##
## Call:
## lm(formula = y ~ x_1 + x_2 + x_3 + x_4, data = FA11_Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1750 -1.6709 0.2508 1.3783 3.9254
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 62.4054 70.0710 0.891 0.3991
## x_1 1.5511 0.7448 2.083 0.0708 .
## x_2 0.5102 0.7238 0.705 0.5009
## x_3 0.1019 0.7547 0.135 0.8959
## x_4 -0.1441 0.7091 -0.203 0.8441
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.446 on 8 degrees of freedom
## Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736
## F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07
Looking at the f statistic p value, the model is good fit to the data.
The t test probabilities are not significant, except \(x_2\) is almost significant a factor. So, inspecting to see if the factors are co-linear and causing any problems in the model
## x_1 x_2 x_3 x_4
## 38.49621 254.42317 46.86839 282.51286
The above table shows the VIF’s for all predictor variables. All the predictors are greater than 10 so we have issues with our model.
Removing the Highest predictor variable with the highest model might improve the model.