# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("JNJ", "MMM", "AMZN", "IBM", "MSFT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "IBM" "JNJ" "MMM" "MSFT"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.25
## 2 IBM 0.25
## 3 JNJ 0.2
## 4 MMM 0.2
## 5 MSFT 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0580
## 2 2013-02-28 0.0146
## 3 2013-03-28 0.0382
## 4 2013-04-30 -0.00471
## 5 2013-05-31 0.0391
## 6 2013-06-28 -0.0122
## 7 2013-07-31 0.0486
## 8 2013-08-30 -0.0474
## 9 2013-09-30 0.0410
## 10 2013-10-31 0.0598
## # … with 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 -0.0807
window = 24
rolling_kurt_table <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "Kurt") %>%
na.omit() %>%
select(-returns)
rolling_kurt_table%>%
ggplot(aes(x = date, y = Kurt)) +
geom_line(color = "cornflowerblue") +
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7))+
theme(plot.title = element_text(hjust = 0.5))+
labs(x = NULL, y = "Kurtosis",
title = paste0("Rolling ", window, " month kurtosis")) +
annotate(geom = "text",
x = as.Date("2016-07-01"),
y = 3,
size = 3,
color = "red",
label = str_glue("
The downside risk went higher
during 2016 and then back down again only to
rise until its peak in late 2017"))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.