# excel file
airlines <- read_excel("../00_data/MyData.xlsx") %>%
mutate(n_events = as.numeric(n_events)) %>%
mutate(avail_seat_km_per_week = as.numeric(avail_seat_km_per_week))
airlines
## # A tibble: 336 × 6
## Ref airline avail_seat_km_per_week year_range type_…¹ n_eve…²
## <dbl> <chr> <dbl> <chr> <chr> <dbl>
## 1 NA Aer Lingus 320906734 85_99 incide… 2
## 2 2 Aeroflot* 1197672318 85_99 incide… 76
## 3 3 Aerolineas Argentinas 385803648 85_99 incide… 6
## 4 4 Aeromexico* 596871813 85_99 incide… 3
## 5 5 Air Canada 1865253802 85_99 incide… 2
## 6 6 Air France 3004002661 85_99 incide… 14
## 7 7 Air India* 869253552 85_99 incide… 2
## 8 8 Air New Zealand* 710174817 85_99 incide… 3
## 9 9 Alaska Airlines* 965346773 85_99 incide… 5
## 10 10 Alitalia 698012498 85_99 incide… 7
## # … with 326 more rows, and abbreviated variable names ¹type_of_event,
## # ²n_events
airlines
## # A tibble: 336 × 6
## Ref airline avail_seat_km_per_week year_range type_…¹ n_eve…²
## <dbl> <chr> <dbl> <chr> <chr> <dbl>
## 1 NA Aer Lingus 320906734 85_99 incide… 2
## 2 2 Aeroflot* 1197672318 85_99 incide… 76
## 3 3 Aerolineas Argentinas 385803648 85_99 incide… 6
## 4 4 Aeromexico* 596871813 85_99 incide… 3
## 5 5 Air Canada 1865253802 85_99 incide… 2
## 6 6 Air France 3004002661 85_99 incide… 14
## 7 7 Air India* 869253552 85_99 incide… 2
## 8 8 Air New Zealand* 710174817 85_99 incide… 3
## 9 9 Alaska Airlines* 965346773 85_99 incide… 5
## 10 10 Alitalia 698012498 85_99 incide… 7
## # … with 326 more rows, and abbreviated variable names ¹type_of_event,
## # ²n_events
airline, avail_seat_km_per_week, n_events, type_of_event
Divide it using dplyr::select in a way the two have a common variable, which you could use to join the two.
airlines_1<- airlines %>% select(Ref:year_range)
airlines_1
## # A tibble: 336 × 4
## Ref airline avail_seat_km_per_week year_range
## <dbl> <chr> <dbl> <chr>
## 1 NA Aer Lingus 320906734 85_99
## 2 2 Aeroflot* 1197672318 85_99
## 3 3 Aerolineas Argentinas 385803648 85_99
## 4 4 Aeromexico* 596871813 85_99
## 5 5 Air Canada 1865253802 85_99
## 6 6 Air France 3004002661 85_99
## 7 7 Air India* 869253552 85_99
## 8 8 Air New Zealand* 710174817 85_99
## 9 9 Alaska Airlines* 965346773 85_99
## 10 10 Alitalia 698012498 85_99
## # … with 326 more rows
airlines_2 <- airlines %>% select(Ref, avail_seat_km_per_week, type_of_event:n_events)
airlines_2
## # A tibble: 336 × 4
## Ref avail_seat_km_per_week type_of_event n_events
## <dbl> <dbl> <chr> <dbl>
## 1 NA 320906734 incidents 2
## 2 2 1197672318 incidents 76
## 3 3 385803648 incidents 6
## 4 4 596871813 incidents 3
## 5 5 1865253802 incidents 2
## 6 6 3004002661 incidents 14
## 7 7 869253552 incidents 2
## 8 8 710174817 incidents 3
## 9 9 965346773 incidents 5
## 10 10 698012498 incidents 7
## # … with 326 more rows
airlines %>%
mutate(row_id = row_number())
## # A tibble: 336 × 7
## Ref airline avail_seat_km_pe…¹ year_…² type_…³ n_eve…⁴ row_id
## <dbl> <chr> <dbl> <chr> <chr> <dbl> <int>
## 1 NA Aer Lingus 320906734 85_99 incide… 2 1
## 2 2 Aeroflot* 1197672318 85_99 incide… 76 2
## 3 3 Aerolineas Argentinas 385803648 85_99 incide… 6 3
## 4 4 Aeromexico* 596871813 85_99 incide… 3 4
## 5 5 Air Canada 1865253802 85_99 incide… 2 5
## 6 6 Air France 3004002661 85_99 incide… 14 6
## 7 7 Air India* 869253552 85_99 incide… 2 7
## 8 8 Air New Zealand* 710174817 85_99 incide… 3 8
## 9 9 Alaska Airlines* 965346773 85_99 incide… 5 9
## 10 10 Alitalia 698012498 85_99 incide… 7 10
## # … with 326 more rows, and abbreviated variable names ¹avail_seat_km_per_week,
## # ²year_range, ³type_of_event, ⁴n_events
Use tidyr::left_join or other joining functions.
airlines_1 %>%
left_join(airlines_2)
## Joining with `by = join_by(Ref, avail_seat_km_per_week)`
## # A tibble: 336 × 6
## Ref airline avail_seat_km_per_week year_range type_…¹ n_eve…²
## <dbl> <chr> <dbl> <chr> <chr> <dbl>
## 1 NA Aer Lingus 320906734 85_99 incide… 2
## 2 2 Aeroflot* 1197672318 85_99 incide… 76
## 3 3 Aerolineas Argentinas 385803648 85_99 incide… 6
## 4 4 Aeromexico* 596871813 85_99 incide… 3
## 5 5 Air Canada 1865253802 85_99 incide… 2
## 6 6 Air France 3004002661 85_99 incide… 14
## 7 7 Air India* 869253552 85_99 incide… 2
## 8 8 Air New Zealand* 710174817 85_99 incide… 3
## 9 9 Alaska Airlines* 965346773 85_99 incide… 5
## 10 10 Alitalia 698012498 85_99 incide… 7
## # … with 326 more rows, and abbreviated variable names ¹type_of_event,
## # ²n_events