAyLCBhbHBoYSA9IC40LCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcih3aWR0aCA9IC4wNSwgaGVpZ2h0ID0gMCkpIApzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFscGhhX3BhcmFtX3JhaW4pKQphbHBoYV9wYXJhbV9hZmV4X3Bsb3QgPC0KICBhZmV4X3Bsb3QoCiAgICBhbHBoYV9wYXJhbV9yZXBfYW5vdmEsCiAgICB4ID0gImJlbGllZiIsCiAgICB0cmFjZSA9ICJzZXgiLAogICAgcGFuZWwgPSAiaGVtaXNwaGVyZSIsCiAgICBlcnJvciA9ICJiZXR3ZWVuIiwKICAgIGVycm9yX2FyZyA9IGxpc3Qod2lkdGggPSAuMSksCiAgICBkb2RnZSA9IC0uNSwKICAgIG1hcHBpbmcgPSBjKCJjb2xvciIpLAogICAgcG9pbnRfYXJnID0gbGlzdChzaXplID0gNCkKICApCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfcGFyYW1fYWZleF9wbG90KSkKbmljZShhbHBoYV9wYXJhbV9yZXBfYW5vdmEpCmFfcG9zdGVyaW9yaShhbHBoYV9wYXJhbV9yZXBfYW5vdmEpCmBgYAoKIyMgQWxwaGEgRnJlcXVlbmN5CgpgYGB7ciBhbHBoYV9mcmVxdWVuY3ksIGZpZy53aWR0aCA9IDEyfQpvcHRpb25zKHdpZHRoID0gMTAwKQphbHBoYV9wYXJhbV9yZXBfYW5vdmEgPSBhb3ZfZXooIlN1YmplY3QiLCAiRnJlcXVlbmN5IiwgYWxwaGFfcG93ZXJfZGF0YSwgYmV0d2VlbiA9IGMoImJlbGllZiIsICJzZXgiKSwgd2l0aGluID0gYygiaGVtaXNwaGVyZSIsICJlbGVjdHJvZGVfcGFpciIpKQpteXRhYmxlIDwtIHh0YWJzKH4gc2V4ICsgYmVsaWVmLCBkYXRhID0gYWxwaGFfcGFyYW1fcmVwX2Fub3ZhJGRhdGEkbG9uZykgLyBsZW5ndGgobGV2ZWxzKGFscGhhX3BhcmFtX3JlcF9hbm92YSRkYXRhJGxvbmckZWxlY3Ryb2RlX3BhaXIpKSAvIGxlbmd0aChsZXZlbHMoYWxwaGFfcGFyYW1fcmVwX2Fub3ZhJGRhdGEkbG9uZyRoZW1pc3BoZXJlKSkKZnRhYmxlKGFkZG1hcmdpbnMobXl0YWJsZSkpCmFscGhhX3BhcmFtX3JhaW4gPC0gZ2dwbG90KGFscGhhX3BhcmFtX3JlcF9hbm92YSRkYXRhJGxvbmcsIGFlcyh5ID0gRnJlcXVlbmN5LCB4ID0gYmVsaWVmLCBjb2xvciA9IHNleCwgZmlsbCA9IHNleCkpICsKICBzdGF0X2hhbGZleWUoCiAgICB0cmltICAgPSBGQUxTRSwgCiAgICBhZGp1c3QgPSAxLCAKICAgIC53aWR0aCA9IDAsIAogICAganVzdGlmaWNhdGlvbiA9IC0uMTUsIAogICAgYWxwaGEgID0gLjUsCiAgICBwb2ludF9jb2xvdXIgPSBOQSkgKyAKICBnZW9tX3BvaW50KHNpemUgPSAyLCBhbHBoYSA9IC40LCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcih3aWR0aCA9IC4wNSwgaGVpZ2h0ID0gMCkpIApzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFscGhhX3BhcmFtX3JhaW4pKQphbHBoYV9wYXJhbV9hZmV4X3Bsb3QgPC0KICBhZmV4X3Bsb3QoCiAgICBhbHBoYV9wYXJhbV9yZXBfYW5vdmEsCiAgICB4ID0gImJlbGllZiIsCiAgICB0cmFjZSA9ICJzZXgiLAogICAgcGFuZWwgPSAiaGVtaXNwaGVyZSIsCiAgICBlcnJvciA9ICJiZXR3ZWVuIiwKICAgIGVycm9yX2FyZyA9IGxpc3Qod2lkdGggPSAuMSksCiAgICBkb2RnZSA9IC0uNSwKICAgIG1hcHBpbmcgPSBjKCJjb2xvciIpLAogICAgcG9pbnRfYXJnID0gbGlzdChzaXplID0gNCkKICApCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfcGFyYW1fYWZleF9wbG90KSkKbmljZShhbHBoYV9wYXJhbV9yZXBfYW5vdmEpCmFfcG9zdGVyaW9yaShhbHBoYV9wYXJhbV9yZXBfYW5vdmEpCmBgYAojIyBBbHBoYSBCYW5kd2lkdGgKCmBgYHtyIGFscGhhX2JhbmR3aWR0aCwgZmlnLndpZHRoID0gMTJ9Cm9wdGlvbnMod2lkdGggPSAxMDApCmFscGhhX3BhcmFtX3JlcF9hbm92YSA9IGFvdl9leigiU3ViamVjdCIsICJXaWR0aCIsIGFscGhhX3Bvd2VyX2RhdGEsIGJldHdlZW4gPSBjKCJiZWxpZWYiLCAic2V4IiksIHdpdGhpbiA9IGMoImhlbWlzcGhlcmUiLCAiZWxlY3Ryb2RlX3BhaXIiKSkKbXl0YWJsZSA8LSB4dGFicyh+IHNleCArIGJlbGllZiwgZGF0YSA9IGFscGhhX3BhcmFtX3JlcF9hbm92YSRkYXRhJGxvbmcpIC8gbGVuZ3RoKGxldmVscyhhbHBoYV9wYXJhbV9yZXBfYW5vdmEkZGF0YSRsb25nJGVsZWN0cm9kZV9wYWlyKSkgLyBsZW5ndGgobGV2ZWxzKGFscGhhX3BhcmFtX3JlcF9hbm92YSRkYXRhJGxvbmckaGVtaXNwaGVyZSkpCmZ0YWJsZShhZGRtYXJnaW5zKG15dGFibGUpKQphbHBoYV9wYXJhbV9yYWluIDwtIGdncGxvdChhbHBoYV9wYXJhbV9yZXBfYW5vdmEkZGF0YSRsb25nLCBhZXMoeSA9IFdpZHRoLCB4ID0gYmVsaWVmLCBjb2xvciA9IHNleCwgZmlsbCA9IHNleCkpICsKICBzdGF0X2hhbGZleWUoCiAgICB0cmltICAgPSBGQUxTRSwgCiAgICBhZGp1c3QgPSAxLCAKICAgIC53aWR0aCA9IDAsIAogICAganVzdGlmaWNhdGlvbiA9IC0uMTUsIAogICAgYWxwaGEgID0gLjUsCiAgICBwb2ludF9jb2xvdXIgPSBOQSkgKyAKICBnZW9tX3BvaW50KHNpemUgPSAyLCBhbHBoYSA9IC40LCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcih3aWR0aCA9IC4wNSwgaGVpZ2h0ID0gMCkpIApzdXBwcmVzc1dhcm5pbmdzKHByaW50KGFscGhhX3BhcmFtX3JhaW4pKQphbHBoYV9wYXJhbV9hZmV4X3Bsb3QgPC0KICBhZmV4X3Bsb3QoCiAgICBhbHBoYV9wYXJhbV9yZXBfYW5vdmEsCiAgICB4ID0gImJlbGllZiIsCiAgICB0cmFjZSA9ICJzZXgiLAogICAgcGFuZWwgPSAiaGVtaXNwaGVyZSIsCiAgICBlcnJvciA9ICJiZXR3ZWVuIiwKICAgIGVycm9yX2FyZyA9IGxpc3Qod2lkdGggPSAuMSksCiAgICBkb2RnZSA9IC0uNSwKICAgIG1hcHBpbmcgPSBjKCJjb2xvciIpLAogICAgcG9pbnRfYXJnID0gbGlzdChzaXplID0gNCkKICApCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYWxwaGFfcGFyYW1fYWZleF9wbG90KSkKbmljZShhbHBoYV9wYXJhbV9yZXBfYW5vdmEpCmFfcG9zdGVyaW9yaShhbHBoYV9wYXJhbV9yZXBfYW5vdmEpCmBgYAoKIyMgQXBlcmlvZGljIE9mZnNldAoKYGBge3IgYXBlcmlvZGljX29mZnNldCwgZmlnLndpZHRoID0gMTJ9Cm9wdGlvbnMod2lkdGggPSAxMDApCmFwZXJpb2RpY19vZmZzZXRfcmVwX2Fub3ZhID0gYW92X2V6KCJTdWJqZWN0IiwgIk9mZnNldCIsIGFscGhhX3Bvd2VyX2RhdGEsIGJldHdlZW4gPSBjKCJiZWxpZWYiLCAic2V4IiksIHdpdGhpbiA9IGMoImhlbWlzcGhlcmUiLCAiZWxlY3Ryb2RlX3BhaXIiKSkKbXl0YWJsZSA8LSB4dGFicyh+IHNleCArIGJlbGllZiwgZGF0YSA9IGFwZXJpb2RpY19vZmZzZXRfcmVwX2Fub3ZhJGRhdGEkbG9uZykgLyBsZW5ndGgobGV2ZWxzKGFwZXJpb2RpY19vZmZzZXRfcmVwX2Fub3ZhJGRhdGEkbG9uZyRlbGVjdHJvZGVfcGFpcikpIC8gbGVuZ3RoKGxldmVscyhhcGVyaW9kaWNfb2Zmc2V0X3JlcF9hbm92YSRkYXRhJGxvbmckaGVtaXNwaGVyZSkpCmZ0YWJsZShhZGRtYXJnaW5zKG15dGFibGUpKQphcGVyaW9kaWNfcGFyYW1fcmFpbiA8LSBnZ3Bsb3QoYXBlcmlvZGljX29mZnNldF9yZXBfYW5vdmEkZGF0YSRsb25nLCBhZXMoeSA9IE9mZnNldCwgeCA9IGJlbGllZiwgY29sb3IgPSBzZXgsIGZpbGwgPSBzZXgpKSArCiAgc3RhdF9oYWxmZXllKAogICAgdHJpbSAgID0gRkFMU0UsIAogICAgYWRqdXN0ID0gMSwgCiAgICAud2lkdGggPSAwLCAKICAgIGp1c3RpZmljYXRpb24gPSAtLjE1LCAKICAgIGFscGhhICA9IC41LAogICAgcG9pbnRfY29sb3VyID0gTkEpICsgCiAgZ2VvbV9wb2ludChzaXplID0gMiwgYWxwaGEgPSAuNCwgcG9zaXRpb24gPSBwb3NpdGlvbl9qaXR0ZXIod2lkdGggPSAuMDUsIGhlaWdodCA9IDApKSAKc3VwcHJlc3NXYXJuaW5ncyhwcmludChhcGVyaW9kaWNfcGFyYW1fcmFpbikpCmFwZXJpb2RpY19wYXJhbV9hZmV4X3Bsb3QgPC0KICBhZmV4X3Bsb3QoCiAgICBhcGVyaW9kaWNfb2Zmc2V0X3JlcF9hbm92YSwKICAgIHggPSAiYmVsaWVmIiwKICAgIHRyYWNlID0gInNleCIsCiAgICBwYW5lbCA9ICJoZW1pc3BoZXJlIiwKICAgIGVycm9yID0gImJldHdlZW4iLAogICAgZXJyb3JfYXJnID0gbGlzdCh3aWR0aCA9IC4xKSwKICAgIGRvZGdlID0gLS41LAogICAgbWFwcGluZyA9IGMoImNvbG9yIiksCiAgICBwb2ludF9hcmcgPSBsaXN0KHNpemUgPSA0KQogICkKc3VwcHJlc3NXYXJuaW5ncyhwcmludChhcGVyaW9kaWNfcGFyYW1fYWZleF9wbG90KSkKbmljZShhcGVyaW9kaWNfb2Zmc2V0X3JlcF9hbm92YSkKYV9wb3N0ZXJpb3JpKGFwZXJpb2RpY19vZmZzZXRfcmVwX2Fub3ZhKQpgYGAKCiMjIEFwZXJpb2RpYyBTbG9wZQoKYGBge3IgYXBlcmlvZGljX3Nsb3BlLCBmaWcud2lkdGggPSAxMn0Kb3B0aW9ucyh3aWR0aCA9IDEwMCkKYXBlcmlvZGljX3Nsb3BlX3JlcF9hbm92YSA9IGFvdl9leigiU3ViamVjdCIsICJTbG9wZSIsIGFscGhhX3Bvd2VyX2RhdGEsIGJldHdlZW4gPSBjKCJiZWxpZWYiLCAic2V4IiksIHdpdGhpbiA9IGMoImhlbWlzcGhlcmUiLCAiZWxlY3Ryb2RlX3BhaXIiKSkKbXl0YWJsZSA8LSB4dGFicyh+IHNleCArIGJlbGllZiwgZGF0YSA9IGFwZXJpb2RpY19zbG9wZV9yZXBfYW5vdmEkZGF0YSRsb25nKSAvIGxlbmd0aChsZXZlbHMoYXBlcmlvZGljX3Nsb3BlX3JlcF9hbm92YSRkYXRhJGxvbmckZWxlY3Ryb2RlX3BhaXIpKSAvIGxlbmd0aChsZXZlbHMoYXBlcmlvZGljX3Nsb3BlX3JlcF9hbm92YSRkYXRhJGxvbmckaGVtaXNwaGVyZSkpCmZ0YWJsZShhZGRtYXJnaW5zKG15dGFibGUpKQphcGVyaW9kaWNfcGFyYW1fcmFpbiA8LSBnZ3Bsb3QoYXBlcmlvZGljX3Nsb3BlX3JlcF9hbm92YSRkYXRhJGxvbmcsIGFlcyh5ID0gU2xvcGUsIHggPSBiZWxpZWYsIGNvbG9yID0gc2V4LCBmaWxsID0gc2V4KSkgKwogIHN0YXRfaGFsZmV5ZSgKICAgIHRyaW0gICA9IEZBTFNFLCAKICAgIGFkanVzdCA9IDEsIAogICAgLndpZHRoID0gMCwgCiAgICBqdXN0aWZpY2F0aW9uID0gLS4xNSwgCiAgICBhbHBoYSAgPSAuNSwKICAgIHBvaW50X2NvbG91ciA9IE5BKSArIAogIGdlb21fcG9pbnQoc2l6ZSA9IDIsIGFscGhhID0gLjQsIHBvc2l0aW9uID0gcG9zaXRpb25faml0dGVyKHdpZHRoID0gLjA1LCBoZWlnaHQgPSAwKSkgCnN1cHByZXNzV2FybmluZ3MocHJpbnQoYXBlcmlvZGljX3BhcmFtX3JhaW4pKQphcGVyaW9kaWNfcGFyYW1fYWZleF9wbG90IDwtCiAgYWZleF9wbG90KAogICAgYXBlcmlvZGljX3Nsb3BlX3JlcF9hbm92YSwKICAgIHggPSAiYmVsaWVmIiwKICAgIHRyYWNlID0gInNleCIsCiAgICBwYW5lbCA9ICJoZW1pc3BoZXJlIiwKICAgIGVycm9yID0gImJldHdlZW4iLAogICAgZXJyb3JfYXJnID0gbGlzdCh3aWR0aCA9IC4xKSwKICAgIGRvZGdlID0gLS41LAogICAgbWFwcGluZyA9IGMoImNvbG9yIiksCiAgICBwb2ludF9hcmcgPSBsaXN0KHNpemUgPSA0KQogICkKc3VwcHJlc3NXYXJuaW5ncyhwcmludChhcGVyaW9kaWNfcGFyYW1fYWZleF9wbG90KSkKbmljZShhcGVyaW9kaWNfc2xvcGVfcmVwX2Fub3ZhKQphX3Bvc3RlcmlvcmkoYXBlcmlvZGljX3Nsb3BlX3JlcF9hbm92YSkKYGBgCg==